A NOTE ON L-GROUPS

by H. H. TEH

The subject of this note is the study of conditions under which an l-group is simply ordered. We start with two definitions: A po-group is called positively related if every pair of elements a, b>0 has a lower bound c>0. Evidently a po-group is positively related if and only if it is negatively related in the sense that every pair of negative elements a, b has a negative upper bound. A po-group is called a weak l-group if every pair of elements a, b has a maximal lower bound c in the sense that a, $b \ge c$ and d>c imply that d is not a lower bound of a, b. Evidently every weak l-group is directed and every l-group is a weak l-group.

Theorem. A weak l-group G is simply ordered if it is positively related.

Proof. Let a, b > 0 and c a maximal lower bound of a, b. Then $a - c \ge 0$, $b - c \ge 0$. We assert that either a - c = 0 or b - c = 0. For a - c, b - c > 0 implies the existence of an element d > 0 such that a - c, $b - c \ge d$, i.e. $a, b \ge d + c > c$, which contradicts the definition of c. Therefore we have either a - c = 0, whence $b \ge a$ or b - c = 0, whence $a \ge b$. Therefore every two positive elements of c are comparable, and, since c is directed, it is simply ordered. This proves the theorem.

Corollary 1. An l-group is simply ordered if it is positively related.

Corollary 2. An l-group is simply ordered if a, b>0 implies $a \cap b \neq 0$.

Corollary 3. An l-group is simply ordered if $a \cap b = 0$ implies a = 0 or b = 0; that is, if every positive element is a weak unit.

Corollary 4. An l-group is simply ordered if a, b>0 implies $a+b>a\cup b$.

Proof. This follows from the well-known equality $a \cup b = a - (a \cap b) + b$.

Corollary 5. An l-group is simply ordered if it has a positive element e>0 such that for each a>0 there exists some integer n such that $na \ge e$.

Proof. For each a, b>0, let $na, mb \ge e$. Evidently $na \cap mb \ge e>0$, which implies that $a \cap b>0$, since it is well known that $a \cap b=0$ implies $pa \cap qb=0$ for all p, q=1, 2, ...

Corollary 6. Every strongly Archimedean l-group is simply ordered.

(By strongly Archimedean we mean that for every two elements a, b>0 there exists some integer n such that $na \ge b$.)

To end this note we give an example to show that there exists a positively

related po-group which is not simply ordered. Let $G = \{(a, b, c) \mid a, b, c \text{ integers}\}$, then G forms a group under component-wise addition. Define a partial order in G by writing $(a, b, c) \ge (0, 0, 0)$ if and only if either a > 0, $b \ge 0$ or $a \ge 0$, b > 0 or a = 0, b = 0, $c \ge 0$. It is then easily verified that G is a positively related po-group which is not simply ordered.

REFERENCE

(1) G. Birkhoff, Lattice Theory, Revised edn. (New York, 1960).

DEPARTMENT OF MATHEMATICS
THE QUEEN'S UNIVERSITY
BELFAST