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Globally, colorectal cancer (CRC) is a leading cause of mortality from malignant disease.
Case–control and cohort studies provide strong support for a role of diet in the aetiology of
CRC. However to establish causal relationships and to identify more precisely the dietary com-
ponents involved, intervention studies in human subjects are required. Cancer is an impractical
endpoint in terms of numbers, cost, study duration and ethical considerations. Consequently,
intermediate biomarkers of the disease are required. This review aims to provide an overview
of the intermediate endpoints available for the study of CRC, particularly non-invasive faecal
biomarkers. Examples of their use in dietary intervention studies are given.

Colorectal cancer: Biomarkers: Diet: Gut microflora

Cancer epidemiology

Cancer is an important global public health problem.
Annually 10·1 million new cancer cases are diagnosed
with a further 6·2 million people losing their lives world-
wide. This disease accounts for a quarter of all deaths in
countries with a Westernised lifestyle (International
Agency for Research on Cancer (IARC), 2000). Colorectal
cancer (CRC) is the fourth most common cause of cancer-
related mortality in the world. Approximately 944 000 new
cases were diagnosed globally in 2000 and this accounts
for 9·2 % of all new cancer cases (IARC, 2000). Within
Europe, North America, Australia and New Zealand, it is
the second most common cancer after lung or breast
(Boyle & Langman, 2000). In 2000, 363 000 new cases
were reported in Europe. CRC affects 6 % of men and
women by the age of 75, in almost equal proportions. Pro-
nounced differences appear to exist in 5-year survival fol-
lowing cancer diagnosis between the UK (30–35 %) and
the USA (50–55 %; Sant et al. 1995). The reasons for
such a discrepancy remain unclear, but are likely to be
attributed to the progression at diagnosis or treatment
delivery. Generally the incidence and mortality of the dis-
ease are increasing (Cummings et al. 1996; Boyle & Lang-
man, 2000). The Modena colorectal registry (Italy)
reported a 12·2 % increase in incident rates from 1985 to

1997 and other European studies have reported similar
trends (Johansen et al. 1993; Kemppainen et al. 1997).

Globally, incidence rates show an approximate 20-fold
variation, with the developed world suffering the highest
rates and India one of the lowest (IARC, 2000). Even
within countries the rates may vary, as in India where
the Westernised Parsi population have a higher rate of
CRC than the strictly vegetarian Janists (Indian Cancer
Society, 1985). Such fluctuations are generally attributed
to both genetic factors and environmental factors, especially
diet. Migrant studies (Japan to USA, Eastern Europe to
North America) give further support to the role of environ-
mental factors in the aetiology of colorectal malignancies,
with reported incidence rates of migrants and their descen-
dants reaching those of the host country, sometimes within
one generation (World Cancer Research Fund (WCRF),
1997). The highest rates of the disease are currently seen
within Hawaiian Japanese men with an incidence of 53·5
per 100 000 (IARC, 1997).

Evidence suggests that diet plays a significant role in the
aetiology of CRC. Identifying conclusively which constitu-
ents (e.g. vegetables, meat, fibre, fat, micronutrients) exert
an effect on risk has been more problematic however, due
to inconsistent data (Potter, 1999). The 1997 WCRF report
concluded that the evidence (mainly from case–control
studies) for diets rich in vegetables protecting against
CRC was convincing, but that the effect of fruits could
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not be judged due to limited and contradictory data. Data
from prospective studies are less convincing than case–
control studies (Bingham, 2000). High fibre diets were
reported to possibly decrease the risk of CRC, with
suggested protective mechanisms including toxin dilution
or adsorption (WCRF, 1997; American Gastroenterological
Association, 2000). Additionally several micronutrients
including carotenoids, ascorbate and folate have been
examined epidemiologically in relation to the protective
effect associated with vegetables, but the results have fre-
quently been discordant, and coupled with the paucity of
data, no strong associations can be observed (Giovannucci
et al. 1993; Slattery et al. 1997). Collectively, studies
examining the effect of meat consumption (especially red
and processed meats) on CRC have produced neither
strong nor consistent findings, but it is believed that the
weight of evidence points towards a slighty elevated risk
(WCRF, 1997; Norat & Riboli, 2001), although the mech-
anisms remain unclear. A high intake of saturated or
animal fat is possibly related to increased risk (Potter,
1999; Zock, 2001) and does not appear to contribute to
the risk associated with meat consumption (Giovannucci
& Goldin, 1997).

High calcium intake has been suggested to offer a pro-
tective effect from fat-induced promotion of carcinogenesis
by binding cytotoxic bile and fatty acids (Kleibeuker et al.
1996a) or reducing proliferation in the upper part of the
colonic crypt (Bostick et al. 1995). Although most evi-
dence suggests a reduced risk or no association, the results
of both cohort and case studies are inconsistent (Potter et al.
1993). Alcohol has long been suspected as a risk factor for
colorectal neoplasms, since Stocks first reported a slightly
elevated risk in beer drinkers compared to abstainers
(Stocks, 1957). Further studies on the topic have provided
controversial results as detailed in a review by Potter et al.
(1993). The WCRF reported that elevated alcohol con-
sumption probably increases the risk of cancers of the
colon and rectum and that this association is related to
total ethanol intake rather than the type of alcoholic
drink (WCRF, 1997).

Despite the weight of the epidemiological evidence for
diet playing an important role in CRC risk, definitive
evidence for causal association is lacking due to difficulties
of conducting dietary intervention studies. Surrogate end-
points (biomarkers) are therefore required. Before consid-
ering biomarkers that can be used it is necessary to
provide a brief summary of the processes of carcinogenesis
in the colon.

Colon carcinogenesis

Approximately 70 % of colorectal malignancies appear to
be localised in the left (descending) large bowel between
the lower rectum and the splenic fissure, though curiously
this subsite distribution appears to be undergoing a proxi-
mal shift towards the right (ascending) large bowel, for
reasons unknown (Faivre et al. 1989; Ponz de Leon &
Roncucci, 2000). Colonic microarchitecture is character-
ised by crypts, which are approximately fifty cells in
depth. The normal structure and replicative dynamics of
the crypts ensure that both stem cells and immediate

daughter cells replicate in the lowest region. When the
immediate daughter cells divide and migrate they give
rise to all the cells that line the crypt. Eventually these
cells will reach the surface by which stage they are fully
differentiated columnar epithelial cells, covered with micro-
villi, intimately connected via numerous tight junctions and
involved in water and electrolyte transport. The constant
outward movement of cells from the crypts should ensure
that no interaction occurs between replicating cells and
the luminal environment, as such, any mutagens should
then only affect the already differentiated colonocytes
and effectively have no impact upon the integrity of the
crypt cell population (Potter, 1999).

The nature of the microarchitecture was used by Potter
to argue that the first mutagenic event occurring to a pro-
genitor cell would have to be a blood-borne rather than a
luminal agent. It was suggested that for luminal constitu-
ents to have any role in carcinogenesis a polyp must
already exist and be in contact with the faecal stream.
Other authors offer the contention that a luminal agent
could provide the ‘first hit’ (mutation), if a focal failure
in the epithelial barrier occurred due to chemical/physical
insult or as a result of failure in terminal differentiation.
An agent could then directly or indirectly affect cells in
the crypt and lead to the formation of a polyp (Bruce
et al. 2000). Mutation of the adenomatous polyposis coli
(APC) gene permits an adenomatous polyp to develop
and such a formation is considered an important pre-
disposing risk factor for CRC. However, this does not
mean that all polyps become malignancies (only approxi-
mately 5 % do) nor does it prohibit the possibility that
de novo colorectal tumourigenesis may occur (Owen,
1996). The adenomas are well demarcated clumps of epi-
thelial dysplasia, classified into three histological types
(tubular, villous and tubulovillous), which increase in
prevalence with age, being present in 24–40 % of people
over 50 years old (Ponz de Leon & Roncucci, 2000).

It is estimated that up to 15 % of all CRC are due to gen-
etic predisposition, with a further 60 % due to sporadic
CRC that appear to develop from adenomatous polyps. Ade-
nomas and carcinomas develop through a stepwise accumu-
lation of somatic mutations (Fig. 1). Although the precise
sequence of genetic events is not completely understood,
it involves inactivation of various tumour-suppressing
genes (e.g. APC, p53), activation mutations in proto-onco-
genes (e.g. k-ras, c-myc ) and loss of function in DNA
repair genes (e.g. hMLH1, hMSH2). This classic multi-
step model has been termed the ‘adenoma–carcinoma
sequence’ (Vogelstein et al. 1988; Fearon & Vogelstein,
1990). For detailed information on the genetic events and
pathways to CRC the reader is referred to Potter (1999),
Chung (2000), Ponz de Leon & Percesepe (2000) and
Souza (2001).

The potential role of luminal factors in the development
of colonic tumours has led to the theory that the large bac-
terial population in the colon is involved in the formation
of carcinogens, tumour promotors and anticarcinogens in
the gut (Hill, 1975). This in turn has encouraged the
search for dietary components that modulate the gut micro-
flora and its activities and thus may influence CRC, e.g.
probiotics, prebiotics and fibre (Table 1).
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Biomarkers for colorectal cancer

To establish causal relationships between diet and CRC
risk and to identify more precisely the dietary components
involved, human intervention trials are required. The
problem with human intervention studies is that cancer
is an impractical endpoint in terms of numbers, cost,
study duration and ethical considerations. The long lag
phase (up to 20 years) between exposure to a carcino-
genic event and appearance of tumours is a particular
problem. An alternative strategy is the use of intermedi-
ate endpoint biomarkers of cancer, which may be bio-
chemical, molecular, cellular or rooted in pathologic
change (e.g. recurrence of polyps, faecal water, epithelial
markers).

Biomarkers have been developed from an understand-
ing of the sequence of events leading to colonic
cancer, the biology of normal mucosa and the factors
associated with changes symptomatic of progression
toward cancer and the manifestation of cancer itself.
The particular advantages of biomarkers are that they
represent short-/intermediate-term endpoints, which
allow intervention on a reasonable time scale. Ethical
approval is readily obtainable for biomarker studies as
they are minimally invasive, with measurements occur-
ring on accessible material (e.g. faeces and small biop-
sies, FAP). Ideally biomarkers should be sensitive,
reproducible and rigorously validated, although this is
not the case with all biomarkers in the cancer field. Bio-
markers should be causally linked, or correlated with
cancer and hence of biological significance. Thus vali-
dation of a biomarker is critical to its application as a
research tool, as an appropriate response from the
marker is required when assayed in cancer patients (e.g.

familial adenomatous polyposis, FAP) or in healthy indi-
viduals on low-risk and high- risk diets for CRC. The bio-
markers available for the study of CRC are composed of
two main types: (1) tissue, (2) biochemical. Both cat-
egories possess distinct advantages.

Tissue biomarkers

These endpoints are analysed from a tissue biopsy and as
such necessitate invasive procedures of varying complex-
ities to retrieve samples of rectal/colonic mucosa. Use of
biopsies increases the technical complexity of studies, but
reduces the degree of inference required to interpret the
results when compared to biochemical markers. Tissue
can be directly observed, manipulated and analysed.
Tissue biomarkers, therefore, provide the scope to examine
a range of cellular aspects intimately linked to CRC.

Adenoma growth and recurrence

Adenomas (or polyps) are considered to represent the most
likely precursor lesions for colonic cancer in humans. Sur-
veillance and removal generally offer a protective effect,
although adenoma recurrence is common (Wehrmann &
Fruhmorgen, 2000). Polyps appear to be the most reliable
premalignant biomarkers for CRC, but consequently
studies are long (1–5 years) and expensive. The adenoma
size and the extent of the villous component are major risk
factors associated with high grade dysplasia and as such
the malignancy potential of a colorectal polyp increases
with size (O’Brien et al. 1990; Simons et al. 1992; Hofstad
& Vatn, 1997). In individuals with a large colon polyp
(.1 cm) the rate of development of CRC is four times
faster than expected (Otchy et al. 1996). Larger polyps

Fig. 1. The adenoma–carcinoma sequence. Inactivation of the adenomatous polyposis coli (APC) gene facilitates the development of a hyper-
plastic epithelium. Activation of oncogenic ras occurs in early adenomas. Deletion of 18q is found in dyplastic late adenomas. Finally with the
inactivation of p53 colorectal cancer develops. Components of the faecal stream are believed to modulate colorectal carcinogenesis.
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therefore tend to be more predictive of CRC than small
polyps. Dietary effects on cancer risk are assessed through
examination of small adenoma recurrence or growth of
large polyps. The study groups usually consist of patients
with sporadic polyps. Intervention studies completed on
such groups have provided conflicting information as to
the protective effects of low fat, high fibre and high cal-
cium intakes. Several studies have indicated no effect on
recurrence or polyp growth rates (McKeown-Eyssen et al.
1994; Hofstad et al. 1998; Schatzkin et al. 2000), whilst
others have indicated an inhibitory effect (MacLennan
et al. 1995; Baron et al. 1999). Further polyp studies are
currently being undertaken which may resolve these
issues including the Concerted Action Polyp Prevention
trial and UK Colonic Adenoma Prevention trial. Although
polyps are considered a reliable biomarker, the studies can
be complex, invasive and time consuming. Simpler, less
invasive biomarkers that can be used on healthy subjects
are therefore desirable.

Mucosal proliferation

Colon cancer arises out of perturbation of the normally
ordered and balanced proliferation and deletion mechan-
isms of the cell crypt. This results in hyperproliferation
and a shift in the proliferation zone from a restricted
band to the entire crypt (Wilson et al. 1990). Generally
increased cell proliferation results in an increased tumour
load, with carcinogens (e.g. azoxymethane) in animal
models often inducing cell proliferation. Patients with a
high risk of CRC (e.g. FAP) have a correspondingly high
mucosal cell proliferation (Bostick et al. 1997). To deter-
mine the extent of mucosal proliferation, tissue biopsy speci-
mens are examined using immunolabelling techniques
including proliferating cell nucleus antigen and bromo-
deoxyuridine or by isolation of individual crypts and deter-
mination of mitotic cells (Goodlad et al. 1983). Such studies
have provided conflicting data on the effect of high calcium

and fibre intakes on hyperproliferation. (Van Munster et al.
1994; Alberts et al. 1997; Macrae et al. 1997; Holt et al.
1998). Although whole crypt microdissection and mitosis
counting has been shown to be a reliable, reproducible
and robust technique for assessing crypt cell proliferative
state (CCPS) in the human colon, the precise relation of
an increased CCPS to the neoplastic process remains uncer-
tain (Mills et al. 2001). Furthermore for some methods,
noticeable assay variability exists, which may ultimately
compromise their usefulness as biomarkers (McShane et al.
1998; Kulldorff et al. 2000). Thus at present, reliance solely
on cell proliferation as a marker of diet-related CRC risk
would be incautious. The use of mucosal proliferation as a
biomarker can be strengthened with the incorporation of
apoptosis and differentiation indicators (e.g. in situ terminal
transferase nick end labelling, Dolichos biflorus agglutinin),
so as to provide a more integrated view of crypt function
and architecture (Chang et al. 1997). It has been demon-
strated that the non-steroidal anti-inflammatory drug mesala-
zine significantly increases the rate of apoptosis while
concurrently decreasing cell proliferation (Reinacher-
Schick et al. 2000).

DNA adducts

Exposure to carcinogens and mutagens can occur from the
diet, environment or in some instances even from endogen-
ous pathways. The covalent binding of such compounds (or
their metabolites) to DNA results in the formation of
adducts, which are believed to contribute to initiation
and/or progression of carcinogenesis (Schmid et al.
2000). 32P-postlabelling is used as a biomarker to examine
the exposure of DNA to carcinogens. The presence of
numerous DNA adducts in colonic mucosa is associated
with increased risk of CRC (Hamada et al. 1994; Pfohl-
Leszkowicz et al. 1995). Polycyclic aromatic hydrocarbons
are environmental pollutants (present in cigarette smoke).
They have been demonstrated to form stable DNA adducts

Table 1. Potential anticancer properties of foods/nutrients

Food/nutrient Potential anticancer activity References

Prebiotics (e.g. inulin, fructo-oligosaccridies) Selective effects for Bifidobacterium, Lactobacillus spp.
Fermentation influences bowel function
(e.g. motility)

Cummings et al. (2001)

Probiotics (e.g. Lactobacillus casei Shirota) Beneficially modulate gut physiology (e.g. mucosal
integrity, pH) and microflora content. Increase
carbohydrate fermentation, decrease cytotoxicity

Holzapfel et al. (1998)
Burns & Rowland (2000)
Hirayama & Rafter (2000)

Fermented dairy products Increase gut microflora population and carbohydrate
fermentation

St-Onge (2000)

Fibre and resistant starch Increase stool bulk, colonic fermentation and SCFA
synthesis, decrease faecal pH and faecal water
cytotoxicity

Cummings et al. (1996)
Phillips et al. (1995)
Hylla et al. (1998)

Folate Prevents DNA hypomethylation, possible early step
in carcinogenesis

Su (2001)

Phytoestrogens Inhibit proliferation of colon cancer cells, poor
association with risk of CRC

Serraino & Thompson (1992)
Yanagihara et al. (1993)
Jenab & Thompson (1996)

CRC, colorectal cancer; SCFA, short-chain fatty acids.
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in various tissues including human colon mucosa and may
be responsible for tumour initiation (Alexandrov et al.
1996; Melendez-Colon et al. 1999). Alkylating agents
result in O(6)-methyldeoxyguanosine (O6-med-G)–DNA
adducts which are believed to represent a marker of
exposure to N-nitroso compounds (NOC). These adducts
are in part suggested to account for the risk associated
with red meat consumption. DNA damage induced by
NOC has been demonstrated to vary within the large
bowel, being highest in areas with high incidences of
bowel tumours (Povey et al. 2000). Most O6-med-G–
DNA adducts have been found in the proliferating zone
of colonic crypts rather than the differentiated cell com-
partment (Hong et al. 1999). Whilst DNA adducts appear
an excellent choice of biomarker for CRC risk, it must
be remembered that adduct formation does not always
correlate with tumour formation (Alldrick & Lutz, 1989).
DNA in cells isolated from the colon can be rapidly and
conveniently collected and damage can be assessed using
the COMET assay. Hambly et al. (1997) demonstrated
that the DNA damage in colonocytes isolated from rats
fed various diets (i.e. low fat, high fat) could be character-
ised as low or high risk for CRC with the carcinogen (1,2-
dimethylhydrazine DMH). Studies with lactic acid bacteria
have shown that some (not all) can strongly inhibit (N-
methyl-N-nitro-N-nitroguanidine MNNG) and DMH-
induced gentoxicity in rat colon cells. It was postulated
that thiol-containing breakdown products created via cata-
lysis by bacterial proteases could be one mechanism by
which MNNG and other carcinogens are deactivated
(Pool-Zobel et al. 1996; Wollowski et al. 1999). The cyto-
toxic and genotoxic effects of numerous known carcino-
gens were studied in freshly derived human colon tumour
cells and in the rodent equivalent, with some disparate
results (Pool-Zobel & Leucht, 1997). Although as yet the
technique has not been employed in colon biopsy speci-
mens from human intervention trials, it has been used suc-
cessfully to demonstrate a protective effect against DNA
damage in human lymphocytes for carotenoid-rich foods
such as tomato, carrot or spinach. Mechanisms suggested
to account for the effect of some vegetables include
enhancement of cytosolic (glutathione S-transferase pi
GST pi) and DNA repair proteins (Pool-Zobel et al.
1997, 1998).

DNA repair

Colon mucosal cells are under constant, but low, genotoxic
stress. Such damage is normally repaired, but any factors
influencing the integrity of the repair process are important
in determining the risk of cancer. DNA mismatch repair
genes, if inactivated, tend to result in the colorectal muco-
sal cells accumulating additional mutations at a higher rate,
potentially enhancing their capacity for malignant trans-
formation (Boland, 1996). The inactivation of this critical
system results in genomic instability, which is particularly
evident at microsatellite loci. These are highly repetitive
sequences scattered throughout the human genome, most
commonly CA, GT, A, T sequences. Currently a panel of
five marker genes exists to determine the degree of micro-
satellite instability (MSI). Tumours can be characterised

as high frequency (MSI-H) if two or more markers
show instability or low frequency (MSI-L) if only one
marker is affected (Boland et al. 1998). The majority of
hereditary non-polyposis CRC malignancies show MSI,
as do approximately 10–15 % of all sporadic colorectal
tumours. Therefore the presence of MSI indicates a failure
in the DNA repair mechanisms and an increased suscepti-
bility to genotoxic dietary agents, thus elevating the risk
of CRC. No dietary intervention studies have yet been
performed with this endpoint.

Oncogene and tumour-suppressor gene mutation

Mutations in specific oncogenes and tumour-suppressor
genes (e.g. K-ras, p53) are involved in tumour develop-
ment in the colon, as they occur at high frequencies in
human colon cancers (Erdman et al. 1997). The expression
levels of these genes can be measured and used to demon-
strate the effect of various dietary components on tumour
formation in colonic mucosa. Addition of the probiotic
Bifidobacterium longum to the diet of rats was shown to
exert a strong antitumour activity on colonic mucosa by
reducing the expression level of ras-p21 expression and
cell proliferation. (Singh et al. 1997b; Reddy, 1998). Simi-
larly, a diet high in fish oil (n-3 fatty acids) has also been
demonstrated to decrease expression of ras-p21 in colonic
mucosa, whilst a diet high in corn oil (n-6 fatty acids)
appears to promote tumourigenesis as it increased the
expression of this gene (Singh et al. 1997a). Chronic use
of sennoside laxatives increases the risk of CRC in rats;
a dose of highly purified senna extract has been demon-
strated to increase cell proliferation rates in colonic
mucosa, although expression of ras-p53 was unaffected
(Van Gorkom et al. 2000).

In conclusion, the use of novel tissue biomarkers (geno-
toxicity, DNA repair capacity, oncogene mutations) offer
great potential as judged by numerous animal studies and
some limited human data, but they are yet to be exploited
widely for dietary intervention trials with colonic biopsies.

Biochemical markers

In contrast to the invasive techniques needed to obtain
colonic tissue, the majority of biochemical markers avail-
able can be readily measured in blood, urine or faeces,
and thus are minimally or non invasive. Biochemical
markers are composed of two main groups, mammalian
enzymes and gut microflora associated biomarkers. The
former are measures of specific endogenous enzyme
activity in blood, urine or biopsy specimens, e.g.
CYP1A2, GST, whilst the latter include bacterial enzyme
activities and faecal metabolites.

Mammalian enzyme biomarkers

A common biomarker is the hepatic enzyme CYP1A2, a
member of the cytochrome P450 superfamily. It is
involved in the metabolic activation of several carcinogens
including aromatic and heterocyclic amines. Wide inter-
individual variation has been described in CYP1A2 activity
and this variation may relate to susceptibility to cancer.
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Individuals with high CYP1A2 activity are suggested to
have an increased risk of CRC (Lang et al. 1994). Induc-
tion of CYP1A2 activity has been reported as a conse-
quence of several factors including diet (reviewed Landi
et al. 1999). Ingestion of a diet rich in chargrilled meat
has been shown to induce CYP1A2 activity (Fontana
et al. 1999), while associations have also been described
between cooked food, increased CYP1A2 activity and
increased CRC risk (Lang et al. 1994; Badawi et al.
1996). Vegetables appear to have a diverse affect on
CYP1A2 with brassica (cruciferous) vegetables increasing
and apiaceous (carrot and parsley-like) vegetables reducing
activity levels (Lampe et al. 2000b). These effects may in
part be the result of the presence or absence of various
chemopreventive flavonoids, which are suggested to inhibit
activity of CYP isoforms (Sousa & Marletta, 1985; Bear &
Teel, 2000; Shih et al. 2000).

GST (alpha, pi, mu) are an important family of phase II
detoxification enzymes, which play a crucial role in pro-
tecting the colon mucosa from dietary carcinogens.
Reduction in GST activity is associated with an increased
risk for CRC (Szarka et al. 1995). Dietary components
have been demonstrated to modulate GST activity in the
intestine of rats (O’Neill et al. 1997) and man (Nijhoff
et al. 1995). Interestingly, consumption of Brussels sprouts
was found to increase GST in rectal biopsies and lympho-
cytes from blood, suggesting that this marker could be used
as a less invasive method. Supplementation of the diet
with resistant starch elevates GST (pi) levels in the rat
colon probably through alteration of the colonic fermenta-
tion profile and microflora population (Treptow van
Lishaut et al. 1999). Wheat bran and soya also increase
GST activity in the rat colon, with the effects attributed
to micronutrients or phytochemicals rather than dietary
fibre (Appelt & Reicks, 1997; Helsby et al. 2000). The
use of lactulose separately or in conjunction with B.
longum has been demonstrated to significantly increase
GST levels in rat colon (Challa et al. 1997). Apiaceous
vegetables (celery, carrot and parsley-like vegetables)
appear to decrease human GST activity in specific
groups, whereas brassica vegetables have consistently
been shown to increase GST activity levels (Nijhoff
et al. 1995; Lampe et al. 2000a).

Gut flora-associated biomarkers

The relationship between diet, gut microflora and CRC is
complex and intimate. Substances entering the colon
from the ileum and the resident microflora are major deter-
minants of colonic physiology. These, together with the
innate biology of the colon, are pertinent to the initiation
and promotion of CRC. The concentration of bacteria resi-
dent in the colon increases distally with an estimated 300–
400 different cultivatable species (belonging to 190 genera)
resident within a healthy adult colon (Holzapfel et al.
1998). Approximately 100 of these species are present at
concentrations around 1011 CFU/g. The anaerobes, Bacter-
oides, Bifidobacterium and Eubacterium spp., represent
greater than 99 % of those species present in the colon.
Once the microflora is established, the composition
shows little qualitative variation over time (Kleibeuker

et al. 1996b), although there is considerable evidence
that the metabolic activity of the microflora can be modu-
lated by diet especially non-digestible carbohydrates (fibre,
oligosaccharides; Rowland et al. 1985; Rowland, 1988).
With the capacity for the microflora to modulate colonic
conditions, it becomes obvious why analysing their
dynamic interaction with the colonic environment and
mucosa is of such interest. The microflora has been impli-
cated in the aetiology of CRC in a number of studies
(reviewed in Mallett & Rowland, 1990) and these obser-
vations form the theoretical basis for use of gut flora bio-
markers (faecal biomarkers). These biomarkers are
advantageous as they can be assessed in faeces, which is
readily accessible and non-invasive. They are composed
of two main categories; those examining the activity of
bacterial enzymes or bacterial metabolites and those
based on bioassays of faecal water and metabolites. A
number have been used to investigate gut bacterial function
(Rowland et al. 1991; 1998) and some have potential
mechanistic links to CRC aetiology — for example, 2-
amino-3-methylimidazo[4,5-f ]quinoline (IQ) activation,
b-glucuronidase and ammonia production.

Bacterial enzymes/metabolites

IQ activation

Heterocyclic amines (HCA) are formed during cooking of
protein-rich foods. Normally, these molecules require acti-
vation by the liver to become mutagens and carcinogens
capable of producing tumours in various tissues in
rodents and non-human primates (Nagao & Sugimura,
1993). Certain isoflavones potentially offer a protective
effect against HCA-induced carcinogenesis, by reducing
DNA adduct formation (Agus et al. 2000). The HCA IQ
is a compound that can also be activated in the colon by
Eubacterium and Clostridium species to its genotoxic
derivative 7-hydroxy-IQ (Van Tassell et al. 1990), which
is genotoxic to colon cells in a dose responsive manner
(IR Rowland, unpublished results). Diet and the human
gut flora interact to modulate the activation rates of IQ
(Rumney et al. 1993b). A high-risk diet (high fat and
sugar, low calcium) increases activation levels relative to
low-risk diets (low fat, high starch) in human flora associ-
ated (HFA) rats (Hambly et al. 1997). Diets high in animal
fat or fibre also elevate activation levels (Rumney et al.
1993a). Transgalactosylated oligosaccharides supplemen-
tation has also been shown to decrease IQ activation in
HFA rats (Rowland & Tanaka, 1993).

b-Glucuronidase

Many toxic and carcinogenic compounds and also
endogenously produced compounds such as steroids are
metabolised in the liver and then conjugated (with glucuro-
nic acid) by phase II enzymes before being excreted via the
bile into the small intestine. In the colon, the bacterial
enzyme activities of b-glucuronidase can hydrolyse the
conjugates, releasing the parent compound or its hepatic
metabolite. In the case of carcinogens and mutagens, the
activity of b-glucuronidase in the colon may increase
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the likelihood of tumour induction. The colon carcinogen
DMH is metabolised in the liver and small amounts of
the procarcinogenic conjugate of the activated metabolite
methylazoxymethanol (MAM) are excreted in the bile.
Hydrolysis of the conjugate by colonic bacteria releases
MAM into the colon. Germ-free animals treated with
DMH or MAM have fewer colon tumours than do conven-
tional animals (Reddy et al. 1974), and the use of a b-glu-
curonidase inhibitor administered in conjunction with the
carcinogen (azoxymethane) significantly reduces the
number of tumours in the rat colon, indicating that micro-
flora-derived b-glucuronidase has an important role to play
in the aetiology of colon cancer (Takada et al. 1982). The
activity of b-glucuronidase is influenced by diet, with high-
risk diets consistently shown to increase b-glucuronidase
activity relative to low-risk diets (Eriyamremu & Adam-
son, 1995; Reddy et al. 1977). Recently Hambly and col-
leagues demonstrated a 2·5-fold increase in b-
glucuronidase activity on a high-risk diet (Hambly et al.
1997). Alternatively various types of fibre including
coffee fibre, resistant starch and rice bran decrease the
activity of b-glucuronidase in rats, with the extent of the
effect apparently dependent on the nature of the fibre
(Gestel et al. 1994; Maziere et al. 1998; Rao et al.
1998). In human studies, wheat bran, oat bran and whole-
meal rye have been demonstrated to reduce b-glucuroni-
dase activity (Reddy et al. 1992; Grasten et al. 2000).
Inhibitory effects on enzyme activity have also been
observed using lemon grass extract, cumin and black
pepper (Suaeyun et al. 1997; Nalini et al. 1998). Dietary
supplementation with B. longum has proved successful in
both rats and man, by decreasing b-glucuronidase activity,
suggesting that the probiotic influences the metabolic
activity of certain types of intestinal microflora.

Faecal ammonia

Epidemiological studies indicate a link between a high
intake of protein and the incidence of colon cancer.
These studies, together with investigations in vitro and
in laboratory animals, have led to the hypothesis that
colonic ammonia, a toxic substance produced by bacterial
catabolism of protein and urea (Clinton, 1992), may be a
potential tumour promoter in the colon. Bacteria assimilate
nitrogen to create bacterial protein during carbohydrate
fermentation. The colonic ammonia concentration at any
given moment therefore depends upon the balance between
bacterial protein synthesis and amino acid deamination. As
such, increasing the protein content of the diet increases
the colonic luminal concentration of protein breakdown
products. Ammonia exhibits a number of effects that
suggest it may be involved in tumour promotion, including
increasing colonic epithelial cell proliferation (Ichikawa &
Sakata, 1998), altering morphology and DNA synthesis and
reducing the lifespan of cells (Visek, 1978; Lin & Visek,
1991). More definitively, it has been shown to increase
the incidence of colon carcinomas induced by MNNG in
rats (Clinton et al. 1988). A low level of ammonia pro-
duction in the gut is associated with low protein, high
fibre diets, which appear to protect against cancer of the
colon. Ammonia levels have been shown to be elevated

in rats consuming a diet containing high risk factors for
CRC (Hambly et al. 1997). Supplementation of the diet
with resistant starch decreased ammonia concentration in
HFA rats, whilst wholemeal rye had no effect on human
colonic ammonia concentration (Silvi et al. 1999; Grasten
et al. 2000). Modification of bacterial metabolism was suc-
cessful using the probiotic B. longum in rats as it
significantly decreased caecal ammonia concentration
(Rowland et al. 1998). Inulin, a chicory fraction containing
b(2-1) fructans, also reduces ammonia in the gut, although
not always significantly (Rowland et al. 1998; Hughes &
Rowland, 2001). Transgalacto-oligosaccharides, which
are completely fermented in the human colon, also have
been shown to have no effect on ammonia concentration
(Alles et al. 1999).

N-nitroso compounds

Nitrate, ingested via diet and drinking water, is readily con-
verted by the nitrate reductase activity of the intestinal
microflora to its more reactive and toxic reduction product,
nitrite. Nitrite reacts with nitrogenous compounds such as
amines, amides and methylureas in the body to produce
NOC, many of which are highly carcinogenic, DNA-alkyl-
ating agents (Hughes et al. 2001). The reaction can occur
chemically in the acidic conditions prevalent in the
human stomach and can also be catalysed at neutral pH
by gut bacteria. Bacterial N-nitrosation occurs in the
large intestine and can be analysed using a method that
determines apparent total NOC (ATNC) in the faeces and
several biological fluids. Such an approach was used to
demonstrate that N-nitrosation in the large intestine of
rats is dependent on the presence of gut microflora
(Massey et al. 1988). Although the mechanism for bacterial
N-nitrosation is still unknown, concentrations of ATNC
positively correlate with intestinal transit time and inver-
sely with faecal output (Hughes et al. 2001). In faecal
samples from healthy human subjects, ATNC was detected
and its excretion related to both dietary nitrate (Rowland
et al. 1991) and red meat consumption (Silvester et al.
1997; Hughes, 1999; Hughes et al. 2001). However a simi-
lar association was not found for white meat or fish (Cum-
mings et al. 1996). In conjunction with high meat intakes,
wheat bran, resistant starch and vegetable consumption had
no effect on faecal ATNC excretion or concentration
(Cummings et al. 1996; Silvester et al. 1997; Hughes,
1999).

Diacylglycerols

Protein kinase C (PKC) activation is a critical step in the
stimulation of cell proliferation. The enzyme can be
directly activated in vivo by the secondary messenger
diacylglycerol (DAG), which is a lipid produced by
phospholipase C catalysed hydrolysis of phosphatidyinosi-
tol and polyphosphoinositides. DAG activates PKC by
decreasing the enzyme’s requirement for calcium ions.
The sustained activation of PKC is believed to be a critical
event in tumour promotion as it affects regulation of long-
term cellular events such as proliferation and differen-
tiation. Evidence supporting this hypothesis is provided
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by phorbol ester tumour promoters which potently activate
PKC by a mechanism that appears analogous to that of
DAG. Bacterial microflora can also produce DAG using
phospholipids and triglycerides from the colonic contents.
The bacterial production of DAG can be enhanced by
bile acid (Morotomi et al. 1990). Unsaturated fatty acids
and bile acids activate PKC and increased cell proliferation
in rat colons, either through a direct method or through an
action on the cell membrane (Craven & DeRubertis, 1988).
Hence human subjects with grossly increased fat content of
the faeces, e.g. jejunoileal bypass patients, have extremely
high luminal DAG concentrations and hyperproliferation of
the colonic epithelium (Steinbach et al. 1994). For a
detailed review of PKC and its implications in cancer the
reader is referred to reviews by Blobe et al. (1994) and
O’Brian & Ward (1989).

Fecapentaenes

These potent and direct-acting mutagens are glycerol ether
compounds containing a pentaene moiety with a chain
length of twelve or fourteen (fecapentaenes twelve or four-
teen). Both types are found in faeces, although the ratio
varies considerably (Baptista et al. 1985). Although feca-
pentaenes occur in faeces of the majority of Western
populations, more detailed epidemiological studies have
revealed some anomalies. For example, lower fecapentaene
levels have been found in faeces from colorectal patients
than in controls (Schiffman et al. 1989) and faecal
excretion of fecapentaenes is higher in vegetarians, who
are at lower risk from colon cancer (de Kok et al. 1992).
These and other studies suggest that the more fecapentaene
excreted the lower the risk of CRC. This reasoning has a
certain logic since fecapentaenes are very potent, direct-
acting mutagens which would be expected to react extre-
mely rapidly with DNA and other macromolecules in the
colonic mucosa. Thus increased faecal excretion may
reflect lower endogenous exposure to the genotoxin. The
gut microflora has been implicated in fecapentaenes syn-
thesis by the demonstration of this process in vitro by
faecal suspensions, under anaerobic conditions, and the
inhibition of synthesis by antibiotics and heat sterilisation
(Wilkins et al. 1980; Hirai et al. 1982). Further work has
established that Bacteroides species are the organisms
mainly responsible for fecapentaene production (Van Tas-
sell et al. 1982a). Production of mutagens in vitro is stimu-
lated by bile acids (Van Tassell et al. 1982b; Nair et al.
2000) although they are not thought to be precursors. How-
ever, in vivo studies have yielded more equivocal results,
as some studies have demonstrated mucosal proliferation,
DNA damage and tumour-promoting activity (Hinzman
et al. 1987; Vaughan et al. 1987; Zarkovic et al. 1993),
whilst others have reported no carcinogenic properties
(Ward et al. 1988; Weisburger et al. 1990; Shamsuddin
et al. 1991).

Secondary bile acids

The bile acids consist of a number of related amphiphilic
acidic steroids. The primary bile acids, chenodeoxycholic
acid and cholic acid, are synthesised from cholesterol in

the liver (Hofmann, 1984), conjugated with taurine or gly-
cine and released into the bile to solubilise fats and choles-
terol for uptake in the small intestine. The primary bile
acids are subject to extensive metabolism by the intestinal
microflora (MacDonald et al. 1993), predominantly 7-a-
dehydroxylation, which converts cholic to deoxycholic
acid (DCA) and chenodeoxycholic to lithocholic acid
(LCA), thereby increasing their hydrophilicity. These sec-
ondary bile acids, which comprise over 80 % of the
faecal bile acids, are postulated to play an important role
in the aetiology of colon cancer by acting as promoters
of the tumourigenic process (Nagengast et al. 1995). The
capacity of DCA to enhance colon tumour development
in the rat colon could be attenuated by all-trans retinoic
acid (Narahara et al. 2000). It is also postulated that a
high DCA concentration and DCA to LCA ratio may be
a risk indicator of CRC (Kamano et al. 1999). However a
recent study by de Kok found no significant correlations
with either bile acid concentrations or ratios (de Kok
et al. 1999). Although there is no definite proof that bile
acids are the cause of CRC, there is considerable evidence
to indicate that acid steroids, in particular secondary bile
acids, can exert a range of biological and metabolic effects.
They induce cell necrosis, hyperplasia, metabolic alteration
and DNA synthesis in intestinal mucosal cells, enhance the
genotoxicity of a number of mutagens in in vitro assays,
and exhibit tumour-promoting activity in the colon
(reviewed by Rowland et al. 1985; Radley et al. 1996;
Chaplin, 1998; Hofmann, 1999). Secondary bile acids
can also induce DNA damage in colon cells (Venturi
et al. 1997), leading to apoptosis, as DCA-induced DNA
damage triggers calcium ion dependent apoptosis, in a
manner independent of p53 (Marchetti et al. 1997;
Powolny et al. 2001). It has also been suggested that sec-
ondary bile acids influence CRC by selecting for apopto-
sis-resistant cells (Payne et al. 1995) or potentially
through bile acid interactions with important secondary
messenger signalling systems known to be activated in
CRC (arachidonic acid–prostaglandin E2 and PKC;
reviewed in Radley et al. 1996). Serum levels of DCA
are correlated with increased rates of mucosal proliferation,
which is a known factor in CRC causation (Ochsenkuhn
et al. 1999). Diet has an obvious and pronounced effect
on bile acids as high levels of animal fat and protein
increase both secretion and flow (Thompson et al. 1985;
Villalon et al. 1992), but by itself diet cannot be considered
harmful, unless in the absence of balancing amounts of
carbohydrate (Chaplin, 1998). Fibre (ispaghula husk) has
been shown to lower faecal levels of LCA and decrease
DCA to LCA ratio (Anderson et al. 1988; Chaplin et al.
2000).

Faecal water activity

There is considerable evidence that colon tumours are a
result of gut luminal factors damaging the mucosa. Further-
more, free reactive and soluble factors are more likely to
affect the epithelium than substances bound to the insoluble
matrix such as fibre. Therefore, an alternative approach to
assaying enzymes or metabolites in faeces is to assess
toxicological activity of fractions using short-term tests
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for toxicity, genotoxicity and mutagenicity. Usually the
aqueous phase of the human faeces (faecal water) is used
(Rafter et al. 1987), since this will contain most of the
free reactive species. This approach provides a direct esti-
mate of the potential of the faecal sample to damage the
colonic mucosa and has been used to provide insights
into the possible processes involved in colon cancer includ-
ing cytotoxicity and genotoxicity. Despite considerable
intra- and interindividual variability in faecal water
activity, effective experimental protocols can enable detec-
tion of dietary modulations of the level of toxic and geno-
toxic effects (Osswald et al. 2000).

Faecal water cytotoxicity

Proliferative zone expansion in the colonic crypts and an
increased rate of epithelial proliferation are often viewed
as an early step in carcinogenesis. Stimulation of prolifera-
tive activity in colonic epithelial may in part be mediated
by chemical or physical cytotoxic mechanisms, such that
epithelial damage induced by these sources would increase
cell loss at the epithelial surface. This would result in a
compensatory increase in the mitotic activity of the
crypts, thus elevating the risk for CRC. Such consider-
ations led to the development of assays to assess cytotoxic
activity in faecal water towards colon cells in vitro (Rafter
et al. 1987). It is thought that bile acids, especially second-
ary bile acids, make a major contribution to faecal water
cytotoxicity (Rafter et al. 1987). This technique has been
used in a number of dietary intervention studies. Dietary
calcium has frequently been shown to reduce the cyto-
toxicity of faecal water presumably by precipitating soluble
bile acids (Van der Meer et al. 1991, 1997; Govers et al.
1993; Lapre et al. 1993). Interestingly a recent study
showed that a shift from a dairy product rich diet (high
fat) to a dairy product free diet showed an increase in cyto-
toxicity of the faecal water, possibly as a result of
decreased calcium (Glinghammar et al. 1997). Conflicting
data exist regarding the effect of resistant starch sup-
plementation on human faecal water activity, with outcomes
indicating a decrease or no change in faecal water cytotox-
icity (Van Munster et al. 1994; Heijnen et al. 1998). High
red meat consumption, which is associated with an
increased risk of colon cancer, increases the cytotoxicity
of faecal water in rats. This effect was independent of
the fat and bile acids content of the faecal water and
may be related to dietary haem (Sesink et al. 1999, 2000).

Faecal water genotoxicity

There is now convincing evidence that CRC is induced by
a series of mutational events in a number of critical genes
(Vogelstein et al. 1988). How these mutations arise and
what induces them is still not fully understood, as there
are a variety of causes. Dietary factors are believed to
have a role in the carcinogenic process, as the potential
for components of food (e.g. HCA, wheat bran) or their
metabolites to influence genetic damage has been exam-
ined with mutagenic assays (Venitt et al. 1986; Knize
et al. 1995; Johansson et al. 1998; Sinha et al. 2001).
Venturi et al. (1997) pioneered the use of faecal water

genotoxicity testing as a means of assessing the ability of
the colonic environment to induce DNA damage in epi-
thelial cells. A wide variation in the genotoxicity of
faecal water samples obtained from thirty-five healthy sub-
jects was found, ranging from negligible to high activity
(Venturi et al. 1997). Furthermore a human intervention
study demonstrated that a shift to a dairy product poor
diet did not affect faecal water genotoxicity even though
the cytotoxicity did increase (Glinghammar et al. 1997).
Most recently it was shown that a diet high in fat and
meat but low in dietary fibre increased faecal water geno-
toxicity, which may contribute to an enhanced risk of CRC
(Rieger et al. 1999).

Conclusions

There is no doubt that in the last few decades we have
greatly expanded our knowledge about the causes and
risk factors associated with CRC. Currently, a wide range
of potential biomarkers is available to augment investi-
gations into the activity of specific foods, compounds and
metabolites in CRC. Most of these assays still require
further validation before they can be used with complete
confidence and compromises must be made in terms of
study complexity and the strength of the causal information
provided. It is apparent, however, that a sound theoretical
basis exists for the use of biomarkers in the study of
CRC. The validation of a biomarker is critical to its appli-
cation as a research tool, as an appropriate response from
the indicator is required when used in cancer patients
(e.g. FAP) or in healthy individuals on low-risk and
high-risk diets for CRC.
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