Canad. Math. Bull. Vol. 49 (3), 2006 pp. 347-357

Affine Completeness of Generalised Dihedral Groups

Jürgen Ecker

Abstract. In this paper we study affine completeness of generalised dihedral groups. We give a formula for the number of unary compatible functions on these groups, and we characterise for every $k \in \mathbb{N}$ the *k*-affine complete generalised dihedral groups. We find that the direct product of a 1-affine complete group with itself need not be 1-affine complete. Finally, we give an example of a nonabelian solvable affine complete group. For nilpotent groups we find a strong necessary condition for 2-affine completeness.

1 Introduction

Let $G = (G, \cdot)$ be a finite group and let *N* be a normal subgroup of *G*. For $g \in G$ and $S \subseteq G$, let [g] and [S] denote the normal subgroups of *G* generated by *g* and *S*, respectively. As in [9], let $\gamma_i(G)$ denote the *i*-th term of the lower central series of *G*.

Let $k \in \mathbb{N}$, and let $\varphi: G^k \to G$ be a *k*-ary function on *G*. We say φ is *compatible with N* iff for all $x = (x_1, \ldots, x_k), y = (y_1, \ldots, y_k) \in G^k$ such that $x_i y_i^{-1} \in N$ for every $1 \leq i \leq k$, we have $\varphi(x)\varphi(y)^{-1} \in N$. We call φ *compatible* iff it is compatible with every normal subgroup of *G*. Equivalently [8, Lemma 3a], φ is compatible, if for all $x = (x_1, \ldots, x_k), y = (y_1, \ldots, y_k) \in G^k, \varphi(x)\varphi(y)^{-1} \in [\{x_1y_1^{-1}, \ldots, x_ky_k^{-1}\}]$. Let $\operatorname{Comp}_k(G)$ denote the set of all *k*-ary compatible functions on the group *G*. Then $(\operatorname{Comp}_k(G), \cdot)$ is a group, where \cdot is the point-wise multiplication of functions. For every $i \in \{1, \ldots, k\}$ and for every $g \in G$, the projection $\pi_i: G^k \to G, (x_1, \ldots, x_k) \mapsto x_i$, and the constant function $\overline{g}: G^k \to G, (x_1, \ldots, x_k) \mapsto g$ are *k*-ary compatible functions on *G*. Let $\operatorname{Pol}_k(G)$ be the subgroup of $\operatorname{Comp}_k(G)$ generated by $\{\pi_i \mid 1 \leq i \leq k\} \cup \{\overline{g} \mid g \in G\}$. We call the elements of $\operatorname{Pol}_k(G)$ the *k*-ary polynomial functions on *G*. For the definition of a *k*-ary polynomial function on an arbitrary algebra *A* we refer to [5]. We call *G k*-affine complete if $\operatorname{Pol}_k(G) = \operatorname{Comp}_k(G)$, and *affine complete* if *G* is *k*-affine complete for every $k \in \mathbb{N}$. By [8, Lemma 1], if *G* is *k*-affine complete for some $k \in \mathbb{N}$, then *G* is *l*-affine complete for each $l \leq k$.

Let C_n denote the cyclic group of order *n*. For a finite abelian group *A*, the *generalised dihedral group of A*, Dih(*A*), is the semi-direct product of *A* with C_2 , where the non-identity element of C_2 takes each $a \in A$ to a^{-1} . We write all group operations as multiplications.

Received by the editors February 24, 2004; revised February 10, 2006.

This study was kindly supported by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung (Projects P12911-INF "Computing with Nearrings" and P15691 "Planar Nearrings: Theory and Applications").

AMS subject classification: Primary: 08A40, 16Y30; secondary: 20F05.

[©]Canadian Mathematical Society 2006.

The objective of this paper is to determine the *k*-affine complete generalised dihedral groups for every $k \in \mathbb{N}$. In Section 2 we treat the case of unary functions and prove the following theorem.

Theorem 1.1 Let A be a finite abelian group. Then Dih(A) is 1-affine complete if and only if A is 1-affine complete.

To this end, we first study unary compatible functions on a group that map all elements of the group into a certain normal subgroup (Proposition 2.4). In Section 4 we study compatible and polynomial functions of higher arity and prove the following result.

Theorem 1.2 Let A be a finite abelian group. Let P be a 2-group and let Q be a group of odd order such that A = PQ. Then for G = Dih(A) the following conditions are equivalent:

- (i) *G* is affine complete.
- (ii) *G* is 2-affine complete.
- (iii) (a) $\exp P = 2$ and
 - (b) *Q* is affine complete.

To achieve this we generalise the results for unary functions in [2] and, in Proposition 4.1, give a strong necessary condition for a nilpotent group to be 2-affine complete.

Theorems 1.1 and 1.2 reduce the problem of deciding affine completeness to the case of a finite abelian group. For every $k \in \mathbb{N}$, the finite *k*-affine complete abelian groups have been characterised in [6, 8]. For easier reference we gather some results in the following lemma.

Lemma **1.3** ([6, 8]) *Let p be a prime and let*

$$G = \mathcal{C}_{p^{\alpha_1}} \times \mathcal{C}_{p^{\alpha_2}} \times \cdots \times \mathcal{C}_{p^{\alpha_r}},$$

where $\alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_r$ and $r \in \mathbb{N}$. Then G is 1-affine complete iff one of the following conditions holds.

(i) r > 1 and $\alpha_1 = \alpha_2$, (ii) r > 1, p = 2, and $\alpha_1 = \alpha_2 + 1$, (iii) r = 1, p = 2, and $\alpha_1 = 1$.

Furthermore, G is not 2-affine complete in cases (ii) and (iii) and affine complete in case (i). The direct product of two finite groups G_1 and G_2 of coprime order is k-affine complete iff G_1 and G_2 are k-affine complete.

2 The 1-Affine Complete Generalised Dihedral Groups

We start with a few simple observations concerning the structure of generalised dihedral groups. For every abelian group A and every integer $d \ge 0$, the groups $\text{Dih}(A) \times (C_2)^d$ and $\text{Dih}(A \times (C_2)^d)$ are isomorphic. Let $d \ge 0$ be such that A is

the direct product of *d* cyclic groups of even order and some or no groups of odd order. Then the derived subgroup of G = Dih(A) is $\gamma_2(G) = \{a^2 \mid a \in A\}$ (by [9, 5.1.5.]), hence the abelian quotient is $G/\gamma_2(G) \cong (C_2)^{d+1}$. For all $g \in G \setminus A$ and $a \in A$, we have $[g, a] = a^2$, thus $[g] \supseteq \gamma_2(G)$.

The following lemma gives the number of unary polynomial functions on generalised dihedral groups.

Lemma 2.1 ([7]) Let A be a finite abelian group. Let $d \ge 0$ be such that A is a direct product of d cyclic groups of even order and some or no groups of odd order. Then

$$|\operatorname{Pol}_1(\operatorname{Dih}(A))| = \begin{cases} 4 \cdot |\operatorname{Pol}_1(A)|^2 & \text{if } d = 0, \\ \frac{1}{2^d} \cdot |\operatorname{Pol}_1(A)|^2 & \text{if } d > 0. \end{cases}$$

Lemma 2.2 Let G be a finite group and $k \in \mathbb{N}$. Let N be a normal subgroup of G, such that G/N is k-affine complete. Then the mapping

$$\rho \colon \operatorname{Comp}_k(G) \to \operatorname{Comp}_k(G/N), \quad \varphi \mapsto \varphi^N,$$

where $\varphi^N(gN) := \varphi(g)N$, for every $g \in G^k$, is a group epimorphism.

Proof Clearly, ρ is a group homomorphism

$$(\operatorname{Comp}_k(G), \cdot) \to (\operatorname{Comp}_k(G/N), \cdot).$$

We show that ρ is an epimorphism. To this end we fix an arbitrary $\phi \in \text{Comp}_k(G/N)$. Since G/N is k-affine complete, ϕ is induced by a polynomial p over G/N. Lifting the coefficients of p from G/N to G, we obtain a polynomial q on G. Let \bar{q} be the polynomial function on G induced by q. Then $\rho(\bar{q}) = \bar{q}^N = \phi$. Thus ρ is surjective.

Corollary 2.3 Let G be a finite group and $k \in \mathbb{N}$. Let N be a normal subgroup of G, such that G/N is k-affine complete. Then

$$|\operatorname{Comp}_{k}(G)| = |\operatorname{Pol}_{k}(G/N)| \cdot |\{\psi \in \operatorname{Comp}_{k}(G) \mid \psi(G^{k}) \subseteq N\}|.$$

Proof Let ρ be the epimorphism constructed in Lemma 2.2. The kernel of ρ is $\{\psi \in \text{Comp}_k(G) \mid \psi(G^k) \subseteq N\}$. The result follows from the isomorphism theorem.

Now we study the part { $\psi \in \text{Comp}_k(G) \mid \psi(G^k) \subseteq N$ } in Corollary 2.3 for k = 1.

Proposition 2.4 Let G be a finite group, and let $T \leq A \leq G$, such that

- (i) every normal subgroup of A is normal in G, and
- (ii) for every $I \trianglelefteq G$ with $I \not\leq A$ we have $I \ge T$.

J. Ecker

Let C be a transversal for the cosets of A in G. Define the mapping

$$\Psi \colon \{ \varphi \in \operatorname{Comp}_{1}(A) \mid \varphi(A) \subseteq T \}^{|C|} \to \{ \varphi \in \operatorname{Comp}_{1}(G) \mid \varphi(G) \subseteq T \}$$
$$(\varphi_{c})_{c \in C} \mapsto \varphi,$$

where $\varphi: G \to G$ is defined by $\varphi(ac) := \varphi_c(a)$ (for all $a \in A$ and $c \in C$). Then Ψ is bijective.

Proof Let $(\varphi_c)_{c \in C}$ be a family of unary compatible functions on A such that for every $c \in C$, $\varphi_c(A) \subseteq T$. Let $\varphi := \Psi((\varphi_c)_{c \in C})$. Clearly, φ maps G into T. We show that φ is a compatible function on G. Let $g, h \in G$.

If $gh^{-1} \in A$, then there exist unique $a, b \in A$ and $c \in C$, such that g = ac and h = bc. Then $\varphi(g)\varphi(h)^{-1} = \varphi_c(a)\varphi_c(b)^{-1} \in [ab^{-1}] = [ac(bc)^{-1}] = [gh^{-1}]$. We note that by condition (i), it makes no difference if we generate the normal subgroups in A or in G. If $gh^{-1} \notin A$, then by condition (ii), $[gh^{-1}] \ge T$. Since $\varphi(G) \subseteq T$, we have $\varphi(g)\varphi(h)^{-1} \in [gh^{-1}]$. Thus φ is compatible.

Clearly, Ψ is injective. It remains to show that Ψ is surjective. Let φ be a compatible function on G which maps G into T. For each $c \in C$ we define a function $\varphi_c \colon A \to T$ by $\varphi_c(a) \coloneqq \varphi(ac)$. Then $\Psi((\varphi_c)_{c \in C}) = \varphi$, and for every $c \in C$, $\varphi_c(A) \subseteq T$. It remains to show that each φ_c is compatible. To this end, we fix $c \in C$ and $a, b \in A$, and we compute $\varphi_c(a)\varphi_c(b)^{-1} = \varphi(ac)\varphi(bc)^{-1} \in [ac(bc)^{-1}] = [ab^{-1}]$. Thus Ψ is bijective.

Corollary 2.5 Let G = Dih(A), where A is a finite abelian group. Let $S := \{a^2 \mid a \in A\}$. Then

$$\left|\left\{\varphi \in \operatorname{Comp}_{1}(G) \mid \varphi(G) \subseteq \gamma_{2}(G)\right\}\right| = \left|\left\{\varphi \in \operatorname{Comp}_{1}(A) \mid \varphi(A) \subseteq S\right\}\right|^{2}.$$

Corollary 2.6 If A is the direct product of $d \ge 0$ cyclic groups of even order and some or no cyclic groups of odd order, then

$$|\operatorname{Comp}_{1}(\operatorname{Dih}(A))| = 2^{d+2} \cdot \left(\frac{|\operatorname{Comp}_{1}(A)|}{|\operatorname{Pol}_{1}(A/S)|}\right)^{2},$$

where $S := \{a^2 \mid a \in A\}.$

Proof We know that *S* is normal in *A*. By Lemma 1.3, the quotient $A/S \cong (C_2)^d$ is 1-affine complete. Let $\mathcal{A} := \{\varphi \in \text{Comp}_1(A) \mid \varphi(A) \subseteq S\}$. By Corollary 2.3,

(1)
$$|\operatorname{Comp}_1(A)| = |\operatorname{Pol}_1(A/S)| \cdot |\mathcal{A}|.$$

Let G = Dih(A). Then $H := G/\gamma_2(G)$ is elementary abelian of order 2^{d+1} , so by Lemma 1.3, it is 1-affine complete. Since H is abelian,

$$\operatorname{Pol}_1(H) = \{ p \colon H \to H, \ x \mapsto h \cdot x^k \mid h \in H, \ 0 \le k < \exp(H) \}.$$

By Lemma 2.2 and Corollary 2.5,

$$|\operatorname{Comp}_1(G)| = |\operatorname{Pol}_1(H)| \cdot | \{\varphi \in \operatorname{Comp}_1(G) \mid \varphi(G) \subseteq \gamma_2(G)\} |$$
$$= 2^{d+2} \cdot |\mathcal{A}|^2.$$

Using (1), we can substitute for $|\mathcal{A}|$ and obtain the desired result.

We are now in the position to prove Theorem 1.1 by simply combining Lemma 2.1 and Corollary 2.6.

Proof of Theorem 1.1 Let $d \ge 0$ be such that *A* is a direct product of *d* cyclic groups of even order and some or no groups of odd order. Let $S := \{a^2 \mid a \in A\}$. If d = 0, then S = A and by Corollary 2.6,

$$|\operatorname{Comp}_1(\operatorname{Dih}(A))| = 4 \cdot |\operatorname{Comp}_1(A)|^2.$$

If d > 0, then $|\operatorname{Pol}_1(A/S)| = |\operatorname{Pol}_1((C_2)^d)| = 2^{d+1}$ and by Corollary 2.6,

$$|\operatorname{Comp}_1(\operatorname{Dih}(A))| = 2^{d+2} \cdot \left(\frac{|\operatorname{Comp}_1(A)|}{2^{d+1}}\right)^2 = \frac{1}{2^d} \cdot |\operatorname{Comp}_1(A)|^2$$

In both cases, Lemma 2.1 allows us to deduce $|\operatorname{Pol}_1(\operatorname{Dih}(A))| = |\operatorname{Comp}_1(\operatorname{Dih}(A))|$ if and only if $|\operatorname{Pol}_1(A)| = |\operatorname{Comp}_1(A)|$.

3 Direct Products of 1-Affine Complete Groups

The direct product of a finite abelian group with itself is affine complete. In this section we give an example of a 2-group D, such that D is 1-affine complete, but $D \times D$ is not. We only need one more easy lemma, which describes the compatible functions mapping into a minimal normal subgroup.

Lemma 3.1 Let G be a finite group and let A be a minimal normal subgroup of G. Let A^* be the sum of all normal subgroups of G having trivial intersection with A. Let φ be a function on G with $\varphi(G) \subseteq A$. Then φ is compatible if and only if it is constant on the cosets of A^* . As a consequence, $|\{\varphi \in \text{Comp}_1(G) | \varphi(G) \subseteq A\}| = |A|^{[G:A^*]}$.

Proof Let φ be a compatible function with $\varphi(G) \subseteq A$. Let us consider a normal subgroup N of G, with $A \cap N = \{1\}$. For $g, h \in G$ and $gh^{-1} \in N$, we have $\varphi(g)\varphi(h)^{-1} \in N \cap A = \{1\}$, forcing $\varphi(g) = \varphi(h)$. So φ is constant on the cosets of every $N \trianglelefteq G$ with $N \cap A = \{1\}$. Let N_1 and N_2 be two such normal subgroups. Consider $S := N_1N_2$. If $gh^{-1} \in S$, then there exist $n_1 \in N_1$ and $n_2 \in N_2$, such that $g = n_1n_2h$. Hence $\varphi(h) = \varphi(n_2h) = \varphi(n_1n_2h) = \varphi(g)$. Thus φ is constant on the cosets of A^* . Conversely, let φ be a function mapping G into A and let φ be constant on the cosets of A^* . Then φ is compatible on G: let $I \trianglelefteq G$. If $I \ge A$, then φ is compatible with I, because $\varphi(G) \subseteq A \subseteq I$. If $I \ge A$, then $I \cap A = \{1\}$, whence $I \le A^*$. So, φ is compatible with I, because φ is constant on the cosets of I. Finally, there are precisely $|A|^{[G:A^*]}$ functions mapping G into A, which are constant on the cosets of A^* .

Example 3.2 The group $D = C_2 \times \text{Dih}(C_4) \cong \text{Dih}(C_2 \times C_4)$ is 1-affine complete, by Theorem 1.1 and Lemma 1.3. We show that the group $G = D \times D$ is not 1-affine complete. The group $A := \{1\} \times \gamma_2(D)$ is a minimal normal subgroup of G, and the quotient G/A is isomorphic to $D \times (C_2)^3 \cong \text{Dih}((C_2)^4 \times C_4)$, which is 1-affine complete by Theorem 1.1 and Lemma 1.3. Every normal subgroup not containing A is contained in $D \times (C_2 \times \gamma_2(\text{Dih}(C_4)))$, which is a normal subgroup of index 4 in G. Hence the sum of all normal subgroups not containing A has at least index 4 in G. By Lemmas 2.1, 2.2, and 3.1, $|\text{Comp}_1(G)| \ge |\text{Pol}_1(\text{Dih}((C_2)^4 \times C_4))| \cdot 2^4 =$ $2^{-5} \cdot |\text{Pol}_1((C_2)^4 \times C_4)|^2 \cdot 2^4 = 2^{15}$. Since G is nilpotent of class 2 and exp G = 4, the number of polynomial functions can be computed with the help of [3, Thm. 1 and Prop. 1]. We get $|\text{Pol}_1(G)| = |G| \cdot \lambda(G) \cdot [G: Z(G)] = 2^8 \cdot 2^2 \cdot 2^4 = 2^{14}$. Thus G is not 1-affine complete.

4 The Affine Complete Generalised Dihedral Groups

In this last section we are going to prove Theorem 1.2. The following proposition gives a strong necessary condition for a nilpotent group to be 2-affine complete. It is inspired by [1, Lemma 2.3], but is not a consequence of this result. Furthermore, we explicitly construct a 2-ary compatible function which is not polynomial.

Proposition 4.1 Let G be a nilpotent group. Suppose that there exist normal subgroups S and T of G such that

(i) for every $I \trianglelefteq G$, either $I \le S$ or $I \ge T$, (ii) $T \not\le \gamma_3(G)$,

(iii) S < G.

Let $t \in T \setminus \gamma_3(G)$ *. Then the 2-ary function* ϕ *on* G *defined by*

$$\phi(x, y) = \begin{cases} t & \text{if } x \notin S \text{ and } y \notin S, \\ 1 & \text{otherwise} \end{cases}$$

is a compatible but not a polynomial function on G. Thus G is not 2-affine complete.

Proof The function ϕ is compatible (*cf.* [1, Lemma 2.2]). Suppose that ϕ is polynomial. Employing Hall's collection process described in [4, Chap. 5], we find unary polynomial functions p_1 and p_2 on *G*, an integer *k*, and a 2-ary polynomial function ρ on *G*, such that for all $x, y \in G$, $\phi(x, y) = p_1(x) \cdot p_2(y) \cdot [x, y]^k \cdot \rho(x, y)$, $\rho(x, y) \in \gamma_3(G)$, and $\rho(x, 1) = \rho(1, y) = 1$. Since, by definition, $\phi(x, 1) = \phi(1, y) = 1$ for all $x, y \in G$, both p_1 and p_2 must map *G* to {1}. Now let $g \in G \setminus S$. Then $t = \phi(g, g) = [g, g]^k \cdot \rho(g, g) = \rho(g, g) \in \gamma_3(G)$, a contradiction. Thus ϕ is not polynomial.

In the case where the 2-Sylow subgroup of a generalised dihedral group is (elementary) abelian, we can obtain positive results. The following lemma generalises [2, Lemma 2.2 and Cor. 2.3]. In the proof we make use of [2, Lemma 2.1] which we state here, because it will be used in the proof of Lemma 4.4.

Affine Complete Dihedral Groups

Notation 4.2 Let *G* be a group and *X*, $Y \leq G$. Then we write $X \prec Y$ if and only if

$$X < Y$$
 and $\nexists Z \trianglelefteq G : X < Z < Y$

Lemma 4.3 ([2, Lemma 2.1]) Let G be a finite group, which is a semi-direct product G = AB (A normal). Let $Z := B \cap C_G(A)$. Assume that the following conditions are satisfied:

- For each $b \in B \setminus Z$, the mapping $\varphi_b \colon A \to A$, $a \mapsto b^{-1}ab$ is fixed point free.
- For all $X, Y \leq B$ with $X \prec Y \leq Z$, we have $C_B(Y/X) > Z$.

Then the function $e: G \rightarrow G$ *defined by*

for all
$$a \in A$$
, $b \in B$: $e(ab) = \begin{cases} a & \text{if } b \in Z, \\ 1 & \text{otherwise,} \end{cases}$

is a polynomial function on G.

Lemma 4.4 Let G be a group satisfying the assumptions of Lemma 4.3. Let $k \in \mathbb{N}$ and $Z := B \cap C_G(A)$. Let n := [B : Z] and let r_1, \ldots, r_n be a transversal for the cosets of Z in B. Then the following holds.

(i) The mapping Ψ defined by

$$\Psi \colon \{ p \in \operatorname{Pol}_k(G) \mid p(G^k) \subseteq A \} \to \{ p|_{A^k} \mid p \in \operatorname{Pol}_k(G), p(G^k) \subseteq A \}^{n^k}$$
$$p \mapsto (p_j)_{j \in \{1, \dots, n\}^k},$$

where for $j = (j_1, ..., j_k) \in \{1, ..., n\}^k$, p_j is defined by

$$p_j(a_1,\ldots,a_k):=p(a_1r_{j_1},\ldots,a_kr_{j_k}),$$

is bijective.

(ii) Let f be a k-ary function on G such that $f(G^k) \subseteq A$. Then f is polynomial if and only if for every $j = (j_1, \ldots, j_k) \in \{1, \ldots, n\}^k$ there exists a k-ary polynomial function p_j on G such that for all $a_1, \ldots, a_k \in A$ and $z_1, \ldots, z_k \in Z$, $f(a_1r_{j_1}z_1, \ldots, a_kr_{j_k}z_k) = p_j(a_1, \ldots, a_k)$.

Proof (i) Let $p \in Pol_k(G)$ such that $p(G^k) \subseteq A$. Then each p_j defined as above maps A^k into A.

We prove that Ψ is injective. Let p and q be two k-ary polynomial functions, such that $p(G^k) \subseteq A$, $q(G^k) \subseteq A$, and $\Psi(p) = \Psi(q)$. We fix $a_1, \ldots, a_k \in A$ and $b_1, \ldots, b_k \in B$. Let $h = (h_1, \ldots, h_k) \in \{1, \ldots, n\}^k$ be such that for every $i \in \{1, \ldots, k\}$, $r_{h_i}^{-1}b_i \in Z$. Then $p(a_1b_1, \ldots, a_kb_k) = p(a_1r_{h_1}r_{h_1}^{-1}b_1, \ldots, a_kr_{h_k}r_{h_k}^{-1}b_k) =$ $p(a_1r_{h_1}, \ldots, a_kr_{h_k}) = p_h(a_1, \ldots, a_k)$, since $p(G^k) \subseteq A$ and $A \cap Z = \{1\}$. In the same way we obtain $q(a_1b_1, \ldots, a_kb_k) = q_h(a_1, \ldots, a_k)$. Since $\Psi(p) = \Psi(q)$, p_h and q_h are equal, thus p = q. It remains to show that Ψ is surjective. In light of the given hypotheses, Lemma 4.3 ensures that there exists a unary polynomial function *e* on *G* such that for all $a \in A$ and for all $b \in B$,

$$e(ab) = \begin{cases} a & \text{if } b \in Z, \\ 1 & \text{otherwise.} \end{cases}$$

For $x \in G$ we define $\beta(x) := \left(\prod_{i=1}^{n} e(xr_i^{-1})\right)^{-1} \cdot x$. First, we show that for all $a \in A$ and $b \in B$, we have $\beta(ab) = b$. Let $a \in A$, $b \in B$, and let x = ab. Then

(*)
$$e(xr_i^{-1}) = e(abr_i^{-1}) = \begin{cases} a & \text{if } b \in r_i Z, \\ 1 & \text{otherwise.} \end{cases}$$

So $\beta(x) = a^{-1}ab = b$.

For $i \in \{1, ..., n\}$, $a \in A$, and $x \in G$ we define $e_i(a, x) := e(a\beta(x)r_i^{-1})$. Then for all $i \in \{1, ..., n\}$, $a \in A$ and $x \in G$, we have

(**)
$$e_i(a, x) = e(a\beta(x)r_i^{-1}) = \begin{cases} a & \text{if } \beta(x) \in r_i Z, \\ 1 & \text{otherwise.} \end{cases}$$

For every $j = (j_1, ..., j_k) \in \{1, ..., n\}^k$ we fix a *k*-ary polynomial function p_j from $\{p|_{A^k} \mid p \in \text{Pol}_k(G), p(G^k) \subseteq A\}$. For $1 \le i \le k$ we define

$$s_{j,0}(x_1, \dots, x_k) := p_j(e(x_1 r_{j_1}^{-1}), \dots, e(x_k r_{j_k}^{-1})),$$

$$s_{j,i}(x_1, \dots, x_k) := e_{j_i}(s_{j,i-1}(x_1, \dots, x_k), x_i),$$

$$q_j(x_1, \dots, x_k) := s_{j,k}(x_1, \dots, x_k).$$

Let us fix an arbitrary k-tuple $j = (j_1, \ldots, j_k) \in \{1, \ldots, n\}^k$, $a_1, \ldots, a_k \in A$, and $b_1, \ldots, b_k \in B$, and let $x_i = a_i b_i$, for every i with $1 \le i \le k$. Now we are going to show that $q_j(x_1, \ldots, x_k) = p_j(a_1, \ldots, a_k)$, if for every $i \in \{1, \ldots, k\}$, $b_i \in r_{j_i}Z$, and $q_j(x_1, \ldots, x_k) = 1$ otherwise. First, we observe that if for every $i \in \{1, \ldots, n\}$, $b_i \in r_{j_i}Z$, then by (*), $s_{j,0}(x_1, \ldots, x_k) = p_j(a_1, \ldots, a_k)$. Now we fix an i with $1 \le i \le k$. By our definition, $s_{j,i}(x_1, \ldots, x_k) = e_{j_i}(s_{j,i-1}(x_1, \ldots, x_k), x_i)$. By (**), this is equal to $s_{j,i-1}(x_1, \ldots, x_k)$, if $\beta(x_i) \in r_{j_i}Z$, and equal to 1 otherwise.

We claim that a preimage of $(p_j)_{j \in \{1,...,n\}^k}$ under Ψ is

$$q(x_1,\ldots,x_k):=\prod_{\substack{j\in\{1,\ldots,n\}^k\\j=(j_1,\ldots,j_k)}}q_j(x_1,\ldots,x_k).$$

Clearly, *q* is a *k*-ary polynomial function on *G*. For fixed $x_1, \ldots, x_k \in G$ at most one factor $q_j(x_1, \ldots, x_k)$ is not equal to 1, whence the order of multiplication of the q_j is not relevant. Thus we have constructed a polynomial function *q* on *G* such that $\Psi(q) = (p_j)_{j \in \{1, \ldots, n\}^k}$.

Affine Complete Dihedral Groups

(ii) Let *f* be a *k*-ary polynomial function on *G* such that $f(G^k) \subseteq A$. Let $j = (j_1, \ldots, j_k) \in \{1, \ldots, n\}^k$. We define a function $p_j \in \text{Pol}_k(G)$ by $p_j(g_1, \ldots, g_k) := f(g_1r_{j_1}, \ldots, g_kr_{j_k})$. Then for arbitrary $a_1, \ldots, a_k \in A$ and $z_1, \ldots, z_k \in Z$,

$$p_j(a_1,\ldots,a_k) = f(a_1r_{j_1},\ldots,a_kr_{j_k}) = f(a_1r_{j_1}z_1,\ldots,a_kr_{j_k}z_k),$$

since $A \cap Z = \{1\}$.

Conversely, let *f* be a *k*-ary function on *G* and let $(p_j)_{j \in \{1,...,n\}^k}$ be a family of polynomial functions on *G*, such that for every $j = (j_1, ..., j_k) \in \{1, ..., n\}^k$, for all $a_1, ..., a_k \in A$ and for all $z_1, ..., z_k \in Z$, $f(a_1r_{j_1}z_1, ..., a_kr_{j_k}z_k) = p_j(a_1, ..., a_k)$. Then each p_j is an element of the set $\{p|_{A^k} | p \in \text{Pol}_k(G), p(G^k) \subseteq A\}$. Thus by (i), there exists a *k*-ary polynomial function *q* on *G*, such that $q(G^k) \subseteq A$ and for all $j \in \{1, ..., n\}^k$, $a_1, ..., a_k \in A$, and $z_1, ..., z_k \in Z$, we have

$$p_j(a_1,\ldots,a_k) = q(a_1r_{j_1},\ldots,a_kr_{j_k}) = q(a_1r_{j_1}z_1,\ldots,a_kr_{j_k}z_k).$$

Thus f = q, so f is a polynomial function on G.

Proposition 4.5 Let G be a finite group, which is a semi-direct product G = AB, and let $k \in \mathbb{N}$. Let $Z := B \cap C_G(A)$. Assume that the following conditions are satisfied:

- For each $b \in B \setminus Z$, there exists an $e_b \in \mathbb{Z}$, such that the mapping $\varphi_b \colon A \to A$, $a \mapsto b^{-1}ab$ is fixed point free and $\varphi_b(a) = a^{e_b}$.
- For all $X, Y \leq B$ with $X \prec Y \leq Z$, we have $C_B(Y/X) > Z$.
- *A and B are k-affine complete.*

Then G is k-affine complete.

Proof Let *c* be a *k*-ary compatible function on *G*. Then the function $c^A: (G/A)^k \to C^A$ G/A, $(g_1A, \ldots, g_kA) \mapsto c(g_1, \ldots, g_k)A$, is a compatible function on G/A. Since $G/A \cong B$ and B is k-affine complete, there exists a k-ary polynomial function q_1 on G/A, such that $c^A = q_1$. Lifting the coefficients of q_1 from G/A to G, we obtain a polynomial function q_2 on G such that $q_2^A = q_1$. Now define a k-ary function c_1 on G by $c_1(g_1, \ldots, g_k) := c(g_1, \ldots, g_k)(q_2(g_1, \ldots, g_k))^{-1}$. Also, c_1 is a compatible function on G. We show that c_1 is a polynomial function on G. First note that $c_1(G^k) \subseteq A$, since $q_2^A = c^A$. Let n := [B : Z] and let r_1, \ldots, r_n be a transversal for the cosets of Z in B. We fix an arbitrary $j = (j_1, \ldots, j_k) \in \{1, \ldots, n\}^k$ and define the k-ary function c_2 on G by $c_2(g_1, \ldots, g_k) := c_1(g_1r_{j_1}, \ldots, g_kr_{j_k})$. Then $c_2(G^k) \subseteq A$, and c_2 is a compatible function on G. Since every normal subgroup of A is normal in G by our assumptions, $c_2|_{A^k}$ is a k-ary compatible function on A. Since A is k-affine complete, there exists a k-ary polynomial function p_i on G such that $p_i|_{A^k} = c_2|_{A^k}$. We fix $a_1, \ldots, a_k \in A$ and $z_1, \ldots, z_k \in Z$. Since Z is normal in G, there exist $z'_1, \ldots, z'_k \in Z$ such that $c_1(a_1r_{j_1}z_1, \ldots, a_kr_{j_k}z_k) = c_1(a_1z'_1r_{j_1}, \ldots, a_kz'_kr_{j_k}) =$ $c_2(a_1z'_1, \ldots, a_kz'_k)$. Since $c_2(G^k) \subseteq A$ and $A \cap Z = \{1\}$,

$$c_2(a_1z'_1,\ldots,a_kz'_k) = c_2(a_1,\ldots,a_k) = p_i(a_1,\ldots,a_k)$$

By Lemma 4.4(ii), c_1 is a polynomial function on G. By our definition, $c(g_1, \ldots, g_k) = c_1(g_1, \ldots, g_k)q_2(g_1, \ldots, g_k)$ for all $g_1, \ldots, g_k \in G$, hence c is a polynomial function on G.

For the proof of Theorem 1.2, we need one more lemma, which, in particular, tells us that for any $k \in \mathbb{N}$, the 2-Sylow subgroup of a *k*-affine complete generalised dihedral group is *k*-affine complete.

Lemma 4.6 Let A = PQ be the direct product of the groups P and Q, and let G be a semi-direct product of A with the group C, such that both P and Q are normal in G. Let $k \in \mathbb{N}$ and S := PC. Assume that for all $s \in S$ and $q \in Q$, we have $s \in [sq]$. If S is not k-affine complete, then G is not k-affine complete.

Proof Let ϕ be a *k*-ary compatible function on *S*, which is not polynomial. We extend ϕ to a *k*-ary compatible function on *G*, which is not polynomial on *G*. To this end we define $e: G \to G$, $pqc \mapsto pc$. We show that *e* is a unary compatible function on *G*. Let $p_1, p_2 \in P$, $q_1, q_2 \in Q$ and $c_1, c_2 \in C$. Then $s := e(p_1q_1c_1)e(p_2q_2c_2)^{-1} = p_1c_1c_2^{-1}p_2^{-1} \in S$. Since $[P,Q] = \{1\}$, we have $p_1q_1c_1(p_2q_2c_2)^{-1} = q_1sq_2^{-1}$. There exists $q' \in Q$, such that $q_1sq_2^{-1} = sq'$. Since by our assumptions, $s \in [sq']$, we obtain $e(p_1q_1c_1)e(p_2q_2c_2)^{-1} \in [p_1q_1c_1(p_2q_2c_2)^{-1}]$, thus *e* is compatible. Now define $\psi(g_1, \ldots, g_k) := \phi(e(g_1), \ldots, e(g_k))$. Then ψ is a *k*-ary compatible function on *G* and $\psi(G^k) \subseteq S$. Suppose that ψ is a polynomial function on *G*. Then there exist $r \in \mathbb{N}$ and $q_0 \in Q$, $s_0 \in S$, and for every *i* with $1 \leq i \leq r$ and every *j* with $1 \leq j \leq k$ there exist $q_{i,j} \in Q$, $s_{i,j} \in S$, and $e_{i,j} \in \mathbb{Z}$ such that for all $x_1, \ldots, x_k \in G$,

$$\psi(x_1,\ldots,x_k)=q_0s_0\Big(\prod_{i=1}^r\prod_{j=1}^kx_j^{e_{i,j}}q_{i,j}s_{i,j}\Big)\,.$$

Now we prove that for all $(t_1, \ldots, t_k) \in S^k$, we have

$$\psi(t_1,\ldots,t_k)=s_0\bigg(\prod_{i=1}^r\prod_{j=1}^kt_j^{e_{i,j}}s_{i,j}\bigg).$$

To this end we fix a *k*-tuple $(t_1, \ldots, t_k) \in S^k$. The subgroup *Q* is normal in *G*. So for all $g \in G$ and $q \in Q$ there exists an element $q' \in Q$ such that gq = q'g. So we can find a $q \in Q$, such that $q_0s_0(\prod_{i=1}^r \prod_{j=1}^k t_j^{e_{i,j}}q_{i,j}s_{i,j}) = q \cdot s_0(\prod_{i=1}^r \prod_{j=1}^k t_j^{e_{i,j}}s_{i,j})$. Since $\psi(t_1, \ldots, t_k) \in S$ and $Q \cap S = \{1\}$, we must have q = 1.

So, $\psi|_{S^k}$ is induced by a polynomial over *S*. But $\psi|_{S^k} = \phi$, and ϕ is not a polynomial function on *S*, a contradiction.

It remains to arrange the results obtained in this section.

Proof of Theorem 1.2 Remember that Dih(A) is the semi-direct product of A with a group C of order 2.

(i) \Rightarrow (ii): by definition.

(ii) \Rightarrow (iii)(b): if *Q* is not affine complete, then *A* is not 1-affine complete by Lemma 1.3, and by Theorem 1.1, Dih(*A*) is not 1-affine complete. Hence Dih(*A*) is not 2-affine complete.

Affine Complete Dihedral Groups

(ii) \Rightarrow (iii)(a): if |A| = 1, then |G| = 2, hence *G* is not 2-affine complete. Next, we consider the case A = P. If $\exp A > 2$, then *G* is a non-abelian nilpotent group. For every normal subgroup *N* of *G* we either have $N \leq A$ or $N \geq \gamma_2(G)$. So by Proposition 4.1, *G* is not 2-affine complete. It remains to check the case P < A. If $\exp(P) \neq 2$, then by Lemma 1.3 and Lemma 4.6, *G* is not 2-affine complete.

(iii) \Rightarrow (i): If A = P, then G is an elementary abelian 2-group, which by Lemma 1.3 is affine complete. It remains to check the case P < A. Then PC is a subgroup of G isomorphic to the elementary abelian group Dih(P) and G is a semi-direct product of Q with PC. Since G satisfies the conditions of Proposition 4.5 for every $k \in \mathbb{N}$, G is affine complete.

Example 4.7 The group $Dih(C_2 \times (C_3)^2)$ is affine complete and solvable, but not nilpotent.

References

- [1] E. Aichinger, 2-*affine complete algebras need not be affine complete*. Algebra Universalis **47**(2002), no. 4, 425–434.
- [2] _____, *The polynomial functions on certain semidirect products of groups*. Acta Sci. Math. (Szeged) **68**(2002), no. 1-2, 63–81.
- [3] J. Ecker, On the number of polynomial functions on nilpotent groups of class 2. In: Contributions to General Algebra 10, Heyn, Klagenfurt, 1998, pp. 133–137.
- [4] P. Hall, *The Edmonton Notes on Nilpotent Groups*. Queen Mary College Mathematics Notes, Mathematics Department, Queen Mary College, London, 1969.
- [5] H. Lausch and W. Nöbauer, Algebra of Polynomials. North-Holland Mathematical Library 5, North-Holland, Amsterdam, 1973.
- [6] _____, Funktionen auf endlichen Gruppen. Publ. Math. Debrecen 23(1976), no. 1-2, 53–61.
- [7] C. G. Lyons and G. Mason, Endomorphism near-rings of dicyclic and generalised dihedral groups.
- Proc. Roy. Irish Acad. Sect. A **91**(1991), no. 1, 99–111.
- [8] W. Nöbauer, Über die affin vollständigen, endlich erzeugbaren Moduln. Monatsh. Math. 82(1976), no. 3, 187–198.
- [9] D. J. S. Robinson, A Course in the Theory of Groups. Second edition. Graduate Texts in Mathematics 80, Springer-Verlag, New York, 1996.

Institut für Algebra Johannes Kepler Universität Linz 4040 Linz Austria and

Computer- und Mediensicherheit FH OÖ Campus Hagenberg 4232 Hagenberg Austria e-mail: juergen.ecker@fh-hagenberg.at