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Using the notion of spherical modification and results from Morse
theory a general technique is described for constructing manifolds whose
strong category is small ( ^ 3 ) but whose homological structure is complex.

Unless stated otherwise an w-manifold is a compact, differentiable n
dimensional manifold without boundary.

Let V1 be an w-manifold and suppose S* is an i-sphere homeomor-
phically and smoothly imbedded in V1 with a trivial normal bundle. Then
S* has a neighborhood of the form SixDn~i (D"~* is an (w—i)-disc). Clearly
the boundary of S( x Dn~* = S* X S"-'-1 = the boundary of Di+1 x S"-'-1.
Smoothly identifying the boundary of D<+1 x S"-'-1 with the boundary of
(Fj-interior (S'xZ)""')) results in a new manifold F2 . F2 is said to be
obtained from Vx by a spherical modification of type (i, n—i—l). (Cf. [8]
page 504). The manifold F2 has a sphere Sn~i~1 (the associated sphere to
S*) imbedded in it with trivial normal bundle; namely,

{0} x S"-'"1 C D'+i X S"-'"1 C F2.

Clearly by reversing the procedure Fx can be obtained from F2 by a spherical
modification of type (n—i—l,i) determined by the associated sphere to
S*. Such a modification will be called an inverse to the given one.

Let F2 be obtained from V1 by performing a finite sequence S of
spherical modifications on V1. Associated to S is a w+1-manifold W called
the trace of 5 with boundary of W = Vx u F2 . The triple (W, V1, F2) is
a manifold triad in the sense of [6] page 2. A rearrangement theorem says
that the modifications S can be rearranged so that all modifications of type
(i, n—i—l) are performed before any of type (i+l, n—i—2) and all
modifications of type (i, n—i—l) can be assumed to be carried out on the
same manifold. Further the trace of the rearranged sequence is the same
as the trace of 5. (Cf. [8] page 514 and [6] page 44).

Assuming that the sequence S of modifications leading from Fx to F2 is
already 'rearranged' as above one has a sequence of manifolds V1 = Mo,
Mx, • • • M(, Mi+1, • • •, Mk = F2 where Mi+1 is obtained from Mt by
modifications of type {i, n—i—l) only. Suppose bi+x = the number of
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(i, n—i—l) type modifications in S. Let {S}}i=1>...>6. be the spheres
in M( determining the bi+1 (i, n—i—l) type modifications and let
|5^-*-i}3.=1>2 ^ b be the associated spheres in Mi+1. For any integer
b ^ 0 let F(b) be the free abelian group on b generators (-F(O) = 0). Define
C( = F(b{) where the {S)~1}j=li...ibf can be taken as representatives for the
generators. Then C8_1 = F(b{_x) is generated by {SjT2}s=1>...>6. . Define
di : Ct -> C(_x by

1

where Ajk = S^ 1. S£~i+1 = intersection number of Sj"1 and SjJ~'+1, where
Sg-«+i _ associated sphere to S£~2 (note S*-1 and S£~ m are both spheres
in Mj_1). It is not hard to see that (C*, d) = (C,-, dt) is a chain complex.

THEOREM 1. Let W = trace of S (performed on Vx) then

Ht(W, Vj) £ Ht(CJ

all i (homology with integer coefficients).

PROOF. [6] page 90.

THEOREM 2. Let M be an n dimensional, compact, connected manifold of
the form M = W u Dn where W = trace of a finite sequence S of spherical
modifications on V1 = boundary of D" = S71^1 and Dn is attached to W
by smoothly identifying (boundary Dn) to ((boundary W) = Vj). Then
H0(M) = Z (integers) and for i > 0 H{(M) ^ H^C^) where C* is obtained
from S as described above.

PROOF. Consider the sequence Ht(M) - i H{(M, Dn) 4- H((W, Fx)
where / is from the homology sequence of the pair (M, Dn) and is thus an
isomorphism for i > 0 and g is induced by excision and homotopy and is
thus an isomorphism for all i. Since M is connected H0(M) = Z and for
i > 0 the theorem follows from theorem 1.

COROLLARY. / / dt = 0 all i > 0 then H((M) = C,- = F(b{) all i > 0
where bi — number of (i—1, n—i—\)type modifications in S.

PROOF. Follows directly from theorem 2 and the definition of H^C*).
Before getting to the main result one further definition is needed. Let

M be an w-manifold. Define C(M) to be the minimum number of contract-
able in themselves, open sets needed to cover M. (See strong category [2]
page 360.)

Theorem 3 is a statement of the main result although the technique of
proof is of more interest than the theorem. (See remark following the proof
of theorem 3.)
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Note that if, for example, bt = 0 for 0 < i ^ 33 and n = 100 then the
'C(M) :£3' portion of the theorem falls under the case mentioned in [1]
page 201.

THEOREM 3. Let {i>i}i=sOylr...yn be a sequence of non-negative integers
satisfying the following conditions: b0 = 1, bt = bn_{ and if n = 2m then
bm = 2t. Under these conditions there exists an orientable, connected n-manifold
M with Ht{M) = F(bt) and C(M) ^ 3.

PROOF. Let N = J,Zibi i f n = 2™+l and let N = J™Ji bi+i i f

n — 2m and bm = 2t. Let D" be an w-disc and in the boundary of
D" = S""1 = V1 pick out N mutually disjoint (n — 1) discs. Call them
D{bit j) where 1 sS i ^ m a n d 1 ^ j ^ b i i i n = 2m-\-l if n = 2m, t h e n for
1 fS i 5S w— 1, 1 ^ / ^ bt and for i = m, 1 ?==j <=t (note that no discs are
picked if bt = 0). In each disc.Df&j-, /) imbed an (i—l)-sphere S)"1 with
trivial normal bundle, (e.g. S'^1 = Boundary

D 'Cf l 'Cf l ' x fOjCf l ' x i ) " - ' - 1 = Dn~l).

Performing on Vx spherical modifications determined by these JV different
spheres gives a manifold V with N mutually disjoint spheres {S?"*^1}
(5""'"1 is associated to S)'1) imbedded in it. Performing on V, N spherical
modifications inverse to those performed on V1 gives a manifold V2 which
is again Sn-1. Finally, perform on F2 an (n— 1, —1) spherical modification
determined by V2 itself. Let W = trace of these 2iV-|-l modifications and
let M = D" u W (M is clearly a compact, connected w-manifold).

For n = 2m-\-l if 1 ^ i 5S m then m-\-\ ^ n—i ^ n—1. Hence the
number of (i—l,n—i—l) modifications = number of (n—i—l,i—l)
modifications = bi = bn_t (1 <! i ^ n— 1). For n = 2m a slight change
occurs; namely, the number of (m—\,m—1) modifications performed
on Vx = t, and the number of (m—l,m—l) modifications performed on
V — t, so the total number of (m—l,m—l) modifications = 2t = bm. In
both cases there is only one (n—1, —1) modification performed thus
Cj = Flbjl ^ i ^ n for any n.

Consider now dt : C, ->- Ci_1. To compute dt it is necessary to find the
intersection numbers S'f1 • S£~* where S)~x is a generator of Ct and 5̂ ""* is
associated to a generator S1^2 of Ci_1. If w = 2T« then i—1 ^ «—i and thus
by the construction of W, S'f1 n Sj~* = 0 for 2 ^ i ^ w—1. However if
» = 2w+1 then t—1 = n—i for i = m-\-\. In this case, then, the associated
spheres to generators of Cm are the generators of Cm+1.

Let 5™-1 be a generator of Cm and let 5™ (a generator of Cm+1) be
associated to S™"1. Now 5™ is identified with {0} xSmCDmxSm introduced
when S"1"1 x Dm+1 is replaced by Dm x Sm under the modification. Let P ^ 0
be a point in Dm and let £™ be the sphere {P} xSmCDmx Sm. Then
S™ n S™ = 0 and performing the modification with respect to S™ gives the
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same result as using S™ since £™ and S™ are isotopic. (Cf. [9] 776). Thus
for n odd or even its clear that if 2 5S i fg n— 1 then dt = 0.

Further suppose all of the (0, n—2) modifications performed on Vx

to be orientable (i.e. V is orientable). This corresponds to identifying
(boundary S° X D"~x) to (boundary D1 X Sn~2) in such a way that the orienta-
tions on one component of the boundary are the same while those on the
other component are opposite. Hence when the (#— 1, —1) modification is
performed on F2 the intersection number is S""1 • S° = 1 — 1 = 0 where
S° in F2 is associated to S"~2 in V and 5"~2 is associated to the o-sphere
determined by D{b1,j). Also for W its clear that Co = 0 and thus dt = 0
for i = 1, • • •, w and by the corollary to theorem 2 H^M) = H^C*) = Fty^.
This proves the first part of theorem 3.

To see that C(M) 5S 3 consider the following: By [7] page 14 (the
trace of the modification corresponding to D(b(, j) on Fx) u D" = DJ
with an w-disc C(bt,j) attached to the boundary of D" = Vx. Actually
C(b{, j) r\V1 = S j^xf l "" ' (= tubular neighborhood of S)'1 used to deter-
mine the spherical modification.) Thus D" u (trace of the N different
spherical modifications o n F J = D" u Cx where Cx is a set of N mutually
disjoint n-discs C(bt, j). Repeating the above argument on V using the N
inverse modifications to those done on Vx one obtains that D" u Cx u (trace
of the N inverse modifications) = D" u C1 u C2 where C2 is a set of N
mutually disjoint w-discs C(bn_f, j). Further, when performing the inverse
modification to the one determined by D(bt, j) a tubular neighborhood of
small enough 'radius' can be used so that

C(K-t> i) <"> C(bt, j) = I)1 X S"- '"1 C D1 X S"- ' - 1 C V

where D* X Sn~*~x is the set introduced into V by the modification and where
D' is an z'-disc C interior D*. Changing the 'radius' does not effect the
modification in any significant way (Cf. [9] page 776). Thus all the discs in
C2 can be taken disjoint from D\. Finally, performing the (»— 1, —1)
spherical modification determined by V2 corresponds to attaching an
M-disc Z)2 to D" u Cx u C2 by identifying the boundary of D\ to F2. Thus
M = {D\ u C2) u C2 u D2 where (Z>? u C2), C^ and D\ each consist of
finitely many mutually disjoint M-discs.

If (Dlt D2, • • •, Dk) is a set of mutually disjoint w-discs in a connected
w-manifold (which M is) then Dx can be joined to D2 by a smooth arc a
so that a n U*_i ^< = two points, one in boundary Dx and one in boundary
Z)2. A tubular neighborhood T of a can be picked so that T n D( = an
w—1 disc in boundary Z)s (* = 1, 2) and T misses Da, • • •, Dk. Thus Dt and
Z)2 can be joined to form a set E2 which is contractable in itself. Repeat this
construction on (E2, D3, • • •, Dk) starting with E2 and D3 to form E3.
Finally one obtains a set Ek which is contractable in itself.
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Hence M can be covered by 3 such contractable sets and if each of them
is expanded slightly M can be covered by their interiors and it follows that
C(M) fSL 3. This completes the proof of theorem 3.

REMARK. The theorem only asserts the existence of a manifold of a
certain type. A manifold satisfying theorem 3 can be constructed in a simple
manner as indicated below. The more involved construction given in the
proof of the theorem gives a general technique for constructing manifolds
with C (M) ^ 3 as there are few restrictions placed on the spherical modifica-
tions involved. For example, by changing the (0, 0) modification one can
obtain the 2-torus, the klein bottle or the projective plane.

For n = 2m+l one can obtain a manifold satisfying theorem 3 as
follows: Let N = 2£.i&< a n ( i denote by M(, bt copies of SixSn~i. Define
M to be the connected sum of M' = Uili-^i (i-e. fix a component C of M'
and connect all other components of M' to C by (0, n—\)-modifications.
It is not difficult to prove directly that M satisfies the theorem and is in fact
a special case of the construction given in the proof of theorem 3. A similar
argument holds for n even.

In theorem 3 if n = 2m then bm is assumed to be even. This assumption
can easily be removed in certain cases. Let bm = 2t-\-l and suppose there
exists an (tn—l,n—m—l) spherical modification <f> on S""1 which again
yields S""1. Then as in the proof of theorem 3 perform the JV(= ^Ci 1 &<+*}
spherical modifications on Vx together with one more; namely <f>, to obtain
V. Then performing the N inverse modifications on V one obtains V2 = S""1.
(No inverse modification is needed to 'cancel' <f>.) Thus the number of
(m— 1, «—m— 1) type modifications = 2^+1 = bm. Its easy to see that
the rest of the proof goes through as before.

If n = 2, 4, 8, 16 such spherical modifications as <f> exist, the trace of
<f> being the real projective plane with two 2-discs removed if n = 2, the
complex projective plane with two 4-discs removed if n = 4, the quater-
nionic projective plane with two 8-discs removed if n = 8, and the Cayley
projective plane with two 16-discs removed if n = 16. (Cf. [4] page 708).
However for n = 2 the (0, 0) modification is non-orientable but for n = 4, 8
and 16 one has:

COROLLARY 1. / / n = 4, 8, 16 the restriction that bm be even in theorem 3
can be removed.

COROLLARY 2. If bx=£ 0 and n 22 2 in theorem 3 then C(M) = 3.

PROOF. This follows from [2] page 258 theorem 29.3.
Let / be a Morse function on an w-manifold M (/ : M -> R (reals) with

a finite number of critical points all of which are non-degenerate). To each
critical point of / is attached an index i (an integer 0 5g i fS n) (Cf. [7]
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page 5). Define fi(M) to be the minimum number of different indices
appearing in / as / ranges over all Morse functions on M. It is well known
that C(M) <: fi(M) <; w+1 (Cf. [3] or [5]). Further if the number of points
with index i for a Morse function / on M is zero then H^M) = 0 (Cf. [7]
page 20). Hence if bf > 0, i = 0, • • •, n in theorem 3 then the manifold M
constructed there has the property that C(M) fS, 3 and /u(M) = n + 1 .
Thus fJ.(M) —C(M) ^ n—2 and, in view of corollary 2, w—2 is the maximum
difference if bt ^ 0 and n S: 2.

COROLLARY 3. If n 2g 2 then there exists an w-manifold M (actually
there exists infinitely many non-diffeomorphic such w-manifolds) such that
fj,(M) — C(M) = n—2 and if n = 1 then clearly ^(S1)—C(51) = 0 where S1

is the 1-sphere.

References

[1] M. K. Fort, Jr. (editor) Topology of 3-Manifolds, (Prentice Hall, Englewood Cliffs, N.J.,
1962).

[2] R. H. Fox, 'On the Lusternik-Schnirelmann category', Annals of Math. 42 (1941)
333—370.

[3] Lusternik & Schnirelmann, Topological methods in the calculus of variations, (Moscow
1930).

[4] M. V. Mielke, 'Generalized modifications and cobounding manifolds', Jour. Math, and
Mech., 15 (1966) 683—710.

[5] M. V. Mielke, 'Spherical modifications and coverings by cells', to appear Duke Math. J.
March (1969).

[6] J. W. Milnor, 'Lectures on the h-cobordism theorem', (Princeton Mathematical Notes, 1965).
[7] J. W. Milnor, 'Morse Theory' (Annals of Math. Studies No. 51, Princeton 1963).
[8] A. H. Wallace, 'Modifications and cobounding manifolds', Canadian J. Math., 12 (1960)

503—528.
[9] A. H. Wallace, 'Modifications and cobounding manifolds II,' Journal of Math. & Mech.

10 (1961) 773—809.

Univ. of Miami
Coral Gables, Fla.

https://doi.org/10.1017/S1446788700007394 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700007394

