Affine Completeness of Generalised Dihedral Groups

Jürgen Ecker

Abstract

In this paper we study affine completeness of generalised dihedral groups. We give a formula for the number of unary compatible functions on these groups, and we characterise for every $k \in \mathbb{N}$ the k-affine complete generalised dihedral groups. We find that the direct product of a 1 -affine complete group with itself need not be 1-affine complete. Finally, we give an example of a nonabelian solvable affine complete group. For nilpotent groups we find a strong necessary condition for 2-affine completeness.

1 Introduction

Let $G=(G, \cdot)$ be a finite group and let N be a normal subgroup of G. For $g \in G$ and $S \subseteq G$, let $[g]$ and $[S]$ denote the normal subgroups of G generated by g and S, respectively. As in [9], let $\gamma_{i}(G)$ denote the i-th term of the lower central series of G.

Let $k \in \mathbb{N}$, and let $\varphi: G^{k} \rightarrow G$ be a k-ary function on G. We say φ is compatible with N iff for all $x=\left(x_{1}, \ldots, x_{k}\right), y=\left(y_{1}, \ldots, y_{k}\right) \in G^{k}$ such that $x_{i} y_{i}^{-1} \in N$ for every $1 \leq i \leq k$, we have $\varphi(x) \varphi(y)^{-1} \in N$. We call φ compatible iff it is compatible with every normal subgroup of G. Equivalently [8, Lemma 3a], φ is compatible, if for all $x=\left(x_{1}, \ldots, x_{k}\right), y=\left(y_{1}, \ldots, y_{k}\right) \in G^{k}, \varphi(x) \varphi(y)^{-1} \in\left[\left\{x_{1} y_{1}^{-1}, \ldots, x_{k} y_{k}^{-1}\right\}\right]$. Let $\operatorname{Comp}_{k}(G)$ denote the set of all k-ary compatible functions on the group G. Then $\left(\operatorname{Comp}_{k}(G), \cdot\right)$ is a group, where \cdot is the point-wise multiplication of functions. For every $i \in\{1, \ldots, k\}$ and for every $g \in G$, the projection $\pi_{i}: G^{k} \rightarrow G,\left(x_{1}, \ldots, x_{k}\right) \mapsto$ x_{i}, and the constant function $\bar{g}: G^{k} \rightarrow G,\left(x_{1}, \ldots, x_{k}\right) \mapsto g$ are k-ary compatible functions on G. Let $\operatorname{Pol}_{k}(G)$ be the subgroup of $\operatorname{Comp}_{k}(G)$ generated by $\left\{\pi_{i} \mid 1 \leq\right.$ $i \leq k\} \cup\{\bar{g} \mid g \in G\}$. We call the elements of $\operatorname{Pol}_{k}(G)$ the k-ary polynomial functions on G. For the definition of a k-ary polynomial function on an arbitrary algebra A we refer to [5]. We call $G k$-affine complete if $\operatorname{Pol}_{k}(G)=\operatorname{Comp}_{k}(G)$, and affine complete if G is k-affine complete for every $k \in \mathbb{N}$. By [8, Lemma 1], if G is k-affine complete for some $k \in \mathbb{N}$, then G is l-affine complete for each $l \leq k$.

Let C_{n} denote the cyclic group of order n. For a finite abelian group A, the generalised dihedral group of $A, \operatorname{Dih}(A)$, is the semi-direct product of A with C_{2}, where the non-identity element of C_{2} takes each $a \in A$ to a^{-1}. We write all group operations as multiplications.

[^0]The objective of this paper is to determine the k-affine complete generalised dihedral groups for every $k \in \mathbb{N}$. In Section 2 we treat the case of unary functions and prove the following theorem.

Theorem 1.1 Let A be a finite abelian group. Then $\operatorname{Dih}(A)$ is 1-affine complete if and only if A is 1-affine complete.

To this end, we first study unary compatible functions on a group that map all elements of the group into a certain normal subgroup (Proposition 2.4). In Section 4 we study compatible and polynomial functions of higher arity and prove the following result.

Theorem 1.2 Let A be a finite abelian group. Let P be a 2-group and let Q be a group of odd order such that $A=P Q$. Then for $G=\operatorname{Dih}(A)$ the following conditions are equivalent:
(i) G is affine complete.
(ii) G is 2-affine complete.
(iii) (a) $\exp P=2$ and
(b) Q is affine complete.

To achieve this we generalise the results for unary functions in [2] and, in Proposition 4.1, give a strong necessary condition for a nilpotent group to be 2-affine complete.

Theorems 1.1 and 1.2 reduce the problem of deciding affine completeness to the case of a finite abelian group. For every $k \in \mathbb{N}$, the finite k-affine complete abelian groups have been characterised in $[6,8]$. For easier reference we gather some results in the following lemma.

Lemma $1.3([6,8]) \quad$ Let p be a prime and let

$$
G=\mathrm{C}_{p^{\alpha_{1}}} \times \mathrm{C}_{p^{\alpha_{2}}} \times \cdots \times \mathrm{C}_{p^{\alpha_{r}}},
$$

where $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{r}$ and $r \in \mathbb{N}$. Then G is 1-affine complete iff one of the following conditions holds.
(i) $r>1$ and $\alpha_{1}=\alpha_{2}$,
(ii) $r>1, p=2$, and $\alpha_{1}=\alpha_{2}+1$,
(iii) $r=1, p=2$, and $\alpha_{1}=1$.

Furthermore, G is not 2-affine complete in cases (ii) and (iii) and affine complete in case (i). The direct product of two finite groups G_{1} and G_{2} of coprime order is k-affine complete iff G_{1} and G_{2} are k-affine complete.

2 The 1-Affine Complete Generalised Dihedral Groups

We start with a few simple observations concerning the structure of generalised dihedral groups. For every abelian group A and every integer $d \geq 0$, the groups $\operatorname{Dih}(A) \times\left(\mathrm{C}_{2}\right)^{d}$ and $\operatorname{Dih}\left(A \times\left(\mathrm{C}_{2}\right)^{d}\right)$ are isomorphic. Let $d \geq 0$ be such that A is
the direct product of d cyclic groups of even order and some or no groups of odd order. Then the derived subgroup of $G=\operatorname{Dih}(A)$ is $\gamma_{2}(G)=\left\{a^{2} \mid a \in A\right\}$ (by [9, 5.1.5.]), hence the abelian quotient is $G / \gamma_{2}(G) \cong\left(\mathrm{C}_{2}\right)^{d+1}$. For all $g \in G \backslash A$ and $a \in A$, we have $[g, a]=a^{2}$, thus $[g] \supseteq \gamma_{2}(G)$.

The following lemma gives the number of unary polynomial functions on generalised dihedral groups.

Lemma 2.1 ([7]) Let A be a finite abelian group. Let $d \geq 0$ be such that A is a direct product of d cyclic groups of even order and some or no groups of odd order. Then

$$
\left|\operatorname{Pol}_{1}(\operatorname{Dih}(A))\right|= \begin{cases}4 \cdot\left|\operatorname{Pol}_{1}(A)\right|^{2} & \text { if } d=0 \\ \frac{1}{2^{d}} \cdot\left|\operatorname{Pol}_{1}(A)\right|^{2} & \text { if } d>0\end{cases}
$$

Lemma 2.2 Let G be a finite group and $k \in \mathbb{N}$. Let N be a normal subgroup of G, such that G / N is k-affine complete. Then the mapping

$$
\rho: \operatorname{Comp}_{k}(G) \rightarrow \operatorname{Comp}_{k}(G / N), \quad \varphi \mapsto \varphi^{N}
$$

where $\varphi^{N}(g N):=\varphi(g) N$, for every $g \in G^{k}$, is a group epimorphism.
Proof Clearly, ρ is a group homomorphism

$$
\left(\operatorname{Comp}_{k}(G), \cdot\right) \rightarrow\left(\operatorname{Comp}_{k}(G / N), \cdot\right)
$$

We show that ρ is an epimorphism. To this end we fix an arbitrary $\phi \in \operatorname{Comp}_{k}(G / N)$. Since G / N is k-affine complete, ϕ is induced by a polynomial p over G / N. Lifting the coefficients of p from G / N to G, we obtain a polynomial q on G. Let \bar{q} be the polynomial function on G induced by q. Then $\rho(\bar{q})=\bar{q}^{N}=\phi$. Thus ρ is surjective.

Corollary 2.3 Let G be a finite group and $k \in \mathbb{N}$. Let N be a normal subgroup of G, such that G / N is k-affine complete. Then

$$
\left|\operatorname{Comp}_{k}(G)\right|=\left|\operatorname{Pol}_{k}(G / N)\right| \cdot\left|\left\{\psi \in \operatorname{Comp}_{k}(G) \mid \psi\left(G^{k}\right) \subseteq N\right\}\right| .
$$

Proof Let ρ be the epimorphism constructed in Lemma 2.2. The kernel of ρ is $\left\{\psi \in \operatorname{Comp}_{k}(G) \mid \psi\left(G^{k}\right) \subseteq N\right\}$. The result follows from the isomorphism theorem.

Now we study the part $\left\{\psi \in \operatorname{Comp}_{k}(G) \mid \psi\left(G^{k}\right) \subseteq N\right\}$ in Corollary 2.3 for $k=1$.
Proposition 2.4 Let G be a finite group, and let $T \unlhd A \unlhd G$, such that
(i) every normal subgroup of A is normal in G, and
(ii) for every $I \unlhd G$ with $I \not \leq A$ we have $I \geq T$.

Let C be a transversal for the cosets of A in G. Define the mapping

$$
\begin{aligned}
\Psi:\left\{\varphi \in \operatorname{Comp}_{1}(A) \mid \varphi(A) \subseteq T\right\}^{|C|} & \rightarrow\left\{\varphi \in \operatorname{Comp}_{1}(G) \mid \varphi(G) \subseteq T\right\} \\
\left(\varphi_{c}\right)_{c \in C} & \mapsto \varphi,
\end{aligned}
$$

where $\varphi: G \rightarrow G$ is defined by $\varphi(a c):=\varphi_{c}(a)$ (for all $a \in A$ and $c \in C$). Then Ψ is bijective.

Proof Let $\left(\varphi_{c}\right)_{c \in C}$ be a family of unary compatible functions on A such that for every $c \in C, \varphi_{c}(A) \subseteq T$. Let $\varphi:=\Psi\left(\left(\varphi_{c}\right)_{c \in C}\right)$. Clearly, φ maps G into T. We show that φ is a compatible function on G. Let $g, h \in G$.

If $g h^{-1} \in A$, then there exist unique $a, b \in A$ and $c \in C$, such that $g=a c$ and $h=b c$. Then $\varphi(g) \varphi(h)^{-1}=\varphi_{c}(a) \varphi_{c}(b)^{-1} \in\left[a b^{-1}\right]=\left[a c(b c)^{-1}\right]=\left[g h^{-1}\right]$. We note that by condition (i), it makes no difference if we generate the normal subgroups in A or in G. If $g h^{-1} \notin A$, then by condition (ii), $\left[g h^{-1}\right] \geq T$. Since $\varphi(G) \subseteq T$, we have $\varphi(g) \varphi(h)^{-1} \in\left[g h^{-1}\right]$. Thus φ is compatible.

Clearly, Ψ is injective. It remains to show that Ψ is surjective. Let φ be a compatible function on G which maps G into T. For each $c \in C$ we define a function $\varphi_{c}: A \rightarrow T$ by $\varphi_{c}(a):=\varphi(a c)$. Then $\Psi\left(\left(\varphi_{c}\right)_{c \in C}\right)=\varphi$, and for every $c \in C, \varphi_{c}(A) \subseteq$ T. It remains to show that each φ_{c} is compatible. To this end, we fix $c \in C$ and $a, b \in A$, and we compute $\varphi_{c}(a) \varphi_{c}(b)^{-1}=\varphi(a c) \varphi(b c)^{-1} \in\left[a c(b c)^{-1}\right]=\left[a b^{-1}\right]$. Thus Ψ is bijective.

Corollary 2.5 Let $G=\operatorname{Dih}(A)$, where A is a finite abelian group. Let $S:=\left\{a^{2} \mid a \in\right.$ A\}. Then

$$
\left|\left\{\varphi \in \operatorname{Comp}_{1}(G) \mid \varphi(G) \subseteq \gamma_{2}(G)\right\}\right|=\left|\left\{\varphi \in \operatorname{Comp}_{1}(A) \mid \varphi(A) \subseteq S\right\}\right|^{2}
$$

Corollary 2.6 If A is the direct product of $d \geq 0$ cyclic groups of even order and some or no cyclic groups of odd order, then

$$
\left|\operatorname{Comp}_{1}(\operatorname{Dih}(A))\right|=2^{d+2} \cdot\left(\frac{\left|\operatorname{Comp}_{1}(A)\right|}{\left|\operatorname{Pol}_{1}(A / S)\right|}\right)^{2}
$$

where $S:=\left\{a^{2} \mid a \in A\right\}$.
Proof We know that S is normal in A. By Lemma 1.3, the quotient $A / S \cong\left(\mathrm{C}_{2}\right)^{d}$ is 1-affine complete. Let $\mathcal{A}:=\left\{\varphi \in \operatorname{Comp}_{1}(A) \mid \varphi(A) \subseteq S\right\}$. By Corollary 2.3,

$$
\begin{equation*}
\left|\operatorname{Comp}_{1}(A)\right|=\left|\operatorname{Pol}_{1}(A / S)\right| \cdot|\mathcal{A}| \tag{1}
\end{equation*}
$$

Let $G=\operatorname{Dih}(A)$. Then $H:=G / \gamma_{2}(G)$ is elementary abelian of order 2^{d+1}, so by Lemma 1.3, it is 1-affine complete. Since H is abelian,

$$
\operatorname{Pol}_{1}(H)=\left\{p: H \rightarrow H, x \mapsto h \cdot x^{k} \mid h \in H, 0 \leq k<\exp (H)\right\} .
$$

By Lemma 2.2 and Corollary 2.5,

$$
\begin{aligned}
\left|\operatorname{Comp}_{1}(G)\right| & =\left|\operatorname{Pol}_{1}(H)\right| \cdot\left|\left\{\varphi \in \operatorname{Comp}_{1}(G) \mid \varphi(G) \subseteq \gamma_{2}(G)\right\}\right| \\
& =2^{d+2} \cdot|\mathcal{A}|^{2}
\end{aligned}
$$

Using (1), we can substitute for $|\mathcal{A}|$ and obtain the desired result.
We are now in the position to prove Theorem 1.1 by simply combining Lemma 2.1 and Corollary 2.6.

Proof of Theorem 1.1 Let $d \geq 0$ be such that A is a direct product of d cyclic groups of even order and some or no groups of odd order. Let $S:=\left\{a^{2} \mid a \in A\right\}$. If $d=0$, then $S=A$ and by Corollary 2.6,

$$
\left|\operatorname{Comp}_{1}(\operatorname{Dih}(A))\right|=4 \cdot\left|\operatorname{Comp}_{1}(A)\right|^{2} .
$$

If $d>0$, then $\left|\operatorname{Pol}_{1}(A / S)\right|=\left|\operatorname{Pol}_{1}\left(\left(\mathrm{C}_{2}\right)^{d}\right)\right|=2^{d+1}$ and by Corollary 2.6,

$$
\left|\operatorname{Comp}_{1}(\operatorname{Dih}(A))\right|=2^{d+2} \cdot\left(\frac{\left|\operatorname{Comp}_{1}(A)\right|}{2^{d+1}}\right)^{2}=\frac{1}{2^{d}} \cdot\left|\operatorname{Comp}_{1}(A)\right|^{2}
$$

In both cases, Lemma 2.1 allows us to deduce $\left|\operatorname{Pol}_{1}(\operatorname{Dih}(A))\right|=\left|\operatorname{Comp}_{1}(\operatorname{Dih}(A))\right|$ if and only if $\left|\operatorname{Pol}_{1}(A)\right|=\left|\operatorname{Comp}_{1}(A)\right|$.

3 Direct Products of 1-Affine Complete Groups

The direct product of a finite abelian group with itself is affine complete. In this section we give an example of a 2 -group D, such that D is 1 -affine complete, but $D \times D$ is not. We only need one more easy lemma, which describes the compatible functions mapping into a minimal normal subgroup.

Lemma 3.1 Let G be a finite group and let A be a minimal normal subgroup of G. Let A^{*} be the sum of all normal subgroups of G having trivial intersection with A. Let φ be a function on G with $\varphi(G) \subseteq A$. Then φ is compatible if and only if it constant on the cosets of A^{*}. As a consequence, $\left|\left\{\varphi \in \operatorname{Comp}_{1}(G) \mid \varphi(G) \subseteq A\right\}\right|=|A|^{\left[G: A^{*}\right]}$.

Proof Let φ be a compatible function with $\varphi(G) \subseteq A$. Let us consider a normal subgroup N of G, with $A \cap N=\{1\}$. For $g, h \in G$ and $g h^{-1} \in N$, we have $\varphi(g) \varphi(h)^{-1} \in N \cap A=\{1\}$, forcing $\varphi(g)=\varphi(h)$. So φ is constant on the cosets of every $N \unlhd G$ with $N \cap A=\{1\}$. Let N_{1} and N_{2} be two such normal subgroups. Consider $S:=N_{1} N_{2}$. If $g h^{-1} \in S$, then there exist $n_{1} \in N_{1}$ and $n_{2} \in N_{2}$, such that $g=n_{1} n_{2} h$. Hence $\varphi(h)=\varphi\left(n_{2} h\right)=\varphi\left(n_{1} n_{2} h\right)=\varphi(g)$. Thus φ is constant on the cosets of A^{*}. Conversely, let φ be a function mapping G into A and let φ be constant on the cosets of A^{*}. Then φ is compatible on G : let $I \unlhd G$. If $I \geq A$, then φ is compatible with I, because $\varphi(G) \subseteq A \subseteq I$. If $I \nsupseteq A$, then $I \cap A=\{1\}$, whence $I \leq A^{*}$. So, φ is compatible with I, because φ is constant on the cosets of I. Finally, there are precisely $|A|^{\left[G: A^{*}\right]}$ functions mapping G into A, which are constant on the cosets of A^{*}.

Example 3.2 The group $D=\mathrm{C}_{2} \times \operatorname{Dih}\left(\mathrm{C}_{4}\right) \cong \operatorname{Dih}\left(\mathrm{C}_{2} \times \mathrm{C}_{4}\right)$ is 1-affine complete, by Theorem 1.1 and Lemma 1.3. We show that the group $G=D \times D$ is not 1 -affine complete. The group $A:=\{1\} \times \gamma_{2}(D)$ is a minimal normal subgroup of G, and the quotient G / A is isomorphic to $D \times\left(\mathrm{C}_{2}\right)^{3} \cong \operatorname{Dih}\left(\left(\mathrm{C}_{2}\right)^{4} \times \mathrm{C}_{4}\right)$, which is 1-affine complete by Theorem 1.1 and Lemma 1.3. Every normal subgroup not containing A is contained in $D \times\left(\mathrm{C}_{2} \times \gamma_{2}\left(\operatorname{Dih}\left(\mathrm{C}_{4}\right)\right)\right)$, which is a normal subgroup of index 4 in G. Hence the sum of all normal subgroups not containing A has at least index 4 in G. By Lemmas 2.1, 2.2, and 3.1, $\left|\operatorname{Comp}_{1}(G)\right| \geq\left|\operatorname{Pol}_{1}\left(\operatorname{Dih}\left(\left(\mathrm{C}_{2}\right)^{4} \times \mathrm{C}_{4}\right)\right)\right| \cdot 2^{4}=$ $2^{-5} \cdot\left|\operatorname{Pol}_{1}\left(\left(C_{2}\right)^{4} \times C_{4}\right)\right|^{2} \cdot 2^{4}=2^{15}$. Since G is nilpotent of class 2 and $\exp G=4$, the number of polynomial functions can be computed with the help of [3, Thm. 1 and Prop. 1]. We get $\left|\operatorname{Pol}_{1}(G)\right|=|G| \cdot \lambda(G) \cdot[G: Z(G)]=2^{8} \cdot 2^{2} \cdot 2^{4}=2^{14}$. Thus G is not 1-affine complete.

4 The Affine Complete Generalised Dihedral Groups

In this last section we are going to prove Theorem 1.2. The following proposition gives a strong necessary condition for a nilpotent group to be 2-affine complete. It is inspired by [1, Lemma 2.3], but is not a consequence of this result. Furthermore, we explicitly construct a 2 -ary compatible function which is not polynomial.

Proposition 4.1 Let G be a nilpotent group. Suppose that there exist normal subgroups S and T of G such that
(i) for every $I \unlhd G$, either $I \leq S$ or $I \geq T$,
(ii) $T \not \leq \gamma_{3}(G)$,
(iii) $S<G$.

Let $t \in T \backslash \gamma_{3}(G)$. Then the 2-ary function ϕ on G defined by

$$
\phi(x, y)= \begin{cases}t & \text { if } x \notin S \text { and } y \notin S \\ 1 & \text { otherwise }\end{cases}
$$

is a compatible but not a polynomial function on G. Thus G is not 2-affine complete.
Proof The function ϕ is compatible (cf. [1, Lemma 2.2]). Suppose that ϕ is polynomial. Employing Hall's collection process described in [4, Chap. 5], we find unary polynomial functions p_{1} and p_{2} on G, an integer k, and a 2-ary polynomial function ρ on G, such that for all $x, y \in G, \phi(x, y)=p_{1}(x) \cdot p_{2}(y) \cdot[x, y]^{k} \cdot \rho(x, y), \rho(x, y) \in$ $\gamma_{3}(G)$, and $\rho(x, 1)=\rho(1, y)=1$. Since, by definition, $\phi(x, 1)=\phi(1, y)=1$ for all $x, y \in G$, both p_{1} and p_{2} must map G to $\{1\}$. Now let $g \in G \backslash S$. Then $t=\phi(g, g)=[g, g]^{k} \cdot \rho(g, g)=\rho(g, g) \in \gamma_{3}(G)$, a contradiction. Thus ϕ is not polynomial.

In the case where the 2-Sylow subgroup of a generalised dihedral group is (elementary) abelian, we can obtain positive results. The following lemma generalises [2, Lemma 2.2 and Cor. 2.3]. In the proof we make use of [2, Lemma 2.1] which we state here, because it will be used in the proof of Lemma 4.4.

Notation 4.2 Let G be a group and $X, Y \unlhd G$. Then we write $X \prec Y$ if and only if

$$
X<Y \quad \text { and } \quad \nexists Z \unlhd G: X<Z<Y
$$

Lemma 4.3 ([2, Lemma 2.1]) Let G be a finite group, which is a semi-direct product $G=A B$ (A normal). Let $Z:=B \cap C_{G}(A)$. Assume that the following conditions are satisfied:

- For each $b \in B \backslash Z$, the mapping $\varphi_{b}: A \rightarrow A, a \mapsto b^{-1} a b$ is fixed point free.
- For all $X, Y \unlhd B$ with $X \prec Y \leq Z$, we have $C_{B}(Y / X)>Z$.

Then the function $e: G \rightarrow G$ defined by

$$
\text { for all } a \in A, b \in B: \quad e(a b)= \begin{cases}a & \text { if } b \in Z \\ 1 & \text { otherwise }\end{cases}
$$

is a polynomial function on G.

Lemma 4.4 Let G be a group satisfying the assumptions of Lemma 4.3. Let $k \in \mathbb{N}$ and $Z:=B \cap C_{G}(A)$. Let $n:=[B: Z]$ and let r_{1}, \ldots, r_{n} be a transversal for the cosets of Z in B. Then the following holds.
(i) The mapping Ψ defined by

$$
\begin{aligned}
\Psi:\left\{p \in \operatorname{Pol}_{k}(G) \mid p\left(G^{k}\right) \subseteq A\right\} & \rightarrow\left\{\left.p\right|_{A^{k}} \mid p \in \operatorname{Pol}_{k}(G), p\left(G^{k}\right) \subseteq A\right\}^{n^{k}} \\
p & \mapsto\left(p_{j}\right)_{j \in\{1, \ldots, n\}^{k}},
\end{aligned}
$$

where for $j=\left(j_{1}, \ldots, j_{k}\right) \in\{1, \ldots, n\}^{k}, p_{j}$ is defined by

$$
p_{j}\left(a_{1}, \ldots, a_{k}\right):=p\left(a_{1} r_{j_{1}}, \ldots, a_{k} r_{j_{k}}\right)
$$

is bijective.
(ii) Let f be a k-ary function on G such that $f\left(G^{k}\right) \subseteq A$. Then f is polynomial if and only iffor every $j=\left(j_{1}, \ldots, j_{k}\right) \in\{1, \ldots, n\}^{k}$ there exists a k-ary polynomial function p_{j} on G such that for all $a_{1}, \ldots, a_{k} \in A$ and $z_{1}, \ldots, z_{k} \in Z, f\left(a_{1} r_{j_{1}} z_{1}, \ldots, a_{k} r_{j_{k}} z_{k}\right)=$ $p_{j}\left(a_{1}, \ldots, a_{k}\right)$.

Proof (i) Let $p \in \operatorname{Pol}_{k}(G)$ such that $p\left(G^{k}\right) \subseteq A$. Then each p_{j} defined as above maps A^{k} into A.

We prove that Ψ is injective. Let p and q be two k-ary polynomial functions, such that $p\left(G^{k}\right) \subseteq A, q\left(G^{k}\right) \subseteq A$, and $\Psi(p)=\Psi(q)$. We fix $a_{1}, \ldots, a_{k} \in A$ and $b_{1}, \ldots, b_{k} \in B$. Let $h=\left(h_{1}, \ldots, h_{k}\right) \in\{1, \ldots, n\}^{k}$ be such that for every $i \in$ $\{1, \ldots, k\}, r_{h_{i}}^{-1} b_{i} \in Z$. Then $p\left(a_{1} b_{1}, \ldots, a_{k} b_{k}\right)=p\left(a_{1} r_{h_{1}} r_{h_{1}}^{-1} b_{1}, \ldots, a_{k} r_{h_{k}} r_{h_{k}}^{-1} b_{k}\right)=$ $p\left(a_{1} r_{h_{1}}, \ldots, a_{k} r_{h_{k}}\right)=p_{h}\left(a_{1}, \ldots, a_{k}\right)$, since $p\left(G^{k}\right) \subseteq A$ and $A \cap Z=\{1\}$. In the same way we obtain $q\left(a_{1} b_{1}, \ldots, a_{k} b_{k}\right)=q_{h}\left(a_{1}, \ldots, a_{k}\right)$. Since $\Psi(p)=\Psi(q)$, p_{h} and q_{h} are equal, thus $p=q$.

It remains to show that Ψ is surjective. In light of the given hypotheses, Lemma 4.3 ensures that there exists a unary polynomial function e on G such that for all $a \in A$ and for all $b \in B$,

$$
e(a b)= \begin{cases}a & \text { if } b \in Z \\ 1 & \text { otherwise }\end{cases}
$$

For $x \in G$ we define $\beta(x):=\left(\prod_{i=1}^{n} e\left(x r_{i}^{-1}\right)\right)^{-1} \cdot x$. First, we show that for all $a \in A$ and $b \in B$, we have $\beta(a b)=b$. Let $a \in A, b \in B$, and let $x=a b$. Then

$$
e\left(x r_{i}^{-1}\right)=e\left(a b r_{i}^{-1}\right)= \begin{cases}a & \text { if } b \in r_{i} Z \tag{*}\\ 1 & \text { otherwise }\end{cases}
$$

So $\beta(x)=a^{-1} a b=b$.
For $i \in\{1, \ldots, n\}, a \in A$, and $x \in G$ we define $e_{i}(a, x):=e\left(a \beta(x) r_{i}^{-1}\right)$. Then for all $i \in\{1, \ldots, n\}, a \in A$ and $x \in G$, we have

$$
e_{i}(a, x)=e\left(a \beta(x) r_{i}^{-1}\right)= \begin{cases}a & \text { if } \beta(x) \in r_{i} Z \tag{**}\\ 1 & \text { otherwise }\end{cases}
$$

For every $j=\left(j_{1}, \ldots, j_{k}\right) \in\{1, \ldots, n\}^{k}$ we fix a k-ary polynomial function p_{j} from $\left\{\left.p\right|_{A^{k}} \mid p \in \operatorname{Pol}_{k}(G), p\left(G^{k}\right) \subseteq A\right\}$. For $1 \leq i \leq k$ we define

$$
\begin{aligned}
s_{j, 0}\left(x_{1}, \ldots, x_{k}\right) & :=p_{j}\left(e\left(x_{1} r_{j_{1}}^{-1}\right), \ldots, e\left(x_{k} r_{j_{k}}^{-1}\right)\right), \\
s_{j, i}\left(x_{1}, \ldots, x_{k}\right) & :=e_{j_{i}}\left(s_{j, i-1}\left(x_{1}, \ldots, x_{k}\right), x_{i}\right) \\
q_{j}\left(x_{1}, \ldots, x_{k}\right) & :=s_{j, k}\left(x_{1}, \ldots, x_{k}\right)
\end{aligned}
$$

Let us fix an arbitrary k-tuple $j=\left(j_{1}, \ldots, j_{k}\right) \in\{1, \ldots, n\}^{k}, a_{1}, \ldots, a_{k} \in A$, and $b_{1}, \ldots, b_{k} \in B$, and let $x_{i}=a_{i} b_{i}$, for every i with $1 \leq i \leq k$. Now we are going to show that $q_{j}\left(x_{1}, \ldots, x_{k}\right)=p_{j}\left(a_{1}, \ldots, a_{k}\right)$, if for every $i \in\{1, \ldots, k\}, b_{i} \in r_{j_{i}} Z$, and $q_{j}\left(x_{1}, \ldots, x_{k}\right)=1$ otherwise. First, we observe that if for every $i \in\{1, \ldots, n\}, b_{i} \in$ $r_{j_{i}} Z$, then by $(*), s_{j, 0}\left(x_{1}, \ldots, x_{k}\right)=p_{j}\left(a_{1}, \ldots, a_{k}\right)$. Now we fix an i with $1 \leq i \leq k$. By our definition, $s_{j, i}\left(x_{1}, \ldots, x_{k}\right)=e_{j_{i}}\left(s_{j, i-1}\left(x_{1}, \ldots, x_{k}\right), x_{i}\right) . \mathrm{By}(* *)$, this is equal to $s_{j, i-1}\left(x_{1}, \ldots, x_{k}\right)$, if $\beta\left(x_{i}\right) \in r_{j_{i}} Z$, and equal to 1 otherwise.

We claim that a preimage of $\left(p_{j}\right)_{j \in\{1, \ldots, n\}^{k}}$ under Ψ is

$$
q\left(x_{1}, \ldots, x_{k}\right):=\prod_{\substack{j \in\{1, \ldots, n\}^{k} \\ j=\left(j_{1}, \ldots, j_{k}\right)}} q_{j}\left(x_{1}, \ldots, x_{k}\right) .
$$

Clearly, q is a k-ary polynomial function on G. For fixed $x_{1}, \ldots, x_{k} \in G$ at most one factor $q_{j}\left(x_{1}, \ldots, x_{k}\right)$ is not equal to 1 , whence the order of multiplication of the q_{j} is not relevant. Thus we have constructed a polynomial function q on G such that $\Psi(q)=\left(p_{j}\right)_{j \in\{1, \ldots, n\}^{k}}$.
(ii) Let f be a k-ary polynomial function on G such that $f\left(G^{k}\right) \subseteq A$. Let $j=$ $\left(j_{1}, \ldots, j_{k}\right) \in\{1, \ldots, n\}^{k}$. We define a function $p_{j} \in \operatorname{Pol}_{k}(G)$ by $p_{j}\left(g_{1}, \ldots, g_{k}\right):=$ $f\left(g_{1} r_{j_{1}}, \ldots, g_{k} r_{j_{k}}\right)$. Then for arbitrary $a_{1}, \ldots, a_{k} \in A$ and $z_{1}, \ldots, z_{k} \in Z$,

$$
p_{j}\left(a_{1}, \ldots, a_{k}\right)=f\left(a_{1} r_{j_{1}}, \ldots, a_{k} r_{j_{k}}\right)=f\left(a_{1} r_{j_{1}} z_{1}, \ldots, a_{k} r_{j_{k}} z_{k}\right),
$$

since $A \cap Z=\{1\}$.
Conversely, let f be a k-ary function on G and let $\left(p_{j}\right)_{j \in\{1, \ldots, n\}^{k}}$ be a family of polynomial functions on G, such that for every $j=\left(j_{1}, \ldots, j_{k}\right) \in\{1, \ldots, n\}^{k}$, for all $a_{1}, \ldots, a_{k} \in A$ and for all $z_{1}, \ldots, z_{k} \in Z, f\left(a_{1} r_{j_{1}} z_{1}, \ldots, a_{k} r_{j_{k}} z_{k}\right)=p_{j}\left(a_{1}, \ldots, a_{k}\right)$. Then each p_{j} is an element of the set $\left\{\left.p\right|_{A^{k}} \mid p \in \operatorname{Pol}_{k}(G), p\left(G^{k}\right) \subseteq A\right\}$. Thus by (i), there exists a k-ary polynomial function q on G, such that $q\left(G^{k}\right) \subseteq A$ and for all $j \in\{1, \ldots, n\}^{k}, a_{1}, \ldots, a_{k} \in A$, and $z_{1}, \ldots, z_{k} \in Z$, we have

$$
p_{j}\left(a_{1}, \ldots, a_{k}\right)=q\left(a_{1} r_{j_{1}}, \ldots, a_{k} r_{j_{k}}\right)=q\left(a_{1} r_{j_{1}} z_{1}, \ldots, a_{k} r_{j_{k}} z_{k}\right) .
$$

Thus $f=q$, so f is a polynomial function on G.
Proposition 4.5 Let G be a finite group, which is a semi-direct product $G=A B$, and let $k \in \mathbb{N}$. Let $Z:=B \cap C_{G}(A)$. Assume that the following conditions are satisfied:

- For each $b \in B \backslash Z$, there exists an $e_{b} \in \mathbb{Z}$, such that the mapping $\varphi_{b}: A \rightarrow A$, $a \mapsto b^{-1} a b$ is fixed point free and $\varphi_{b}(a)=a^{e_{b}}$.
- For all $X, Y \unlhd B$ with $X \prec Y \leq Z$, we have $C_{B}(Y / X)>Z$.
- A and B are k-affine complete.

Then G is k-affine complete.
Proof Let c be a k-ary compatible function on G. Then the function $c^{A}:(G / A)^{k} \rightarrow$ $G / A,\left(g_{1} A, \ldots, g_{k} A\right) \mapsto c\left(g_{1}, \ldots, g_{k}\right) A$, is a compatible function on G / A. Since $G / A \cong B$ and B is k-affine complete, there exists a k-ary polynomial function q_{1} on G / A, such that $c^{A}=q_{1}$. Lifting the coefficients of q_{1} from G / A to G, we obtain a polynomial function q_{2} on G such that $q_{2}^{A}=q_{1}$. Now define a k-ary function c_{1} on G by $c_{1}\left(g_{1}, \ldots, g_{k}\right):=c\left(g_{1}, \ldots, g_{k}\right)\left(q_{2}\left(g_{1}, \ldots, g_{k}\right)\right)^{-1}$. Also, c_{1} is a compatible function on G. We show that c_{1} is a polynomial function on G. First note that $c_{1}\left(G^{k}\right) \subseteq A$, since $q_{2}^{A}=c^{A}$. Let $n:=[B: Z]$ and let r_{1}, \ldots, r_{n} be a transversal for the cosets of Z in B. We fix an arbitrary $j=\left(j_{1}, \ldots, j_{k}\right) \in\{1, \ldots, n\}^{k}$ and define the k-ary function c_{2} on G by $c_{2}\left(g_{1}, \ldots, g_{k}\right):=c_{1}\left(g_{1} r_{j_{1}}, \ldots, g_{k} r_{j_{k}}\right)$. Then $c_{2}\left(G^{k}\right) \subseteq A$, and c_{2} is a compatible function on G. Since every normal subgroup of A is normal in G by our assumptions, $\left.c_{2}\right|_{A^{k}}$ is a k-ary compatible function on A. Since A is k-affine complete, there exists a k-ary polynomial function p_{j} on G such that $\left.p_{j}\right|_{A^{k}}=\left.c_{2}\right|_{A^{k}}$. We fix $a_{1}, \ldots, a_{k} \in A$ and $z_{1}, \ldots, z_{k} \in Z$. Since Z is normal in G, there exist $z_{1}^{\prime}, \ldots, z_{k}^{\prime} \in Z$ such that $c_{1}\left(a_{1} r_{j_{1}} z_{1}, \ldots, a_{k} r_{j_{k}} z_{k}\right)=c_{1}\left(a_{1} z_{1}^{\prime} r_{j_{1}}, \ldots, a_{k} z_{k}^{\prime} r_{j_{k}}\right)=$ $c_{2}\left(a_{1} z_{1}^{\prime}, \ldots, a_{k} z_{k}^{\prime}\right)$. Since $c_{2}\left(G^{k}\right) \subseteq A$ and $A \cap Z=\{1\}$,

$$
c_{2}\left(a_{1} z_{1}^{\prime}, \ldots, a_{k} z_{k}^{\prime}\right)=c_{2}\left(a_{1}, \ldots, a_{k}\right)=p_{j}\left(a_{1}, \ldots, a_{k}\right)
$$

By Lemma 4.4(ii), c_{1} is a polynomial function on G. By our definition, $c\left(g_{1}, \ldots, g_{k}\right)=$ $c_{1}\left(g_{1}, \ldots, g_{k}\right) q_{2}\left(g_{1}, \ldots, g_{k}\right)$ for all $g_{1}, \ldots, g_{k} \in G$, hence c is a polynomial function on G.

For the proof of Theorem 1.2, we need one more lemma, which, in particular, tells us that for any $k \in \mathbb{N}$, the 2-Sylow subgroup of a k-affine complete generalised dihedral group is k-affine complete.

Lemma 4.6 Let $A=P Q$ be the direct product of the groups P and Q, and let G be a semi-direct product of A with the group C, such that both P and Q are normal in G. Let $k \in \mathbb{N}$ and $S:=P C$. Assume that for all $s \in S$ and $q \in Q$, we have $s \in[s q]$. If S is not k-affine complete, then G is not k-affine complete.

Proof Let ϕ be a k-ary compatible function on S, which is not polynomial. We extend ϕ to a k-ary compatible function on G, which is not polynomial on G. To this end we define $e: G \rightarrow G, p q c \mapsto p c$. We show that e is a unary compatible function on G. Let $p_{1}, p_{2} \in P, q_{1}, q_{2} \in Q$ and $c_{1}, c_{2} \in C$. Then $s:=e\left(p_{1} q_{1} c_{1}\right) e\left(p_{2} q_{2} c_{2}\right)^{-1}=$ $p_{1} c_{1} c_{2}^{-1} p_{2}^{-1} \in S$. Since $[P, Q]=\{1\}$, we have $p_{1} q_{1} c_{1}\left(p_{2} q_{2} c_{2}\right)^{-1}=q_{1} s q_{2}^{-1}$. There exists $q^{\prime} \in Q$, such that $q_{1} s q_{2}^{-1}=s q^{\prime}$. Since by our assumptions, $s \in\left[s q^{\prime}\right]$, we obtain $e\left(p_{1} q_{1} c_{1}\right) e\left(p_{2} q_{2} c_{2}\right)^{-1} \in\left[p_{1} q_{1} c_{1}\left(p_{2} q_{2} c_{2}\right)^{-1}\right]$, thus e is compatible. Now define $\psi\left(g_{1}, \ldots, g_{k}\right):=\phi\left(e\left(g_{1}\right), \ldots, e\left(g_{k}\right)\right)$. Then ψ is a k-ary compatible function on G and $\psi\left(G^{k}\right) \subseteq S$. Suppose that ψ is a polynomial function on G. Then there exist $r \in \mathbb{N}$ and $q_{0} \in Q, s_{0} \in S$, and for every i with $1 \leq i \leq r$ and every j with $1 \leq j \leq k$ there exist $q_{i, j} \in Q, s_{i, j} \in S$, and $e_{i, j} \in \mathbb{Z}$ such that for all $x_{1}, \ldots, x_{k} \in G$,

$$
\psi\left(x_{1}, \ldots, x_{k}\right)=q_{0} s_{0}\left(\prod_{i=1}^{r} \prod_{j=1}^{k} x_{j}^{e_{i, j}} q_{i, j} s_{i, j}\right)
$$

Now we prove that for all $\left(t_{1}, \ldots, t_{k}\right) \in S^{k}$, we have

$$
\psi\left(t_{1}, \ldots, t_{k}\right)=s_{0}\left(\prod_{i=1}^{r} \prod_{j=1}^{k} t_{j}^{e_{i, j}} s_{i, j}\right)
$$

To this end we fix a k-tuple $\left(t_{1}, \ldots, t_{k}\right) \in S^{k}$. The subgroup Q is normal in G. So for all $g \in G$ and $q \in Q$ there exists an element $q^{\prime} \in Q$ such that $g q=q^{\prime} g$. So we can find a $q \in Q$, such that $q_{0} s_{0}\left(\prod_{i=1}^{r} \prod_{j=1}^{k} t_{j}^{e_{i, j}} q_{i, j} s_{i, j}\right)=q \cdot s_{0}\left(\prod_{i=1}^{r} \prod_{j=1}^{k} t_{j}^{e_{i, j}} s_{i, j}\right)$. Since $\psi\left(t_{1}, \ldots, t_{k}\right) \in S$ and $Q \cap S=\{1\}$, we must have $q=1$.

So, $\left.\psi\right|_{S^{k}}$ is induced by a polynomial over S. But $\left.\psi\right|_{S^{k}}=\phi$, and ϕ is not a polynomial function on S, a contradiction.

It remains to arrange the results obtained in this section.
Proof of Theorem 1.2 Remember that $\operatorname{Dih}(A)$ is the semi-direct product of A with a group C of order 2 .
(i) \Rightarrow (ii): by definition.
(ii) \Rightarrow (iii)(b): if Q is not affine complete, then A is not 1 -affine complete by Lemma 1.3, and by Theorem 1.1, $\operatorname{Dih}(A)$ is not 1 -affine complete. Hence $\operatorname{Dih}(A)$ is not 2-affine complete.
(ii) \Rightarrow (iii)(a): if $|A|=1$, then $|G|=2$, hence G is not 2-affine complete. Next, we consider the case $A=P$. If $\exp A>2$, then G is a non-abelian nilpotent group. For every normal subgroup N of G we either have $N \leq A$ or $N \geq \gamma_{2}(G)$. So by Proposition 4.1, G is not 2-affine complete. It remains to check the case $P<A$. If $\exp (P) \neq 2$, then by Lemma 1.3 and Lemma 4.6, G is not 2 -affine complete.
(iii) \Rightarrow (i): If $A=P$, then G is an elementary abelian 2-group, which by Lemma 1.3 is affine complete. It remains to check the case $P<A$. Then $P C$ is a subgroup of G isomorphic to the elementary abelian group $\operatorname{Dih}(P)$ and G is a semi-direct product of Q with $P C$. Since G satisfies the conditions of Proposition 4.5 for every $k \in \mathbb{N}, G$ is affine complete.

Example 4.7 The group $\operatorname{Dih}\left(\mathrm{C}_{2} \times\left(\mathrm{C}_{3}\right)^{2}\right)$ is affine complete and solvable, but not nilpotent.

References

[1] E. Aichinger, 2-affine complete algebras need not be affine complete. Algebra Universalis 47(2002), no. 4, 425-434.
[2] , The polynomial functions on certain semidirect products of groups. Acta Sci. Math. (Szeged) 68(2002), no. 1-2, 63-81.
[3] J. Ecker, On the number of polynomial functions on nilpotent groups of class 2. In: Contributions to General Algebra 10, Heyn, Klagenfurt, 1998, pp. 133-137.
[4] P. Hall, The Edmonton Notes on Nilpotent Groups. Queen Mary College Mathematics Notes, Mathematics Department, Queen Mary College, London, 1969.
[5] H. Lausch and W. Nöbauer, Algebra of Polynomials. North-Holland Mathematical Library 5, North-Holland, Amsterdam, 1973.
[6] \longrightarrow, Funktionen auf endlichen Gruppen. Publ. Math. Debrecen 23(1976), no. 1-2, 53-61.
[7] C. G. Lyons and G. Mason, Endomorphism near-rings of dicyclic and generalised dihedral groups. Proc. Roy. Irish Acad. Sect. A 91(1991), no. 1, 99-111.
[8] W. Nöbauer, Über die affin vollständigen, endlich erzeugbaren Moduln. Monatsh. Math. 82(1976), no. 3, 187-198.
[9] D. J. S. Robinson, A Course in the Theory of Groups. Second edition. Graduate Texts in Mathematics 80, Springer-Verlag, New York, 1996.

Institut für Algebra
Johannes Kepler Universität Linz
4040 Linz
Austria
and
Computer- und Mediensicherheit
FH OÖ Campus Hagenberg
4232 Hagenberg
Austria
e-mail: juergen.ecker@fh-hagenberg.at

[^0]: Received by the editors February 24, 2004; revised February 10, 2006.
 This study was kindly supported by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung (Projects P12911-INF "Computing with Nearrings" and P15691 "Planar Nearrings: Theory and Applications").

 AMS subject classification: Primary: 08A40, 16Y30; secondary: 20 F 05.
 (C)Canadian Mathematical Society 2006.

