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ABSTRACT. Following some work by N. Ashby and myself, it is shown how 
the Fermi construction of local inertial frames can be generalized, in 
the slow motion approximation, to the neighbourhood of the earth. This 
allows a clear and simple description of the relativistic effects for 
the motion of an earth satellite. A proposal by I. Ciufolini to mea
sure the relativistic precession is reviewed. 

1. GEOMETRIC FRAMES 

A determined effort should be made to drop our mental habit to visua
lize and work with spatial frames as rigid, cartesian frames; and to 
think about time as a unique, uniformly flowing variable. Space-time 
coordinates are arbitrary ways to label events, usually chosen on the 
basis of mathematical convenience. Before the introduction of the 
metric, space-time is like a jelly fish: its marks are of no use to 
identify events. The objects of physics are not coordinates, by measu
rements and their relationships; frames of references are 
abstractions, introduced to identify quantitatively and operationally 
motion with respect to standard, conventionally chosen objects. That 
every measurement, in particular measurements of angles, distances, 
velocities and time intervals, are relative has been greatly stressed 
by E. Mach. 

In our commonly accepted framework of general relativity however, 
the relative character of space-time measurements appears only 
indirectly: material objects (and the boundary and initial conditions 
for Einstein's field equations) act as sources and determine the 
metric structure; it is through this abstract structure that measure
ments are defined. Thus, the basic question in the analysis of actual 
space-time measurements is, what is their geometric meaning? To make 
this identification one must confirm that the measurement tecniques 
and their results are consistent with the properties of the correspon
ding abstract quantity. For example, distance measurements by the 
round trip light time must use atomic clocks and fulfil the required 
transformation laws when the instrument is set in motion. Of course, 
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this identification presupposes that laboratory instruments "work 
properly 1 1, that is to say, fulfil the strong equivalence principle. 
This condition is needed, for example, to aver that atomic time is 
proper time, 

A full understanding of local frames and local gravitational 
dynamics requires understanding and familiarity with the local 
geometric structure of space-time. Because of the (weak) equivalence 
principle a sufficiently small region of space-time can be approxi
mated by a Minkowsky manifold, in which gravitational effects are 
small and show up only through tides, to wit, differences in gravita
tional force. This is the basis of Fermi 1s construction of local 
inertial coordinates in the neighbourhood of a freely falling body, 
which I now review (Fermi 1922). 

Given a time-like geodesic 
1 and an event P, one constructs 
the space geodesic X (p) from P 
to 1, intersecting it orthogo
nally at P Q . If P is not too 
far, such geodesic is unique. 
Denote by n M the unit vector 
tangent to x (P) at P and by r 
the geodesic distance from P to 
P Q . Let also and other 
latin indices » 1,2,3; greek 
indices include the time index 
0) be a triad of orthonormal 
vector at 1, orthogonal to 1 and 
parallely propagated along it. 
The Fermi coordinates are the 
invar iant quant i t i es 

J = (s.x1 

where s is the proper time along 1. In this frame, in the 
neighbourhood of 1, the metric deviates from flatness by terms of 
order 

h « O(r^K) = 0 ( r 2 M / R 3 ) , (2) 

where K is the space-time curvature. In the solar system K - M/R is 
expressed in terms of the sun's mass M and distance R. More precisely, 
one has the following metric: 
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6 i j - -1/3 R R. . x x + 0(r ), 
lmjn 

where the Riemann tensor appears in Fermi components. 
The Fermi coordinates of a nearby test body fulfil the equation 

of geodesic deviation 

the relativistic generalization of the tidal equations; the absence of 
centrifugal and Coriolis foces justify the adjective inertial. The 
fact that the relative acceleration is proportional to the relative 
coodinates is indeed a test that the frame is a Fermi frame and 
provides a way to measure the curvature of space-time. 

2. EARTH-BOUND INTERTIAL FRAMES 

Inspite of its elegance and physical appropriateness Fermi's 
construction is of no use in the most important case, the motion of 
earth satellites. Of course it is impossible to choose a frame of 
reference in which the gravitational force vanishes in the whole 
neighourbood of the earth. In newtonian physics one can, and indeed 
usually does, eliminate only the gravitational force of the sun and 
the other planets: in an earth-bound, non-rotating frame their effect 
is purely tidal. In general relativity the gravitational field depends 
nonlinearly from the sources and it is not possible to do this in a 
rigorous way. 

The equations currently used to describe the relativistic motion 
of earth satellities are those of the general n-body problem in the 
Slow Motion Approximation (SMA), in a frame where the overall center 
of gravity is at rest. This approximation is determined to within 
gauge transformations, corresponding to small, but arbitrary changes 
in the coordinates X y ; the coordinates have no geometrical meaning. 
The difference between the acceleration of a satellite and that of the 
earth has many and complicated relativistic corrections without any 
obvious physical interpretation. As a consequence, the study of the 
relativistic corrections for the moon and LAGEOS is done only by 
numerical integration (sec, e.g., Moyer 1971) and is beset by 
difficulties and uncertainties. 

N..Ashby and myself have shown how to approximatively generalize 
Fermi's construction of inertial frames to the case in which the earth 
is present. Assume the bodies to be divided in two groups: the exter
nal group (mainly the sun), with characteristic mass M and distance R 
and the local group (mainly the earth), with characteristic mass m « 
M and distance r << R; consistently with the SMA we confine ourselves 

, 2 0J0 ds 
(4) 
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to distances r such that 0(m/r) = 0(M/R) « v". To construct an earth-
bound Fermi frame we must define an external metric with respect to 
which the earth follows a geodesic. The separation between external 
and local gravitational field is trivial for the components oi and ij 
of the metric which, in our postnewtonian SMA, are additive functions 
of the sources; the problem lies with the time-time component. A 
result by Eddington and Clark (1938), later shown independently also 
by Bertotti (1954) (see also Misner, Thorne and Wheeler 1973, Exercise 
39.15), shows the way to do this in the case in which there is only 
one local body. In the approximation in which the bodies are point
like consider the metric obtained by dropping all the terms which are 
singular or undetermined at the position of the local body. This is 
the external metric G ^ ^ The world line 1 of the local body is a 
geodesic with respect to this metric. This reduces in fact the relati
vistic many body problem in the postnewtonian approximation to the 
geodesic principle. Note also that the external metric depends upon 
the local mass m: for example, in the calculation of the retardation 
effect of the external gravitational potential one must take into 
account the acceleration produced by m on the external sources. The 
full metric 

G , v - Ge,v + V (5) 

differs from G by local terms proportional to m, m 2 and mM. 
The stage is now set for detailed calculations. By means of space 

geodesic with respect to the external metric construct the space Fermi 
coordinates x*i . The spatial hypersurfaces spanned by x 1 , however, 
should not be labelled with the proper time s e of the external metric, 
but with an appropriate variable s corresponding to the time shown by 
a proper clock on the surface of the earth. I will come back to this 
point later. We now apply the coordinate transformation 

X u - x U ^ ( s ^ 1 ) 

to the full metric, to obtain 

g (x) = G (X) »4 >4. 
This is of course more easily said then done (Ashby and Bertotti 

1985); but the result is striking for its simplicity and its physical 
meaning. Four groups of terms, of the types 

B v 2 , ^ ( ~ - ) 2 , f u e , f x . V V , ( 7 ) 

cancel. Here V 1 is the ordinary velocity of the earth and U e the 
external newtonian potential. The metric ( 5 ) contains the expression 
of the external metric in Fermi coodinates; this expression, denoted 
by g o i r , can be calculated on the basis of eq.(3) from the external 
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curvature tensor at 1. We have, to the appropriate order in V, 

goo = < 1 + A ) [ g 0 + 2m^-2(m/r) 2-(5m/3r) U . . x V ] u u eoo e, ij. 

g . - g 
01 eoi 

g i j • geij + 2 5 i j m / r -

The small parameter 

d s e 
A(s) « - 1 (9) 

ds 

accounts for the difference between the external proper time s and 
the physical time s. If s is identified with the proper time of a 
clock at a constant distance a from 1, its value is to a good approxi
mation given by the constant 2m/a. 

In the metric (8) we find the Schwarzschild field of the earth 
(which now is at rest) up to the correct approximation, which includes 
in ^ 0 the main non-linear correction. The external metric g e o o , 
contains fine groups of terms which have been evaluated explicitely in 
Ashby and Bertotti (1985) for the case in which there is only one 
external body, the sun. The relativistic corrections have been 
computed neglecting cubic terms in the small parameter r/R. 

1. Ordinary tides, of order Mr2/R3. 
2. Nonlinear corrections to the solar tides, of order M:r /R 4, 
3. A solar gravitomagnetic term, of order M r 2 V/R 3 , in the Oi 

component, arising from the fact that in this frame the sun moves with 
speed V. 

M. Terms quadratic in the solar velocity, of order Mr2 V2/R3. 
5. A term arising from the relativistic precession of the Fermi 

axes A (i) produced bythe moving sun, of order Mr 2Vs/B . 
Finally, the last term in g Q O , of order Mmr/fr is a characte

ristic interaction between the earth potential and the solar tidal 
potential. Note this terms and the relativistic corrections 2., 3., 
and 4. are,, in order of magnitude, generically (r/R) smaller than the 
main relativistic corrections to the earth's field (of order (m/rr 
0 ( V 4 ) ) . Their observability is difficult; we are studying this problem 
for the moon. 

The simple and intuitive from of eq. (8) makes it possible to 
derive it also directly, without going through the coordinate 
transformation (7) (Ashby and Bertotti (1984)). The only really new 
term is the interaction; it can be computed by solving explicitely the 
oo field equation to the appropriate order. 

In my opinion the geometric meaning and the simplicity gained 
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with this generalized Fermi frame suggests that the dynamics of earth 
satellities should be described by eq. (8) and implemented in 
appropriate software. Note also that it provides an invariantly 
defined time variable for the whole neighbourhood of the earth. This 
time is a good candidate as a global reference for the timing systems 
on the ground and in space. 

3. ABSOLUTE ROTATION 

There are, broadly speaking, two kinds of ways to define rotation: 
dynamically and kinematically. Our Fermi axes are defined dynamically, 
as those with respect to which the equations of motion have a given, 
simple form. One could say, they measure "absolute" rotation with 
respect to an abstract, underlying geometric structure. Kinematical 
rotation is measured with respect to a given body, like the earth or 
the distant matter in the Universe (as one does with VLBI). The agree
ment between dynamically defined rotation in empty space and rotation 
with respect to the Universe is the gist of Mach's Principle and is, 
to an exceedingly good approximation, a consequence of general relati
vity and the current cosmological models. In reality the construction 
and the comparison between different rotating frames of reference is a 
complex and delicate matter (sse, e.g., Bertotti et al. 1984). 

A more accurate construction of earth-bound dynamical frames is a 
worth-while and challenging task; the measurement of the relativistic 
precession of an "absolute" direction determined in this way with 
respect to distant matter is an important and unsolved problem in 
experimental gravitation. The Stanford gyroscope experiment (Anderson 
et al. 1982) premises well; I would like to discuss now a very recent 
and interesting proposal using nondedicated satellites. 

There is a contribution to the "absolute" precession due to the 
sun, which drays around our Fermi axes with the angular velocity 

3 
G. 3 M (V. R. - V. R )/2R (10) 
iJ J 1 i J 

(de Sitter - Fokker precession; it affects, of course, also a 
gyroscope, see Misner, Thorne and Wheeler 1973, eq (40.34).) Since in 
our frame the orbit of an earth satellite is planar, aside from tidal 
effects, this orbital plane moves with respect to distant matter with 
the angular velocity (10). As a consequence, the node of the satellite 
advances by about 16 marcsec/y. There is also another relativistic 
precession due to the earth angular momentum (Lense - Thirring ef
fect); it is also prograde and for LAGEOS it amounts to 31 marcsec/y. 

The relativistic displacement of the node is well above the 
actual accuracy with which we can measure its position (for a related 
measurement with LAGEOS, see Yoder et al. 1983); but the uncertainty 
in the newtonian precession of the node due to the earth's oblateness 
is about one order of magnitude larger than our effect, about 
10" *126°/y « 450 marcsec/y. This classical contribution, which is 
proportional to an odd function of the cosine of the inclination, 
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could be eliminated with a special satellite on a polar orbit (Van 
Patten and Everitt 1976); but Ciufolini (1985) has come out with a 
better and simpler solution. He remarks that the classical nodal 
precession of two satellites in circular orbits and the same semimajor 
axis, but with supplementary inclinations, are equal and opposite; 
hence the middle point between the two nodes defines an "absolute" 
direction. It is therefore sufficient to have, beside the present 
LAGEOS with an inclination of 110°, another one with an inclination of 
70° . The accuracy one needs for the inclination and the semimayor axis 
are, respectively, 1° and 16 Km and appear feasable. Of course the 
position of the nodes and hence of their middle point is measured with 
respect to the earth; the measurement of the relativistic precession 
requires a corresponding accuracy in the rotation rate of the earth. 

J ANGULAR MOMENTUM 
OF THE EARTH 

ORBIT OF 
LAGEOS II 

ORBIT OF 
LAGEOS I 

SPHERE OF 
\ RADIUS a 

Fig.2. The nodes of two satellites with the same orbit, except for the 
inclinations, which are supplementary, precess by the same amount in 
opposite senses. Hence their mid point is an absolute direction. 
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