
Tomviz: Open Source Platform Connecting Image Processing Pipelines to GPU
Accelerated 3D Visualization

Marcus D. Hanwell1*, Christopher J. Harris1, Alessandro Genova1, Jonathan Schwartz2, Yi Jiang3 and
Robert Hovden2

1. Kitware, Scientific Computing, Clifton Park, NY, USA.
2. University of Michigan, Materials Science, Ann Arbor, MI, USA.
3. Argonne National Laboratory, Advanced Photon Source Facility, Lemont, IL, USA.
* Corresponding author: marcus.hanwell@kitware.com

As the use of 3D tomography in materials science progresses, the detector densities increase, resolutions
are improved, and the sheer volume of data collected increases, the community must develop innovative
software platforms. The tomviz open source project has been developed over the past five years to offer
a powerful image processing pipeline connected to a GPU accelerated 3D visualization engine that
works on all major operating systems. The platform offers state-of-the-art reproducible processing
pipelines developed collaboratively by Kitware software experts and University of Michigan researchers
to address the needs of transmission electron microscopy tomography. Now tomviz is expanding to offer
capabilities relevant in related fields of tomography (i.e. computed tomography). From the very
beginning the emphasis has been on the development of a powerful image processing/reconstruction
pipeline coupled with a highly accelerated 3D rendering engine featuring a user-friendly interface [1].

Tomviz provides a pipeline that runs inside the graphical user interface (GUI) in a background thread to
enable long-running tasks without freezing the program (Fig. 1). Some operators in the pipeline are
developed in C++, but most are implemented in Python that can be edited inside the program. The
mechanism of embedding Python, operating on views of data from C++, and synchronizing with the
graphical thread offer an intuitively simple interface that successfully abstracts many of the complexities
of asynchronous task execution, GPU programming, and visualization of the results seamlessly. Once
volumetric data is ready to be visualized, the rendering engine offers several visualization modules.
These operate on the raw and/or processed data, with options to split the 3D view and lock cameras
between two or more perspectives to facilitate comparisons. The hardware accelerated rendering engine
uses code developed to execute on the graphics card to efficiently render large 3D volumes using
multiple techniques including isosurfaces, volume rendering, slices, outlines and thresholds coupled
with quantitative measurement modules such as scale cubes and rulers.

The pipeline offers a rich set of options to from Python operators to graphical controls from within the
3D visualization. Every action taken from reading in raw image stacks, executing the image processing
tools, adding visualization modules and specifying lighting parameters can all be recorded in state files
(Fig. 2a). This offers the capability of sharing all data, processing steps, and any editing in a transparent
format based on the JSON standard in wide use today. Anyone can download the open source Tomviz
program, state file and data to reproduce figures, make changes, and examine all steps offering a unique
insight into research.

Recent work has been extending the in-application pipeline execution to offer out of process execution
using Docker to aid in reproducibility. A pipeline runner abstracts out the differences between in and out
of process execution, creating new possibilities for batch execution of pipelines once they have been
validated on very large data sets along with improved reproducibility thanks to the Docker platform.

408
doi:10.1017/S1431927619002770

Microsc. Microanal. 25 (Suppl 2), 2019
© Microscopy Society of America 2019

https://doi.org/10.1017/S1431927619002770
Downloaded from https://www.cambridge.org/core. IP address: 35.175.191.150, on 21 Sep 2019 at 09:59:33, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S1431927619002770
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Going beyond simple execution of operations and visualization of the output has been challenging but
was spurred on by the needs of researchers to “see” what was happening as long-running reconstructions
proceed or as data is acquired. These “live” pipelines have required significant extension of the
synchronization to offer programming interfaces to indicate when updated data is available. Figure 2b-e
highlights this unique GUI feature for a reconstructed Co2P nanoparticle [2]. The software infrastructure
has been developed to then update the visualizations based on the updated data, and even re-run
downstream pipeline elements. The ultimate goal is to offer real-time updates as operations proceed or
data is acquired which must be balanced against the overhead of copying large data from the processing
thread to the graphical thread [3].

References:

[1] BDA Leven et al., Microscopy Today 1 (2018), p. 12.
[2] H Zhang et al., Nano Letters, 11 (2011), p. 188.
[3] The authors acknowledge funding from the DOE Office of Science contract DE-SC0011385..

Figure 1. The internal architecture
that simultaneously processes
python scripts and visualizations in
the GUI. As the python thread
executes tomography
reconstructions, data is concurrently
transferred to the GUI thread to
seamlessly update visualization(s)
for the user.

Figure 2. Demonstration of real-time, reproducible processes provided by tomviz’s graphical interface.
a, The tomviz platform demonstrating a real-time reconstruction. The pipeline tracks all preprocessing
operations such as Wiener filtering. As the reconstruction proceeds, visualization modules can be
seamlessly manipulated. b-e, Live volume rendering of a Co2P nanoparticle reconstructed with
Simultaneous Iterative Reconstruction Technique.

Microsc. Microanal. 25 (Suppl 2), 2019 409

https://doi.org/10.1017/S1431927619002770
Downloaded from https://www.cambridge.org/core. IP address: 35.175.191.150, on 21 Sep 2019 at 09:59:33, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S1431927619002770
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

