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Abstract. Let f (z) = z5 + az3 + bz2 + cz + d ∈ �[z] and let us consider a del
Pezzo surface of degree one given by the equation Ef : x2 − y3 − f (z) = 0. In this paper
we prove that if the set of rational points on the curve Ea,b : Y 2 = X3 + 135(2a −
15)X − 1350(5a + 2b − 26) is infinite then the set of rational points on the surface Ef

is dense in the Zariski topology.
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1. Introduction. A projective and geometrically irreducible surface S is called
a del Pezzo surface if its anti-canonical class KS is ample. The degree of del Pezzo
surface is the self-intersection number of its canonical class: deg S = K2

S. As we know,
the number deg S is a positive integer, and in fact we have the inequality 1 ≤ deg S ≤ 9.
Geometrically, smooth del Pezzo surfaces are obtained by blowing up d ≤ 8 points in
general position in �2. The singular ones are blow-ups of �2 in special configurations
of points or in infinitely near points. A detailed study of geometric and arithmetic
properties of del Pezzo surfaces can be found in [6].

Many interesting arithmetic questions are connected with the class of del Pezzo
surfaces. As such surfaces are geometrically rational (they are rational over the field �),
it is especially interesting to look at problems concerning the question about density
(in Zariski topology) of k-rational points, where k is a fixed finite extension of the field
of rational numbers. From the arithmetic and geometric points of view higher degree
del Pezzo surfaces are simpler than low degree ones. For example, it turns out that in
case deg S = 5 the surface S is always k-rational. In case deg S ≤ 4 situation is more
complicated. Indeed, there are many examples of singular del Pezzo surfaces of degree
four that are unirational over �, but not rational.

In this paper we are interested in the problem of existence of rational points on
del Pezzo surface of degree one given by the equation

Ef : x2 − y3 − f (z) = 0, (1.1)

where f (z) = z5 + az3 + bz2 + cz + d ∈ �[z]. It is clear that after a suitable change of
coordinates each surface given by the equation px2 + qy3 + g(z) = 0, where p, q ∈ � \
{0}, g ∈ �[z], deg g = 5 or deg g = 6 and g has a rational root and can be transformed
to the surface Ef for a suitably selected f ∈ �[z] of degree five.

Now, if we fix z ∈ � such that f (z) �= 0 then the curve Ef (z) is an elliptic curve. So,
in a natural way, we can consider Ef as on an elliptic surface where z-line is a base curve
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of the fibration. In our case Ef is an isotrivial elliptic surface with j-invariant j(Ef ) = 0.
In recent years several papers concerning the density of points in certain classes of
isotrivial elliptic surfaces have appeared. Interested readers can take a look at papers
[1, 4, 5, 7, 8].

In Section 2 we prove Theorem 2.1 which says that if the set of rational points on
the curve

Ea,b : Y 2 = X3 + 135(2a − 15)X − 1350(5a + 2b − 26)

is infinite then rational points on the surface Ef are dense in Zariski topology. We also
show that if t is a transcendental parameter then, under the same assumption on the
curve Ea,b, the set of �[t]-points on the surface

Ef : x2 − y3 − f (z) = t,

which is treated over the field of rational functions �(t), is infinite.
In Section 3 as well we show that for every pair a, b of non-zero rational numbers

the set of rational points on the surface

S : x2 + ay5 − z6 = b

(which is not a del Pezzo surface) is infinite.

2. Rational points on the surface Ef . Let f (z) = z5 + az3 + bz2 + cz + d ∈ �[z]
and let us consider the surface

Ef : x2 − y3 − f (z) = 0.

For a given z ∈ � denote the curve Y 2 = X3 + f (z) by Ez. Let us recall
how the torsion part of the curve Ez looks like with a fixed z ∈ � [9, p. 323].
If f (z) = 1, then Tors Ez ∼= �/6�. If f (z) �= 1 and f (z) is a square in �, then Tors Ez =
{O, (0,

√
f (z)), (0, −√

f (z))}. In the case that f (z) = −432 we have Tors Ez = {O,
(12, 36), (12, −36)}. If f (z) �= 1 and f (z) is a cube in �, then Tors Ez =
{O, (− 3

√
f (z), 0)}. In the remaining cases we have Tors Ez = {O}. The above have

two important consequences. If f does not have multiple roots then there are only
finitely many rational numbers z such that the curve Ez has non-trivial torsion points.
Indeed, because every curve f (z) = λvi, where i = 2, 3, 6 and λ ∈ {1,−432}, is of
genus ≥ 2, our observation is an immediate consequence of Faltings Theorem [3] (of
course if i = 0 then the equation f (z) = λ has at most five rational roots). Furthermore,
if there is a rational base change z = ψ(t) such that on the surface Ef ◦ψ we have the
section σ = (x, y) ∈ �(t) × �(t) with xy �= 0, then σ is a non-torsion section. It is
clear that we have the same conclusion in the case when f has a rational multiple root
and f (ψ(t)) is a non-constant sixth power free element of �(t).

Now we are ready to prove the following:

THEOREM 2.1. Let f (z) = z5 + az3 + bz2 + cz + d ∈ �[z] and consider the surface
given by the equation Ef : x2 − y3 − f (z) = 0. Then

(1) if f has multiple roots over � then there exists a rational change of base z = ψ(t)
such that there is a non-torsion section on elliptic surface Ef ◦ψ . In this case the
set of rational points on Ef is Zariski dense.
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(2) if f does not have multiple roots and the set of rational points on the curve
Ea,b : Y 2 = X3 + 135(2a − 15)X − 1350(5a + 2b − 26) is infinite then the set
of rational points on the surface Ef is Zariski dense.

Proof. (1) If polynomial f has a rational multiple root then without loss of
generality we can assume that f (z) = z2(z3 + a′z2 + b′z + c′) for certain integers a′, b′

and c′. For the proof of our theorem, it will be convenient to work with the surface E ′
f

given by the equation

E ′
f : F ′(X, Y, Z) := X2 − ZY 3 − (Z3 + a′Z2 + b′Z + c′) = 0,

which is birationally equivalent to Ef by the mapping (x, y, z) = (ZX, ZY, Z) with
the inverse (X, Y, Z) = (x/z, y/z, z). In order to find the rational curve on E ′

f we use
method of indetermined coefficients. So, suppose that X = Z2 + pZ + q, Y = Z + t,
where t is transcendental parameter and we are looking for p, q ∈ �(t). For X, Y
defined this way we obtain

F ′(X, Y, Z) = f0 + f1Z + f2Z2 + f3Z3,

where
f0 = −c′ + q2, f1 = −b′ + 2pq − t3,

f2 = −a′ + p2 + 2q − 3t2, f3 = −1 + 2p − 3t.

Let us note that the system of equations f2 = f3 = 0 has exactly one solution in
�(t) given by

p = 1 + 3t
2

, q = −1 + 4a′ − 6t + 3t2

8
. (2.1)

For p and q defined in this way we can now solve the equation f0 + f1Z = 0 according
to Z,

Z = −9t4 − 36t3 + 6(4a′ + 5)t2 − 12(4a′ − 1)t + 16a′2 − 8a′ − 64c′ + 1

8
(
t3 − 15t2 + 3(4a′ − 3)t + 4a′ − 8b′ − 1

) =: ψ(t).

Therefore, on the surface Ef ◦ψ we have the section σ = (x, y) = (ψ(t)(ψ(t)2 + pψ(t) +
q), ψ(t) + t), where p, q are given by (2.1). With the help of computer we find that
f (ψ(t)) is a non-constant and sixth power free element of �(t), thus, from the remark
presented at the beginning of this section, the section σ is a non-torsion section. After
the base change we get infinitely many sections (corresponding to mσ ), each with
infinitely many rational points. That means that each section is included in the Zariski
closure, say R, of the set of rational points. Because this closure consists of only
finitely many components, it has dimension two, and as the surface is irreducible, R is
the whole surface. Thus the set of rational points on Ef ◦ψ is dense. The map from the
Ef ◦ψ to the Ef is dominant, so the set of rational points on the surface Ef is also dense.

In the case when f has irrational multiple root, without loss of generality we can
assume that f (z) = (z2 + a′)2(z + b′) for certain integers a′, b′ and a′ �= 0. After change
of variables (x, y, z) = ((Z2 + a′)X, (Z2 + a′)Y, Z) with the inverse (X, Y, Z) = (x/

(z2 + a′), y/(z2 + a′), z) we reduce our problem to the examination of the surface E ′′
f

given by the equation

E ′′
f : X2 − (Z2 + a′)Y 3 − (Z + b′) = 0.
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Now, we look at the fibration of E ′′
f over the Y line. We consider its generic fibre, which

is a curve over the field �(Y ), and viewing this curve over the extension field �(u) of
�(Y ) given by Y = u2. The equation of this curve is of the form

C : X2 = u6Z2 + Z + a′u6 + b′.

Let us note that C is a curve of genus zero with the �(u)-rational point P = (u3, 0, 1) (it
is a point at infinity). So, this is a rational curve over �(u). Putting X = pu3 + t, Z = p
and solving the obtained equation according to p we get the parametrization of our
curve

X(t, u) = u3t2 − u + t3(a′t6 + b′)
2u3t − 1

, Z(t, u) = −t2 + a′u6 + b′

2u3t − 1
. (2.2)

Our reasoning shows that the surface obtained by the base change Y = u2 is in fact
rational and thus the surface E ′′

f is unirational. This immediately implies that rational
points on Ef are dense in the Zariski topology.

(2) Let us put F(x, y, z) = x2 − y3 − f (z). As in the previous proof we use the
method of indetermined coefficients. We look for elements p, q, r, T ∈ �(s, u) such
that the curve given by x = T3 + pT2 + qT + r, y = T2 + sT + u, z = T lies on the
surface. For x, y, z defined in this way we have

F(x, y, z) = f0 + f1T + f2T2 + f3T3 + f4T4 + f5T5,

where

f0 = −d + r2 − u3, f1 = −c + 2qr − 3su2,

f2 = −b + q2 + 2pr − 3s2u − 3u2, f3 = −a + 2pq + 2r − s3 − 6su,

f4 = p2 + 2q − 3s2 − 3u, f5 = −1 + 2p − 3s.

Let us notice that the system of equations f3 = f4 = f5 = 0 has exactly one solution
in �(s, u) given by

p = 1 + 3s
2

, q = −1 − 6s + 3s2 + 12u
8

, r = 1 + 8a + 9s + 15s2 − s3 − 12u + 12su
16

.

Substituting these values into the equation f2 = 0 we get

48u2−24(−3 − 10s + s2)u − (5 + 32a − 64b + 60s + 96as + 198s2 + 140s3 − 3s4) = 0.

Now, solving this equation with respect to u we obtain

u = −9 − 30s + 3s2 ± 4
√

15s3 + 90s2 + 9(2a + 5)s + 6(a − 2b + 1)
12

.

Now let us consider the curve Ca,b given by the equation

Ca,b : v2 = 15s3 + 90s2 + 9(2a + 5)s + 6(a − 2b + 1).

With the affine change of variables

(s, v) =
(

X − 30
15

,
Y
15

)
with the inverse (X, Y ) = (15(s + 2), 15v),
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we transform the curve Ca, b into the curve Ea,b given by the equation

Ea,b : Y 2 = X3 + 135(2a − 15)X − 1350(5a + 2b − 26).

We get the following consequence of our reasoning: if infinitely many rational
points lie on Ea,b then all but finitely many points give us new value z = T (the solution
of the equation f0 + f1T = 0) for which the elliptic curve Ef (z) : x2 = y3 + f (z) has a
positive rank. We know that each fibre containing infinitely many rational points is
contained in the closure of the set of rational points, say R. We have to show that for
all but finitely many z the curve Ef (z) is of positive rank, so the set R contains infinitely
many curves and is therefore two-dimensional. As the surface is irreducible, the set of
rational points is dense. �

REMARK 2.2. In the first part of Theorem 2.1 we have shown that if the polynomial
f has multiple roots then there is a rational change of base z = ψ(t) such that there exists
a non-torsion section on the elliptic surface Ef ◦ψ . A natural question arises whether it is
possible to construct the polynomial f without multiple roots giving a surface Ef with
the similar property. It turns out that it is possible to construct demanded polynomials.
This is closely connected with the question for which rational numbers a, b the curve
Ea,b is singular.

The curve Ea,b : Y 2 = X3 + 135(2a − 15)X − 1,350(5a + 2b − 26) =: g(X) is
singular if, for the discriminant � of the polynomial g, we have

�(a, b) = −16
(
4
(
135(2a − 15)

)3 + 27(1,350(5a + 2b − 26))2) = 0.

It is easy to see that it holds if and only if

45(2a − 15) = −t2, 675(5a + 2b − 26) = t3,

for a certain rational number t. Hence we obtain

a = −t2 + 630
90

, b = 2t3 + 75t2 − 15,525
2,700

. (2.3)

For a, b defined in this way, the curve Ea,b is reduced to the form E : Y 2 =
(X + 2t)(X − t)2 and the set of its rational points can be parametrized,

X = U2 − 2t, Y = U(U2 − 3t).

Using the above equalities we obtain an explicit form of the rational curve L on the
surface Ef in the case when a, b are given by (2.3). We will not, however, present
these equations here, since the rational functions defining the curve L are of very high
degrees.

Part (1) of our theorem and the above observation suggest the following

QUESTION 2.3. Let f (z) = z5 + at3 + bz2 + cz + d and let us consider the surface
Ef : x2 = y3 + f (z). What are the conditions that guarantee the existence of a rational
base change z = ψ(t) such that there is a non-torsion section on the surface Ef ◦ψ?

Let us note several interesting corollaries of Theorem 2.1.
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COROLLARY 2.4. Let f (z) = z5 + az3 + bz2 + cz + d ∈ �[t] and let us assume that
the set of rational points on the curve Ea,b : Y 2 = X3 + 135(2a − 15)X − 1350(5a +
2b − 26) is infinite. Then the diophantine equation x2 − y3 − f (z) = t has infinitely many
solutions in the ring of polynomials �[t].

Proof. This observation is an immediate consequence of the reasoning conducted
in the proof of the second part of Theorem 2.1. Indeed, by the assumption (curve
Ea,b has infinite set of rational points) we have shown that for a fixed rational point on
Ea,b the coefficients of the polynomials x(T) = T3 + pT2 + qT + r, y(T) = T2 + sT +
u, z(T) = T are rational and the polynomial F(x(T), y(T), z(T)), where F(x, y, z) =
x2 − y3 − f (z), is of degree one. Because the set of rational points on the curve Ea,b is
infinite, for all but finitely many points from Ea,b(�) we have f1 �= 0. Now, solving the
equation f0 + f1T = t, we get that T = (t − f0)/f1. Finally, we obtain the identity

x
(

t − f0

f1

)2

− y
(

t − f0

f1

)3

− f
(

t − f0

f1

)
= t.

This concludes the proof of Corollary 2.4. �
COROLLARY 2.5. Let c, d ∈ � and f (z) = z5 + cz + d. Then on the surface Ef the

set of rational points is dense in the Zariski topology.

Proof. For a = b = 0 the equation of the curve Ea,b (from the proof of Theorem
2.1) takes the form

E0, 0 : Y 2 = X3 − 2,025X + 35,100.

With the assistance of APECS program [2] we have found that Tors(E0, 0) is trivial and
that the rank of the curve E0, 0 is two. Independent points of infinite order, P1 = (15, 90)
and P2 = (25, 10), generate the set of rational points on E0, 0. It follows that the set of
rational points on E0, 0 is infinite. �

COROLLARY 2.6. Let a, b, c, d ∈ � \ {0} and consider the surface given by the
equation

E : ax2 + by3 + cz5 = d.

Then the set of rational points on E is dense in the Zariski topology.

Proof. After the change of variables x = X/a8b10c12, y = −Y/a5b7c8, z =
−Z/a3b4c5, the equation of the surface E takes the form

X2 − Y 3 − Z5 = a15b20c24d.

From Corollary 2.5 we get the statement of our theorem.
For instance, taking point P1 = (15, 90), which is one of the generators of the set

E0, 0(�), and performing all necessary calculations presented in the proof of Theo-
rem 2.1 we obtain the identity

a
(

25875323c18 + 720748a15b20c12d + 8336a30b40c6d2 + 64a45b60d3

1560896a8b10c15

)2

+ b
(

− 87709c12 + 1544a15b20c6d + 16a30b40d2

13456a5b7c10

)3

+ c
(

135c6 + 4a15b20d
116a3b4c5

)5

= d.
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Note that, in fact, we proved something more. Namely, for every natural number d
there is an S-integer point on the surface E , where S = {p ∈ � : p|58abc}. �

3. Rational points on the surface x2 + ay5 − z6 = b. In this section we will show
that the method employed to prove Theorem 2.1 can be used in another situations.
Interested readers can also take a look at paper [10]. We will prove the following

THEOREM 3.1. For every pair a, b of non-zero rational numbers the set of rational
points on the surface S : x2 + ay5 − z6 = b is infinite.

Proof. Our reasoning will be similar to the one presented in the proof of Theo-
rem 2.1. Let us denote F(x, y, z) = x2 + ay5 − z6 and let us put x = T3 + pT2 + qT +
r, y = uT + v, z = T . For x, y, z defined in this way we have

F(x, y, z) = f0 + f1T + f2T2 + f3T3 + f4T4 + f5T5,

where

f0 = r2 + av5, f1 = 2qr + 5auv4, f2 = q2 + 2pr + 10au2v3,

f3 = 2pq + 2r + 10au3v2, f4 = p2 + 2q + 5au4v, f5 = 2p + au5.

The system of equations f2 = f3 = f4 = f5 = 0 has exactly three solutions (with
respect to p, q, r, v). One of them is defined over �(u) (the other two are defined over
�(

√
3)(u)), namely,

p = −au5

2
, q = 3a2u10

16
, r = a3u15

64
, v = −au6

8
. (3.1)

Now putting the calculated values to the expressions defining x, y, z, we can see that
the polynomial F(x, y, z) is of degree one. Solving the equation

F(x(T), y(T), z(T)) = b

with respect to T and performing all necessary calculations we obtain the identity

(
118441a18u90 + 21511863a12bu60 − 230137a6b2u30 + 245b3

29293a15u75

)2

+ a
(

− 9a6u30 − 213b
58a5u24

)5

−
(

7a6u30 − 215b
232a5u25

)6

= b.

This concludes the proof of Theorem 2.5. �
Using exactly the same reasoning as in the proof of the Theorem 3.1 we get

COROLLARY 3.2. Let a, b, c, d ∈ �, a �= 0 and consider the surface given by the
equationS : x2 + ay5 + by − (z6 + cz) = d. Then the set of rational points onS is infinite.
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