A NOTE ON L-GROUPS

by H. H. TEH

The subject of this note is the study of conditions under which an l-group is simply ordered. We start with two definitions: A po-group is called positively related if every pair of elements $a, b>0$ has a lower bound $c>0$. Evidently a po-group is positively related if and only if it is negatively related in the sense that every pair of negative elements a, b has a negative upper bound. A po-group is called a weak l-group if every pair of elements a, b has a maximal lower bound c in the sense that $a, b \geqq c$ and $d>c$ imply that d is not a lower bound of a, b. Evidently every weak l-group is directed and every l-group is a weak l-group.

Theorem. A weak l-group G is simply ordered if it is positively related.
Proof. Let $a, b>0$ and c a maximal lower bound of a, b. Then $a-c \geqq 0$, $b-c \geqq 0$. We assert that either $a-c=0$ or $b-c=0$. For $a-c, b-c>0$ implies the existence of an element $d>0$ such that $a-c, b-c \geqq d$, i.e. $a, b \geqq d+c>c$, which contradicts the definition of c. Therefore we have either $a-c=0$, whence $b \geqq a$ or $b-c=0$, whence $a \geqq b$. Therefore every two positive elements of G are comparable, and, since G is directed, it is simply ordered. This proves the theorem.

Corollary 1. An l-group is simply ordered if it is positively related.
Corollary 2. An l-group is simply ordered if $a, b>0$ implies $a \cap b \neq 0$.
Corollary 3. An l-group is simply ordered if $a \cap b=0$ implies $a=0$ or $b=0$; that is, if every positive element is a weak unit.

Corollary 4. An l-group is simply ordered if $a, b>0$ implies $a+b>a \cup b$.
Proof. This follows from the well-known equality $a \cup b=a-(a \cap b)+b$.
Corollary 5. An l-group is simply ordered if it has a positive element $e>0$ such that for each $a>0$ there exists some integer n such that n $a \geqq e$.

Proof. For each $a, b>0$, let $n a, m b \geqq e$. Evidently $n a \cap m b \geqq e>0$, which implies that $a \cap b>0$, since it is well known that $a \cap b=0$ implies panqb=0 for all $p, q=1,2, \ldots$.

Corollary 6. Every strongly Archimedean l-group is simply ordered.
(By strongly Archimedean we mean that for every two elements $a, b>0$ there exists some integer n such that $n a \geqq b$.)

To end this note we give an example to show that there exists a positively
related po-group which is not simply ordered. Let $G=\{(a, b, c) \mid a, b, c$ integers\}, then G forms a group under component-wise addition. Define a partial order in G by writing $(a, b, c) \geqq(0,0,0)$ if and only if either $a>0, b \geqq 0$ or $a \geqq 0, b>0$ or $a=0, b=0, c \geqq 0$. It is then easily verified that G is a positively related po-group which is not simply ordered.

REFERENCE

(1) G. Birkhoff, Lattice Theory, Revised edn. (New York, 1960).

Department of Mathematics

The Queen's University
Belfast

