SHARP BOUNDS ON THE DIAMETER OF A GRAPH

BY
W. F. SMYTH

$$
\begin{aligned}
& \text { AbSTRAct. Let } D_{n, m} \text { be the diameter of a connected undirected graph } \\
& \text { on } n \geqslant 2 \text { vertices and } n-1 \leqslant m \leqslant s(n) \text { edges, where } s(n)=n(n-1) / 2 . \\
& \text { Then } D_{n, \ldots(n)}=1 \text {, and for } m<s(n) \text { it is shown that } \\
& \qquad 2 \leqslant D_{n, m} \leqslant n-\lceil(\sqrt{8(m-n)+17}-1) / 2 \mid .
\end{aligned}
$$

The bounds on $D_{n, m}$ are sharp.

Introduction. Let $D_{n, m}$ be the diameter of a connected undirected graph on n vertices and m edges, where $n-1 \leqslant m \leqslant s(n)=n(n-1) / 2$. There is no known $0(m)$ algorithm for the determination of the diameter of a given graph [3], and even the specification of useful bounds on $D_{n, m}$ has so far seemed to be a difficult task. Klee and Larman [4] and Bollobás [1] have described the asymptotic behaviour of $D_{n, m}$ as $n \rightarrow \infty$, where $m=m(n)$ is regarded as a given function of n. Klee and Larman quote a result due to Korśunov, that for sufficiently large n and almost every graph $G_{n, \lambda_{n}}$ on n vertices and λn edges ($\lambda \geqslant 2$ a small constant),

$$
\frac{1}{2} \log _{\lambda} n<D_{n, \lambda n}<10 \log _{\lambda} n .
$$

All these results require lengthy and intricate proofs. More recently, Chung and Garey [2] have derived bounds on the diameter of the graph resulting from the addition/deletion of edges to/from a graph of known diameter.

In this paper a straightforward elementary argument is used to derive a sharp upper bound on $D_{n, m}$ in closed form. This result has been suggested by computer experiments:
(1) The testing of algorithms for the determination of diameter and "pseudo-diameter" of random graphs [5] made it clear that the diameter of "most" graphs was much more narrowly bounded than Korśunov's results indicated;
(2) exhaustive runs on all graphs on n vertices, $2 \leqslant n \leqslant 8$, led directly to conjectures [6] which in turn led directly to the results described here.

Upper bound on $\boldsymbol{D}_{n, m}$. Since by definition of $D_{n, m}$ the graph is assumed to be connected, it follows that $m \geqslant n-1$. Since $D_{n, s(n)}=1$, we may assume that $m<s(n)$.

[^0]We remark then that $D_{n, m} \geqslant 2$, and moreover that for every integer $m \in[n-1$, $s(n)-1]$ there exists a graph $G_{n, m}$ on n vertices and m edges whose diameter is exactly 2 . Then the lower bound is sharp. We now prove

Lemma A. For $n \geqslant 3$ and $j=1, \ldots, n-2$,

$$
D_{n, s(n)-j}=2 .
$$

Proof. Suppose that $n-2$ edges are deleted from a complete graph $G_{n, s(n)}$. Then $D_{n, s(n)-n+2} \geqslant 2$. But in $G_{n, s(n)}$ there is one path of length 1 and $n-2$ disjoint paths of length 2 connecting every pair of vertices. Hence $D_{n, s(n)-n+2} \leqslant 2$ and the lemma follows.

Theorem B. For $n \geqslant 2$ and $i=0, \ldots, n-2$,
(a) $D_{n, s(n-i)+i} \leqslant i+1$;
(b) $D_{n, s(n-i)+i-j} \leqslant i+2, j=1, \ldots, n-i-2$.

Every bound is sharp.
Proof. Observe that the result is true for $n=2$ and by Lemma A for $n>2$ and $i=0$. Observe further that the bound $i+1$ for (a) is attained by the graph $G_{n, s(n-i)+i}$ consisting of a complete subgraph on $n-i$ vertices $\left\{v_{i+1}, \ldots, v_{n}\right\}$ together with the chain

$$
v_{1}-v_{2}-\cdots=v_{i}-v_{i+1}
$$

The bound $i+2$ for (b) is attained by removing $1 \leqslant j \leqslant n-i-2$ of the $n-i$ -1 edges incident at v_{i+1} (an application of Lemma A). The proof is by induction: we suppose that the result is true for n and show that therefore it holds for $n+1$.
(a) Consider any connected graph $G_{n+1 . \sigma(n, i)}$, where $\sigma(n, i)=s[(n+1)-(i+1)]$ $+(i+1)$ and $0<i \leq n-2$. Observe that $D_{n+1, \sigma(n, i)}<i+4$, for otherwise removal of a single vertex and its j incident edges from the graph would yield $D_{n, s(n-i)+i-(j-1)}$ $\geqslant i+3$, in contradiction to the inductive hypothesis. Suppose then that $D_{n+1, \sigma(n, i)}=$ $i+3$. Then there exist vertices u, v such that $d(u, v)=i+3$, and the vertices of the graph may be arranged into $i+4$ levels including at least one shortest path from $u=$ x_{0} to $v=x_{i+3}$:

$$
x_{0}-x_{1}=x_{2}-\cdots-x_{i+2}=x_{i+3}
$$

Suppose then that one vertex $w \neq x_{k}, k=0, \ldots, i+3$, is removed from the graph together with all edges incident at w. From the level structure it is clear that the number j of edges deleted satisfies $1 \leqslant j=n-i-1$. Then the reduced graph $G_{n, s(n-i)+i-(j-1)}$ has diameter $i+3$, in contradiction to the inductive hypothesis. Then it cannot be true that $D_{n+1 . \sigma(n, i)}=i+3$. This proves (a) for $i>1$.
(b) Assuming that $D_{n+1 . \sigma(n, i)-j}=i+4$, for some $1 \leqslant j \leqslant n-i-2$, we use the inductive hypothesis as in (a) to establish (b) by contradiction.

Table 1 presents an interpretation of Theorem B. The values of m are displayed in classes $c=1, \ldots, n-2$, corresponding to the upper bound $D_{n, m}^{\max }$ on the diameter $D_{n, m}$.

Table 1
No. of edges classified according to maximum diameter $D_{n, m}^{\max }$

Class	Range of Edges				
C	m	$n-1$	$k=m-n+2$	$D_{n, m}^{\text {max }}$	
1	$n-1$	$n+1$	1	1	$n-1$
2	$n+2$	$n+4$	4	3	$n-2$
3	\cdot	\cdot	\cdot	6	$n-3$
\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
\cdot	$s(n)-(n-2)$	$s(n)-1$	$s(n-2)+1$	$s(n-1)$	\cdot
\cdot	$s(n)$	$s(n)$	$s(n-1)+1$	$s(n-1)+1$	1
$n-2$					
$n-3$					

We see from the table that given $G_{n, m}, m \leqslant s(n)$, we can determine $D_{n, m}^{\max }=n-c$ by determining c such that $s(c)<k \leqslant s(c+1)$. This requires the solution of the quadratic equation $c^{2}+c-2 k=0$, yielding

$$
c=\lceil(\sqrt{8 k+1}-1) / 2\rceil
$$

from which

$$
D_{n, m}^{\max }=n-\lceil(\sqrt{8(m-n)+17}-1) / 2\rceil
$$

References

1. Béla Bollobás, The diameter of random graphs, Trans. AMS 267-1 (1981) 41-52.
2. F. R. K. Chung and M. R. Garey, Diameter bounds for altered graphs, J. Graph Theory 8 (1984) 511-534.
3. Bernard Ghigny, Critique de l'algorithme de Smyth et Benzi, Master's thesis, Université Catholique de Louvain (1984).
4. Victor Klee and David Larman, Diameters of random graphs, Can. J. Math. 33-3 (1981) 618-640.
5. W. F. Smyth, Algorithms for the reduction of matrix bandwidth and profile, J. Computational Appl. Math. 12 \& 13 (1985) 551-561.
6. W. F. Smyth, Sparse random graphs have small diameter, Proc. 4th Hungarian Comp. Sci. Conf. (1985), to appear.

Department of Computer Science \& Systems
McMaster University
hamilton, Ontario,
Canada, L8S 4KI

[^0]: Received by the editors September 3, 1985.
 AMS Subject Classification (1980): Primary 05C35, Secondary 68R10.
 (c) Canadian Mathematical Society 1985.

