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Abstract

This paper is concerned with the bottom-up hierarchical system and public debate model
proposed by Galam (2008), as well as a spatial version of the public debate model. In
all three models, there is a population of individuals who are characterized by one of two
competing opinions, say opinion −1 and opinion +1. This population is further divided
into groups of common size s. In the bottom-up hierarchical system, each group elects
a representative candidate, whereas in the other two models, all the members of each
group discuss at random times until they reach a consensus. At each election/discussion,
the winning opinion is chosen according to Galam’s majority rule: the opinion with the
majority of representatives wins when there is a strict majority, while one opinion, say
opinion −1, is chosen by default in the case of a tie. For the public debate models we also
consider the following natural updating rule that we call proportional rule: the winning
opinion is chosen at random with a probability equal to the fraction of its supporters in
the group. The three models differ in term of their population structure: in the bottom-
up hierarchical system, individuals are located on a finite regular tree, in the nonspatial
public debate model, they are located on a complete graph, and in the spatial public
debate model, they are located on the d-dimensional regular lattice. For the bottom-up
hierarchical system and nonspatial public debate model, Galam studied the probability
that a given opinion wins under the majority rule and, assuming that individuals’opinions
are initially independent, making the initial number of supporters of a given opinion a
binomial random variable. The first objective of this paper is to revisit Galam’s result,
assuming that the initial number of individuals in favor of a given opinion is a fixed
deterministic number. Our analysis reveals phase transitions that are sharper under our
assumption than under Galam’s assumption, particularly with small population size. The
second objective is to determine whether both opinions can coexist at equilibrium for
the spatial public debate model under the proportional rule, which depends on the spatial
dimension.
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1. Introduction

Galam’s bottom-up hierarchical system and public debate model [3] are used to understand
voting behaviors of two competing opinions in democratic societies. In his models, Galam
assumes that initially individuals in the population are independently in favor of one opinion with
a fixed probability, making the initial number of that type of opinion a binomial random variable.
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Galam’s bottom-up hierarchical system 669

Figure 1: Schematic illustration of the bottom-up hierarchical system with s = 3 and N = 3. Black dots
represent individuals supporting opinion +1 and white dots individuals supporting opinion −1.

This analysis revisits Galam’s models by assuming that the initial number of individuals in favor
of an opinion is a fixed deterministic number, which is more realistic when analyzing small
populations. In this paper we are also concerned with a spatial version of Galam’s public debate
model introduced in [6]. Before stating our results, we start with a detailed description of these
three models.

Bottom-up hierarchical system. The bottom-up hierarchical system [3] is a stochastic process
that depends on two parameters: the group size s and the number of voting steps N , which are
both positive integers. The structure of this model, which is shown in Figure 1, begins with a
population of sN individuals in favor of either opinion +1 or opinion −1 on the bottom level.
This population is further divided into groups of size s, and local majority rules determine a
representative candidate of each group who then ascends to another group at the next lowest
level. This process continues until a single winner at level 0 is elected. When the group size s

is odd, majority rule is well defined, whereas when the group size s is even, a bias is introduced
favoring a predetermined type, say opinion −1, if there is a tie. That is, the representative
candidates are determined at each step according to the majority rule whenever there is a strict
majority but is chosen to be the one in favor of opinion −1 in case of a tie. This assumption is
justified by Galam [3], based on the principle of social inertia. More formally, one can think
of the model as a rooted regular tree with degree s and N levels plus the root. Denote by

Xn(i) for n = 0, 1, . . . , N, i = 1, 2, . . . , sn

the opinion of the ith node/individual at level n. Then the opinion of each node is determined
from the configuration of opinions XN at the bottom level and the recursive rule

Xn(i) := sign

( s∑
j=1

Xn+1(s(i − 1) + j) − 1

2

)
for all i = 1, 2, . . . , sn.

Note in particular that this recursive rule is deterministic, making the process stochastic only
through its configuration at the bottom level. Galam [3] assumes that nodes at the bottom level
are independently in favor of a given opinion with a fixed probability. In contrast, we will
assume that the configuration at the bottom level is a random permutation with a fixed number
of nodes in favor of a given opinion.
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670 N. LANCHIER AND N. TAYLOR

Figure 2: One time step in the nonspatial public debate model with s = 4 and N = 25. Black dots
represent individuals supporting opinion +1 and white dots individuals supporting opinion −1.

Nonspatial public debate model. The second model under consideration in this paper is
Galam’s public debate model that examines the dynamics of opinion shifts. This process again
depends on the same two parameters but now evolves in time. There is a population of N

individuals each with either opinion +1 or opinion −1. At each time step, a random group
of size s, called the discussion group, is chosen from the population, which results in all the
individuals in the group adopting the same opinion. The updating rule considered in [3] is again
the majority rule: if there are opposing opinions in the discussion group, then the opinion with
the majority of supporters dominates the other opinion causing the individuals who initially
supported the minority opinion to change his/her opinion to the majority opinion. As previously,
when the group size s is even, ties may occur, in which case a bias is introduced in favor of
opinion −1; see Figure 2 for a schematic representation of this process. In this paper we will
also consider another natural updating rule that we will call proportional rule, which assumes
that all the individuals in the group adopt opinion ±1 with a probability equal to the fraction
of supporters of this opinion in the group before discussion. To define these processes more
formally, we now let

Xn(i) for n ∈ N, i = 1, 2, . . . , N

be the opinion of individual i at time n. In both processes, a set of s individuals, say Bs , is
chosen uniformly from the population at each time step. Under the majority rule, we set

Xn(i) := sign

(∑
j∈Bs

Xn−1(j) − 1

2

)
for all i ∈ Bs,

while under the proportional rule, we set

Xn(i) :=
{

+1 for all i ∈ Bs with probability s−1 ∑
j∈Bs

1{Xn(j)=+1},
−1 for all i ∈ Bs with probability s−1 ∑

j∈Bs
1{Xn(j)=−1} .

In both processes, individuals outside Bs are not affected by the discussion and the evolution
rule is iterated until everyone in the population has the same opinion. We will see later that the
process that keeps track of the number of individuals with opinion +1 rather than the actual
configuration is itself a discrete-time Markov chain. As for the bottom-up hierarchical system,
we will assume that the configuration at time 0 has a fixed number of individuals in favor of
a given opinion, whereas Galam studied the (majority rule) public debate model under the
assumption that initially individuals are independently in favor of a given opinion with a fixed
probability.

Spatial public debate model. The third model studied in this paper is a spatial version of
the public debate model introduced in [6]. The spatial structure is represented by the infinite
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d-dimensional regular lattice. Each site of the lattice is occupied by one individual who is again
characterized by their opinion: either opinion +1 or opinion −1. The population being located
on a geometrical structure, space can be included by assuming that only individuals in the same
neighborhood can interact. More precisely, we assume that the set of discussion groups is

x + Bs for x ∈ Z
d ,

where Bs := {0, 1, . . . , s−1}d . Since the number of discussion groups is infinite and countable,
the statement ‘choosing a group uniformly at random’ is no longer well defined. Therefore,
we define the process in continuous time using the framework of interacting particle systems
assuming that discussion groups are updated independently at rate one, i.e. at the arrival times of
independent Poisson processes with intensity 1. The analysis in [6] is concerned with the spatial
model under the majority rule, whereas we focus on the proportional rule: all the individuals
in the same discussion group adopt the same opinion with a probability equal to the fraction of
supporters of this opinion in the group before discussion. Formally, the state of the process at
time t is now a function

ηt : Z
d −→ {−1, +1}

with ηt (x) denoting the opinion at time t of the individual located at site x, and the dynamics
of the process is described by the Markov generator

Lf (η) =
∑
x

∑
z∈Bs

s−d 1{η(x+z)=+1}[f (τ+
x η) − f (η)]

+
∑
x

∑
z∈Bs

s−d 1{η(x+z)=−1}[f (τ−
x η) − f (η)],

where τ+
x and τ−

x are the operators defined on the set of configurations by

(τ+
x η)(z) :=

{
+1 for z ∈ x + Bx,

η(z) for z /∈ x + Bx,
(τ−

x η)(z) :=
{

−1 for z ∈ x + Bx,

η(z) for z /∈ x + Bx.

The first part of the generator indicates that, for each x, all the individuals in x + Bs switch
simultaneously to opinion +1 at a rate equal to the fraction of individuals with opinion +1
in the group, while the second part provides similar transition rates for opinion −1. Basic
properties of Poisson processes imply that each group is indeed updated at rate 1 according to
the proportional rule. Note that the process no longer depends on N since the population size
is infinite but we will see that its behavior strongly depends on the spatial dimension d.

2. Main results

For the bottom-up hierarchical system and the nonspatial public debate model, the main
problem is to determine the probability that a given opinion, say opinion +1, wins as a function
of the density or number of individuals holding this opinion in the initial configuration. For the
spatial public debate model, since the population is infinite, the time to reach a configuration
in which all the individuals share the same opinion is almost surely infinite when starting from
a configuration with infinitely many individuals of each type. In this case, the main problem is
to determine whether the system clusters or opinions can coexist at equilibrium.

Galam’s results. Galam studied the bottom-up hierarchical system and the nonspatial public
debate model under the majority rule. As previously explained, the assumption in [3] about the
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initial configuration of each model is that individuals are independently in favor of opinion +1
with some fixed probability. Under this assumption, the analysis is simplified because the
probability of an individual being in favor of a given opinion at one level for the bottom-up
hierarchical system or at one time step for the public debate model can be computed explicitly
in a simple manner from its counterpart at the previous level or time step. More precisely,
focusing on the bottom-up hierarchical system for concreteness and letting pn be the common
probability of any given individual being in favor of opinion +1 at level n, we have the recursive
formula

pn = Qs(pn+1), where Qs(X) :=
s∑

j=s′

(
s

j

)
Xj(1 − X)s−j , s′ :=

⌈
s + 1

2

⌉
.

The probability that a given opinion wins the election can then be computed explicitly. For
both models, in the limit as the population size tends to ∞, the problem reduces to finding the
fixed points of the polynomial Qs . When s = 3,

Q3(X) − X = 3X2(1 − X) + X3 − X = −X(X − 1)(2X − 1)

and therefore one half is a fixed point. It follows that, with probability close to 1 when the
population size is large, the winning opinion is the one that has initially the largest frequency
of representatives, a result that easily extends to all odd sizes. The case of even sizes is more
intriguing: when the group size s = 4, we have

Q4(X) − X = 4X3(1 − X) + X4 − X = −3X(X − 1)(X − c−)(X − c+), (1)

where the roots c− and c+ are given by

c− := ( 1
6

)
(1 − √

13) ≈ −0.434, c+ := ( 1
6

)
(1 + √

13) ≈ 0.768.

This implies that, when the population is large, the probability that opinion +1 wins is near 0
if the initial frequency of its representatives is below c+ ≈ 0.768. It can be proved that the
same result holds for the nonspatial public debate model when the population size is large.
Because opinions are initially independent and of a given type with a fixed probability, the
initial number of individuals with opinion +1 is a binomial random variable, and the main
reason behind the simplicity of Galam’s results is that the dynamics of his models preserves
this property: at any level/time, the number of individuals with opinion +1 is again binomial.
The first objective of this paper is to revisit Galam’s results under the assumption that the initial
number of individuals with opinion +1 is a fixed deterministic number rather than binomially
distributed. This assumption is more realistic for small populations but the analysis is also more
challenging because the numbers of individuals with a given opinion in nonoverlapping groups
are no longer independent.

Bottom-up hierarchical system. For the bottom-up hierarchical system, we start with a
fixed deterministic number x of individuals holding opinion +1 at the bottom level. The main
objective is then to determine the winning probability

px(N, s) := probability that opinion +1 wins

:= P(X0(1) = +1 | card {i : XN(i) = +1} = x), (2)

where s is the group size and N is the number of voting steps. Assuming that individuals holding
the same opinion are identical, there are sN who choose x possible configurations at the bottom
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level of the system. To compute the probability (2), the most natural approach is to compute
the number of such configurations that result in the election of candidate +1. This problem,
however, is quite challenging so we use instead a different strategy. The main idea is to count
configurations that are compatible with the victory of +1 going backwards in the hierarchy: we
count the number of configurations at level 1 that result in the election of candidate +1, then
the number of configurations at level 2 that result in any of these configurations at level 1, and
so on. To compute the number of such configurations, for each size-level pair (s, n), we set

s′ := ⌈( 1
2

)
(s + 1)

⌉
, Is,n := {0, 1, . . . , (s′ − 1)(sn − x) + (s − s′)x}. (3)

Then, for all y ∈ Is,n, we define

cn(s, x, s′x + y) =
∑

z0,...,zs

(
sn

x

)−1(
sn

z0, z1, . . . , zs

) s∏
j=0

(
s

j

)zj

, (4)

where the sum is over all z0, z1, . . . , zs such that

z0 + z1 + · · · + zs′−1 = sn − x, zs′ + zs′+1 + · · · + zs = x,

and such that ∑
j=1,2,...,s′−1

j (zj + zs′+j ) = y if s is odd,

∑
j=1,2,...,s′−2

j (zj + zs′+j ) + (s′ − 1)zs′−1 = y if s is even.

We will prove that the number of configurations with s′x + y individuals holding opinion +1
at level n + 1 that result in a given configuration with x individuals holding opinion +1 at
level n is exactly given by (4). The fact that the evolution rules are deterministic also implies
that different configurations at a given level cannot result from the same configuration at a
lower level. In particular, the number of configurations at the bottom level that result in the
victory of opinion +1 can be deduced from a simple summation as in the proof of Chapman–
Kolmogorov’s equations in the theory of Markov chains. More precisely, we have the following
theorem.

Theorem 1. (Bottom-up hierarchical system.) For all s ≥ 3, we have

px(N, s) =
(

sN

x

)−1 s∑
x1=0

s2∑
x2=0

· · ·
sN−1∑

xN−1=0

N∏
n=1

cn(s, xn−1, xn), (5)

where x0 = 1 and xN = x.

The expression for the probabilities (5) cannot be simplified but for any fixed parameter it
can be computed explicitly. In the case of groups of size 3, (4) reduces to

cn(3, x, 2x + y) =
∑

i+j=y

(
x

i

)(
3n − x

j

)
3x−i+j for y ≤ 3n, (6)

while in the case of groups of size 4, this reduces to

cn(4, x, 3x + y) =
∑

i+2j+k=y

(
x

i

)(
4n − x

j

)(
4n − x − j

k

)
4x−i+k6j for y ≤ 22n+1 − x.

https://doi.org/10.1239/aap/1444308877 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1444308877


674 N. LANCHIER AND N. TAYLOR

In Figure 3, which shows the probabilities (5) for different values of the number of levels
and group size along with the corresponding probabilities under Galam’s assumption, it is
revealed that the phase transition is sharper when starting from a fixed number rather than a
binomially distributed number of supporters. This property is expected because our model
is ‘more deterministic’. To comment on this aspect, we observe that the minimal initial
configurations needed to win an election are the ones such that each group at each level has
either no more than just a majority of supporters or no supporters at all, from which it follows
that

px(N, s) = 0 whenever x <
⌈( 1

2

)
(s + 1)

⌉N
.

Figure 3: Probability that opinion +1 wins as a function of the initial density/number of its supporters
at the bottom level of the bottom-up hierarchical system for different values of the number of levels and
group size. The continuous black curve is the graph of the function p �→ QN

s (p) corresponding to the
winning probability when assuming that individuals at the bottom level hold independently opinion +1
with probability p. The black dots are the probabilities computed from Theorem 1 when starting from a

fixed number of individuals holding opinion +1.
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This property can also be deduced from our equation for the winning probabilities but is
somewhat hidden. In contrast, starting from a binomial distribution, even when the probability
of an individual being in favor of +1 at the bottom of the hierarchy is low, there is still a positive
probability that the initial number of supporters of that opinion deviates enough from its average
to make +1 the winner. This explains why the winning probability needs more supporters to
take off and, due to the symmetry of the model, why the phase transition is sharper in our
context, especially for small population sizes where deviation from the mean is more likely.

Nonspatial public debate model. For the nonspatial public debate model, our main objective
is again to determine the winning probability when starting from a fixed number of individuals
holding opinion +1. Since at each time step all the individuals are equally likely to be part of
the chosen discussion group, the actual label on each individual is unimportant. In particular,
we simply define Xn as the number of individuals with opinion +1 at time n rather than the
vector of opinions. With this new definition, the winning probability can be written as

px(N, s) := probability that opinion +1 wins

:= P(Xn = N for some n > 0 | X0 = x),

where s is the group size and N is the total number of individuals. We start with the model
under the majority rule. In this case, we have the following result, where we use the convention
that an empty sum is equal to 0 and that (n choose k) = 0 whenever n < k.

Theorem 2. (Nonspatial public debate model.) Under the majority rule,

px(N, 3) = 2−(N−3)
x−2∑
z=0

(
N − 3

z

)
for x = 0, 1, . . . , N.

In addition, there exists a0 > 0 such that, for all ε > 0,

px(N, 4) ≤ exp(−a0εN) for all large N , x < N(c+ − ε),

px(N, 4) ≥ 1 − exp(−a0εN) for all large N , x > N(c+ + ε).

Note that the first part of the theorem implies that the large deviation estimates also hold
when the group size is 3. Indeed, letting Z = binomial(N − 3, 1

2 ), we have

px(N, 3) =
x−2∑
z=0

(
N − 3

z

)(
1

2

)z(1

2

)N−3−z

=
x−2∑
z=0

P(Z = z) = P(Z ≤ x − 2).

In particular, it follows from the Chernoff bound that, for all x < N( 1
2 − ε),

px(N, 3) = P(Z ≤ x − 2) ≤ P
(
Z ≤ (N − 3)

( 1
2 − ε

)) ≤ exp(−2ε2(N − 3)).

Note also that this probability can be written as

px(N, 3) = card {A : A ⊂ {1, 2, . . . , N − 3} and card (A) ≤ x − 2}
card {A : A ⊂ {1, 2, . . . , N − 3}} .

We do not know why the winning probability has this neat combinatorial interpretation but
this is what follows from our calculation, which is based on a first-step analysis, a standard
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Figure 4: Probability that opinion +1 wins as a function of the initial number of its supporters in the
nonspatial public debate model. The probabilities for s = 3 (left) are computed from the first part of
Theorem 2, whereas the probabilities for s = 4 (right) are computed recursively from a first-step analysis.

technique in the theory of Markov chains. This technique can also be used to determine the
winning probabilities for larger s recursively, which is how the right-hand side of Figure 4
is obtained. However, for s > 3, the algebra becomes too complicated to obtain an explicit
solution. Based on the first part of the theorem, a natural candidate for the winning probability
when s = 5 would be

card {A : A ⊂ {1, 2, . . . , N − 5} and card (A) ≤ x − 3}
card {A : A ⊂ {1, 2, . . . , N − 5}}

but we have checked that this expression is not a solution of the order 5 recurrence relation
derived from the first-step analysis. Interestingly, from the second part of the theorem, we
see that the critical threshold c+ ≈ 0.768 obtained under Galam’s assumption appears again
under our assumption on the initial configuration, though it comes from a different calculation.
This result follows in part from an application of the optimal stopping theorem. Turning to
the nonspatial public debate model under the proportional rule, first-step analysis is again
problematic when the group size exceeds 3. Nevertheless, the winning probabilities can be
computed explicitly.

Theorem 3. (Nonspatial public debate model.) Under the proportional rule,

px(N, s) = x

N
for all s > 1.

In words, under the proportional rule, the probability that opinion +1 wins is simply equal
to the initial fraction of individuals holding this opinion. The proof relies on an application
of the optimal stopping theorem after observing that, under the proportional rule, the expected
number of individuals in favor of a given opinion is invariant under the dynamics, thus showing
that the process is a martingale. Since this property is not sensitive to the group size, we point
out that our theorem holds in fact for more general models in which, for instance, the group
size is chosen at each time step according to some distribution with values in {2, 3, . . . , N}.
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Spatial public debate model. Contrary to the nonspatial public debate model, for the spatial
version starting with a finite number of individuals with opinion +1, the number of such
individuals does not evolve according to a Markov chain because the actual locations of these
individuals matters. However, under the proportional rule, the auxiliary process that keeps track
of the number of individuals with opinion +1 is a martingale with respect to the natural filtration
of the spatial model. Since it is also integer valued and the population is infinite, it follows from
the martingale convergence theorem that opinion +1 dies out with probability 1. Therefore,
to avoid trivialities, we return to Galam’s assumption for the spatial model: we assume that
individuals independently support opinion +1 with probability θ ∈ (0, 1). Since the population
is infinite, both opinions are present at any time, and the main objective is now to determine
whether they can coexist at equilibrium. The answer depends on the spatial dimension d, as
for the voter model [1], [5].

Theorem 4. (Spatial public debate model.) Under the proportional rule:

• the system clusters in d ≤ 2, i.e.

lim
t→∞ P(ηt (x) 
= ηt (y)) = 0 for all x, y ∈ Z

d;

• both opinions coexist in d ≥ 3, i.e. ηt converges in distribution to an invariant measure
in which there is a positive density of both opinions.

The proof relies on a certain duality relationship between the spatial model and coalescing
random walks, just as for the voter model, though this relationship is somewhat hidden in the
case of the public debate model. Before proving our theorems, we point out that the spatial
public debate model under the majority rule has also been recently studied in [6]. There it
is proved that the one-dimensional process clusters when the group size s is odd, whereas
opinion −1 invades the lattice and outcompetes the other opinion when the group size is even.
It is also proved, based on a rescaling argument, that opinion −1 wins in two dimensions when
s2 = 2 × 2 = 4.

3. Proof of Theorem 1 (bottom-up hierarchical system)

The main objective is to count the number of configurations at level N with x individuals
with opinion +1 that will deterministically result in the election of type +1 presidents after N

consecutive voting steps. Even though the evolution rules of the voting system are deterministic
(recall that the model is only stochastic through its random initial configuration), our approach
is somewhat reminiscent of the theory of Markov chains. The idea is to reverse time by thinking
of the type of the president at level 0 as the initial state, and more generally the configuration
at level n as the state at time n. In the theory of discrete-time Markov chains, the distribution
at time n, given the initial state, can be computed by looking at the nth power of the transition
matrix, which keeps track of the probabilities of all possible sample paths that connect two
particular states in n time steps. To this extend, the right-hand side of (5) can be seen as the
analog of the nth power of a transition matrix, or Chapman–Kolmogorov’s equation, with,
however, two exceptions. First, (5) is more complicated because the number of individuals per
level is not constant and therefore the evolution rules are not homogeneous in time. Second,
and more importantly, the transition probability from x → z at time n is replaced by an integer,
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namely
cn(s, x, z) := the number of configurations with z individuals holding

opinion +1 at level n + 1 that results in a given configuration

with x individuals holding opinion +1 at level n. (7)

By thinking of the bottom-up hierarchical system going backwards in time, the question
becomes: how many configurations with x individuals of type +1 at time/level N result from the
initial configuration +1 at time/level 0, which corresponds to the victory of type +1 presidents.
To make the argument rigorous and to prove (5), we first define

card X := card {i ∈ {1, 2, . . . , sn} : X(i) = 1} for all X ∈ �sn := {−1, +1}sn

.

Recall that if Z ∈ �sn+1 then the configuration X at level n is given by

X(i) := sign

( s∑
j=1

Z(s(i − 1) + j) − 1

2

)
for all i = 1, 2, . . . , sn,

which we write as Z → X. We also say that configuration Z induces configuration X. More
generally, we say that configuration Z ∈ �sm induces configuration X ∈ �sn if for all i ∈
{n, n + 1, . . . , m − 1} there exists Xi ∈ �si such that Xi+1 → Xi , where Xm = Z and
Xn = X, which we again write as Z → X. Finally, we let

cn(s, X, z) := card {Z ∈ �sn+1 : Z → Xandcard Z = z} for all X ∈ �sn

denote the number of configurations with z individuals of type +1 at level n + 1 that induce
configuration X at level n. The first key is that cn(s, X, z) depends only on the number of
type +1 individuals in configuration X, which is proved in the following lemma.

Lemma 1. Let X, Y ∈ �sn . Then,

card X = card Y �⇒ cn(s, X, z) = cn(s, Y, z).

Proof. Since card X = card Y , there exists σ ∈ Ssn such that

Y (i) = X(σ(i)) for i = 1, 2, . . . , sn,

where Ssn denotes the permutation group. Using the permutation σ , we then construct an
endomorphism on the set of configurations at level n + 1 by setting

(φ(Z))(s(i − 1) + j) := Z(s(σ (i) − 1) + j) for i = 1, 2, . . . , sn, j = 1, 2, . . . , s.

In words, partitioning configurations into sn consecutive blocks of size s, we set the ith block
of φ(Z) := the σ(i)th block of Z for all i = 1, 2, . . . , sn. Now, we observe that

Z −→ X ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X(i) = sign

( s∑
j=1

Z(s(i − 1) + j) − 1

2

)
for all i,

X(σ(i)) = sign

( s∑
j=1

Z(s(σ (i) − 1) + j) − 1

2

)
for all i,

Y (i) = sign

( s∑
j=1

(φ(Z))(s(i − 1) + j) − 1

2

)
for all i,

φ(Z) −→ Y.
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Since in addition card Z = card φ(Z), which directly follows from the fact that φ(Z) is obtained
from a permutation of the blocks of size s in Z, we deduce that

φ({Z : Z → X and card Z = z}) ⊂ {Z : Z → Y and card Z = z}.
That is, for all Z in the first set, φ(Z) is a configuration in the second set. To conclude, we
observe that the function φ is an injection from the first set to the second set. We have

Z 
= Z′ �⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Z(s(i − 1) + j) 
= Z′(s(i − 1) + j) for some i, j,

Z(s(σ (i) − 1) + j) 
= Z′(s(σ (i) − 1) + j) for some i, j,

(φ(Z))(s(i − 1) + j) 
= (φ(Z′))(s(i − 1) + j) for some i, j,

φ(Z) 
= φ(Z′).

The injectivity of φ implies that

cn(s, X, z) = card {Z ∈ �sn+1 : Z → X and card Z = z}
≤ card {Z ∈ �sn+1 : Z → Y and card Z = z}
= cn(s, Y, Z).

In particular, the lemma follows from the obvious symmetry of the problem.

In view of Lemma 1, for all x ∈ {0, 1, . . . , sn}, we can write

cn(s, X, z) := cn(s, x, z) for all X ∈ �sn with card X = x.

The interpretation of cn(s, x, z) is given in (7). The next step in establishing (5) is given by the
following lemma, which follows from the deterministic nature of the evolution rules.

Lemma 2. Let X, Y ∈ �sn . Then

X 
= Y �⇒ {Z ∈ �sn+1 : Z → X} ∩ {Z ∈ �sn+1 : Z → Y } = ∅.

Proof. To begin with, observe that the assumption implies that

X(i) 
= Y (i) for some i = 1, 2, . . . , sn.

In particular, if Z → X and Z′ → Y , then, for this specific i, we have

X(i) = sign

( s∑
j=1

Z(s(i − 1) + j) − 1

2

)


= sign

( s∑
j=1

Z′(s(i − 1) + j) − 1

2

)

= Y (i),

which in turn implies that

Z(s(i − 1) + j) 
= Z′(s(i − 1) + j) for some j = 1, 2, . . . , s.

In conclusion, Z 
= Z′. This completes the proof.
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Recalling (7) and using the fact that there is only one configuration at level 0 in which
type +1 is president, as well as the previous lemma, we deduce that the product

c1(s, x0, x1)c2(s, x1, x2) · · · cN−1(s, xN−2, xN−1)cN(s, xN−1, xN)

is the number of configurations with xN type +1 individuals at level N that consecutively induce
a configuration with xn type +1 individuals at level n. The number of configurations with x

type +1 individuals at level N that result in the election of type +1 is then obtained by setting
x0 = 1 and xN = x and by summing over all the possible values of the other xn. Therefore,

card {X ∈ �sN : X → (1) and card X = x} =
s∑

x1=0

s2∑
x2=0

· · ·
sN−1∑

xN−1=0

N∏
n=1

cn(s, xn−1, xn).

As previously explained, this equation can be seen as the analog of Chapman–Kolmogorov’s
equation for time-heterogeneous Markov chains, though it represents a number of configurations
rather than transition probabilities. Finally, since there are sN choose x configurations with
exactly x type +1 individuals at level N , we deduce that the conditional probability that type +1
is elected, given that there are x type +1 individuals at the bottom of the hierarchy, is

px(N, s) =
(

sN

x

)−1 s∑
x1=0

s2∑
x2=0

· · ·
sN−1∑

xN−1=0

N∏
n=1

cn(s, xn−1, xn).

To complete the proof of the theorem, the last step is to compute cn(s, x, z). We start by proving
(6), the special case when s = 3.

Lemma 3. For all y ∈ {0, 1, . . . , 3n}, we have

cn(3, x, 2x + y) =
∑

i+j=y

(
x

i

)(
3n − x

j

)
3x−i+j .

Proof. Fix X ∈ �sn with card X = x. Assume that Z → X and let zj denote the number
of blocks of size 3 with exactly j type +1 individuals, i.e.

zj := card

{
i :

3∑
k=1

Z(3(i − 1) + k) = j − (3 − j)

}
for all j = 0, 1, 2, 3.

The fact that card X = x imposes

z0 + z1 = 3n − x, z2 + z3 = x (8)

implies that, for configuration Z,

• there are x choose z3 permutations of the blocks with 2 or 3 type +1 individuals,

• there are 3n − x choose z1 permutations of the blocks with 0 or 1 type +1 individuals,

• there are 3 choose j possible blocks of size 3 with j type +1 individuals.
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In particular, the number of Z → X with zj blocks with j type +1 individuals is

(
x

z3

)(
3n − x

z1

) 3∏
j=0

(
3

j

)zj

=
(

x

z3

)(
3n − x

z1

)
3z1+z2 . (9)

Using again (8) and the definition of zj also implies that

card Z = z1 + 2z2 + 3z3

= z1 + 2(x − z3) + 3z3

= 2x + z1 + z3

∈ {2x, 2x + 1, . . . , 2x + 3n},
which provides the range for y in the statement of the lemma and

y := (card Z) − 2x = z1 + z3.

From this, together with (9) and z1 + z2 = z1 + x − z3, we finally obtain

cn(3, x, 2x + y) =
∑

z1+z3=y

(
x

z3

)(
3n − x

z1

)
3z1+z2 =

∑
z1+z3=y

(
x

z3

)(
3n − x

z1

)
3x−z3+z1 .

This completes the proof.

Following the same approach, we now prove the general case (4).

Lemma 4. For all (s, n) and all y ∈ Is,n as defined in (3), we have

cn(s, x, s′x + y) =
∑

z0,...,zs

(
sn

x

)−1(
sn

z0, z1, . . . , zs

) s∏
j=0

(
s

j

)zj

,

where the sum is over all z0, z1, . . . , zs such that

z0 + z1 + · · · + zs′−1 = sn − x, zs′ + zs′+1 + · · · + zs = x,

and such that ∑
j=1,2,...,s′−1

j (zj + zs′+j ) = y if s is odd,

∑
j=1,2,...,s′−2

j (zj + zs′+j ) + (s′ − 1) zs′−1 = y if s is even.

Proof. Again, we fix X ∈ �sn with card X = x, let Z → X and

zj := card

{
i :

s∑
k=1

Z(s(i − 1) + k) = j − (s − j)

}
for all j = 0, 1, . . . , s.

Card X = x now imposes

z0 + z1 + · · · + zs′−1 = sn − x, zs′ + zs′+1 + · · · + zs = x. (10)

https://doi.org/10.1239/aap/1444308877 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1444308877


682 N. LANCHIER AND N. TAYLOR

This and the definition of zj imply that

card Z = (z1 + 2z2 + · · · + (s′ − 1)zs′−1) + (s′zs′ + · · · + szs)

= (z1 + 2z2 + · · · + (s′ − 1)zs′−1) + s′(x − zs′+1 − · · · − zs)

+ ((s′ + 1)zs′+1 + · · · + s zs)

= s′x + z1 + 2z2 + · · · + (s′ − 1)zs′−1 + zs′+1 + 2 zs′+2 + · · · + (s − s′)zs,

card Z ∈ s′x + {0, 1, . . . , (s′ − 1)(sn − x) + (s − s′)x},
which provides the range for y. Rearranging the terms, we obtain

y := (card Z) − s′x =

⎧⎪⎪⎨
⎪⎪⎩

∑
j=1,2,...,s′−1

j (zj + zs′+j ) if s is odd,

∑
j=1,2,...,s′−2

j (zj + zs′+j ) + (s′ − 1)zs′−1 if s is even.
(11)

Now, using again (10), the number of permutations of the blocks with at least s′ type +1
individuals is equal to (

x

zs′ , . . . , zs

)
:= x!

zs′ ! · · · zs !
and the number of permutations of the blocks with at most s′ − 1 type +1 individuals is equal
to (

sn − x

z0, . . . , zs′−1

)
:= (sn − x)!

z0! · · · zs′−1! .
Since there are s choose j possible blocks of size s with j type +1 individuals, the number of
configurations with zj blocks with j type +1 individuals that induce X is then(

x

zs′ , . . . , zs

)(
sn − x

z0, . . . , zs′−1

) s∏
j=0

(
s

j

)zj

=
(

sn

x

)−1(
sn

z0, z1, . . . , zs

) s∏
j=0

(
s

j

)zj

.

This implies that, for all suitable y,

cn(s, x, s′x + y) =
∑

z0,...,zs

(
sn

x

)−1(
sn

z0, z1, . . . , zs

) s∏
j=0

(
s

j

)zj

,

where the sum is over all z0, z1, . . . , zs such that (10) and (11) hold.

4. Proof of Theorems 2 and 3 (nonspatial public debate model)

This section is devoted to the proof of Theorems 2 and 3 which deal with the nonspatial
public debate model. There is no more hierarchical structure and the evolution rules are now
stochastic. At each time step, s distinct individuals are chosen uniformly at random to form a
discussion group, which results in all the individuals within the group reaching a consensus.
The new opinion is chosen according to either the majority rule or the proportional rule.

Majority rule and size 3. In this case, the process can be understood by simply using a
first-step analysis whose basic idea is to condition on all the possible outcomes of the first
update and then use the Markov property to find a relationship among the winning probabilities
for the process starting from different states. We point out that this approach is tractable only
when s = 3, due to a small number of possible outcomes at each update.

https://doi.org/10.1239/aap/1444308877 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1444308877


Galam’s bottom-up hierarchical system 683

Lemma 5. Under the majority rule, we have

px(N, 3) = 2−(N−3)
x−2∑
z=0

(
N − 3

z

)
for all x = 0, 1, . . . , N.

Proof. Note that the winning probability is obvious when x = 0, 1, N − 1, N , therefore we
focus only on the other cases. The first step is to exhibit a relationship among the probabilities
to be found by conditioning on all the possible outcomes of the first update. Recall that

px := px(N, 3) = P(Xn = N for some n | X0 = x)

and, for x = 2, 3, . . . , N − 2, let μx := q−1(x)/q1(x), where

qj (x) := P(Xn+1 = x + j | Xn = x) for j = −1, 1.

Conditioning on the possible values for X1 and using the Markov property, we obtain

px = P(Xn = N for some n | X1 = x − 1)P(X1 = x − 1 | X0 = x)

+ P(Xn = N for some n | X1 = x)P(X1 = x | X0 = x)

+ P(Xn = N for some n | X1 = x + 1)P(X1 = x + 1 | X0 = x)

= q−1(x)px−1 + (1 − q−1(x) − q1(x))px + q1(x)px+1.

In particular, q1(x)(px+1 − px) = q−1(x)(px − px−1), so from a simple induction, we obtain

px+1 − px = μx (px − px−1)

= μxμx−1(px−1 − px−2)

= · · ·
= μxμx−1 · · · μ2(p2 − p1)

= μx μx−1 · · · μ2p2.

Using again p1 = 0, it follows that

px =
∑

z=1,2,...,x−1

(pz+1 − pz) =
(

1 +
∑

z=2,3,...,x−1

μ2μ3 · · · μz

)
p2. (12)

Now, using pN−1 = 1, we obtain

pN−1 =
(

1 +
∑

z=2,3,...,N−2

μ2μ3 · · · μz

)
p2 = 1. (13)

Combining (12) and (13), we obtain

px =
(

1 +
∑

z=2,...,x−1

μ2μ3 · · · μz

)
p2

=
(

1 +
∑

z=2,...,x−1

μ2μ3 · · · μz

)(
1 +

∑
z=2,...,N−2

μ2μ3 · · · μz

)−1

. (14)
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To find an explicit expression for (14), the last step is to compute q−1(x) and q1(x). Observing
that these two probabilities are respectively the probability of selecting a group with one type +1
individual and the probability of selecting a group with two type +1 individuals, we obtain

q−1(x) =
(

N

3

)−1(
x

1

)(
N − x

2

)
, q1(x) =

(
N

3

)−1(
x

2

)(
N − x

1

)
.

From this, we have the following expression for the ratio:

μx := q−1(x)

q1(x)
= x(N − x)(N − x − 1)

x(x − 1)(N − x)
= N − x − 1

x − 1

for x = 2, 3, . . . , N − 2. For the product, we have the following expression:

μ2μ3 · · · μz = N − 3

1

N − 4

2
· · · N − z − 1

z − 1

= (N − 3)!
(z − 1)!(N − z − 2)!

=
(

N − 3

z − 1

)
(15)

for z = 2, 3, . . . , N − 2. Finally, combining (14) and (15), we obtain

px =
(

1 +
x−1∑
z=2

(
N − 3

z − 1

))(
1 +

N−2∑
z=2

(
N − 3

z − 1

))−1

=
(N−3∑

z=0

(
N − 3

z

))−1 x−2∑
z=0

(
N − 3

z

)

= 2−(N−3)
x−2∑
z=0

(
N − 3

z

)

for all x ∈ {2, . . . , N − 2}. This completes the proof.

Majority rule and size 4. Increasing the common size of the discussion groups, a first-step
analysis can again be used to find a recursive formula for the winning probabilities but the
algebra becomes too messy to deduce an explicit formula. Instead, we prove lower and upper
bounds for the winning probabilities using the optimal stopping theorem for supermartingales.
To describe more precisely our approach, consider the transition probabilities

qj (x) := P(Xn+1 − Xn = j | Xn = x) for j = −2, −1, 0, 1

as well as the new Markov chain (Zn) with transition probabilities

p(0, 0) = p(N, N) = 1, p(x, x + j) = qj (x) (q1(x) + q−1(x) + q−2(x))−1

for all x = 1, 2, . . . , N −1 and all j = −2, −1, 1. The process (Zn) can be seen as the random
sequence of states visited by the public debate model until fixation. In particular,

px(N, 4) := P(Xn = N for some n > 0) = P(Zn = N for some n > 0).
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The main idea of the proof is to first identify exponentials of the process (Zn) that are
supermartingales and then apply the optimal stopping theorem to these processes. We start by
proving that the drift of the Markov chain is either negative or positive, depending on whether
the number of individuals in favor of the +1 opinion is smaller or larger than c+ ≈ 0.768. In
particular, using a different calculation, we recover the critical threshold c+ obtained by Galam.

Lemma 6. For all ε > 0,

E(Zn+1 − Zn | Zn = x)

{
≤ −( 1

2

)
(
√

13 − 1)ε + O(N−1) for x < N(c+ − ε),

≥ +√
13ε + O(N−1) for x > N(c+ + ε).

Proof. Observing that q−2(x) is the probability that a randomly chosen group of size 4 has
two individuals in favor and two individuals against the +1 opinion, we obtain

q−2(x) =
(

N

4

)−1
x(x − 1)

2

(N − x)(N − x − 1)

2
= 6c2(1 − c)2 + O(N−1)

provided that x = round(cN). Similarly, we show that

q1(x) = 4c3(1 − c) + O(N−1), q−1(x) = 4c(1 − c)3 + O(N−1),

from which it follows that

q1(x) − q−1(x) − 2q−2(x) = 4c(1 − c)(3c2 − c − 1) + O(N−1),

q1(x) + q−1(x) + q−2(x) = 2c(1 − c)(c2 − c + 2) + O(N−1).

Taking the ratio of the previous two estimates, we have

E(Zn+1 − Zn | Zn = x) = 6(c − c−)(c − c+)(c2 − c + 2)−1 + O(N−1),

from which we deduce that

E(Zn+1 − Zn | Zn = x) ≤ 3(−c−)(−ε) + O(N−1)

= −( 1
2

)
(
√

13 − 1)ε + O(N−1) for x < N(c+ − ε),

E(Zn+1 − Zn | Zn = x) ≥ 3(c+ − c−)ε + O(N−1)

= √
13ε + O(N−1) for x > N(c+ + ε).

This completes the proof.

Lemma 7. There exists ā > 0 such that, for all ε > 0,

E(exp(+āZn+1) − exp(+āZn) | Zn = x) ≤ 0 for x < N(c+ − ε),

E(exp(−āZn+1) − exp(−āZn) | Zn = x) ≤ 0 for x > N(c+ + ε)

for all sufficiently large N .

Proof. To begin with, we define the functions

φx(a) := E(exp(aZn+1) − exp(aZn) | Zn = x).
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Differentiating then applying Lemma 6, we obtain

φ′
x(a) = E(Zn+1 exp(aZn+1) − Zn exp(aZn) | Zn = x),

φ′
x(0) = E(Zn+1 − Zn | Zn = x) ≤ −( 1

2

)
(
√

13 − 1)ε + O(N−1) < 0

for all x < (c+ − ε)N and large N . Since φx(0) = 0, there is a+ > 0 such that

φx(+a) ≤ 0 for all a ∈ (0, a+) and all x < N(c+ − ε).

Differentiating a �→ φx(−a) and using Lemma 6, we also have

φx(−a) ≤ 0 for all a ∈ (0, a−) and all x > N(c+ + ε)

for some a− > 0. In particular, for ā := min(a+, a−) > 0,

φx(+ā) ≤ 0 for all x < N(c+ − ε), φx(−ā) ≤ 0 for all x > N(c+ + ε),

which, recalling the definition of φx , is exactly the statement of the lemma.

With Lemma 7 in hand, we are now ready to prove the upper and lower bounds for the
winning probabilities using the optimal stopping theorem.

Lemma 8. Let a0 = ( 1
2 )ā. Then, for all ε > 0,

px(N, 4) ≤ exp(−a0εN) for all N large and x < N(c+ − ε).

Proof. First, we introduce the stopping times

τ0 := inf{n : Zn = 0}, τ− := inf{n : Zn > N(c+ − ε)}
as well as T− := min(τ0, τ−). Since the process exp(ā Zn) stopped at time T− is a super-
martingale according to the first assertion in Lemma 7, and the stopping time T− is almost
surely finite, the optimal stopping theorem implies that

E(exp(āZT−) | Z0 = x) ≤ E(exp(āZ0) | Z0 = x)

≤ exp(ā(c+ − 2ε)N) for all x < N(c+ − 2ε). (16)

In addition,
E(exp(āZT−)) = E(exp(āZT−) | T− = τ0)P(T− = τ0)

+ E(exp(āZT−) | T− = τ−)P(T− = τ−)

≥ P(T− = τ0) + exp(a(c+ − ε)N)P(T− 
= τ0)

= 1 − (1 − exp(ā(c+ − ε)N))P(T− 
= τ0). (17)

Noting that opinion +1 wins only if T− 
= τ0 and combining (16) and (17), we have

px(N, 4) ≤ P(T− 
= τ0)

≤ (exp(ā(c+ − 2ε)N) − 1)(exp(ā(c+ − ε)N) − 1)−1

≤ exp(ā(c+ − 2ε)N)(exp(ā(c+ − ε)N))−1

= exp(−āεN) for all x < N(c+ − 2ε)

and all sufficiently large N.
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Lemma 9. Let a0 = ( 1
2 )ā. Then, for all ε > 0,

px(N, 4) ≥ 1 − exp(−a0εN) for all large N and x > N(c+ + ε).

Proof. This follows from the same arguments as in the proof of Lemma 8 but applying the
optimal stopping theorem at the stopping time T+ := min(τN , τ+), where

τN := inf{n : Zn = N}, τ+ := inf{n : Zn < N(c+ + ε)}
instead of T− and using the second instead of the first assertion in Lemma 7.

Proportional rule. We now prove Theorem 3, which deals with the nonspatial public debate
model under the proportional rule. As previously, a first-step analysis does not allow us to
find an explicit expression for the winning probabilities, but the result can be easily deduced
from the optimal stopping theorem, observing that the number of individuals in favor of a given
opinion is a martingale with respect to the natural filtration of the process.

Lemma 10. Under the proportional rule, we have px(N, s) = x/N .

Proof. To begin with, we observe that each time a group is chosen uniformly from the
population, regardless of the random number j of individuals with opinion +1 the group
contains, the expected value of the variation in the number of +1 individuals is always

E(Xn+1 − Xn) = (s − j) × (fraction of +1 individuals in the group)

− j × (fraction of −1 individuals in the group)

= (s − j)js−1 − j (s − j)s−1

= 0,

which shows that the process (Xn) is a martingale. Now, let

T+ := inf{n : Xn = N}, T− := inf{n : Xn = 0}
and observe that the stopping time T := min(T+, T−) is almost surely finite. Since, in addition,
the process is bounded, an application of the optimal stopping theorem implies that

E(XT | X0 = x) = E(X0 | X0 = x)

= x

= NP(T = T+) + 0P(T = T−)

= Npx(N, s)

from which it follows that the winning probability px(N, s) = x/N .

5. Proof of Theorem 4 (spatial public debate model)

To conclude, we study the spatial version of the public debate model introduced in [6] but
replacing the majority rule with the proportional rule. The key to our analysis is similar to the
approach used in previous works [1], [5] regarding the voter model. The idea is to construct the
process from a so-called Harris’ graphical representation and then use the resulting graphical
structure to exhibit a relationship between the process and a system of coalescing random walks.
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Graphical representations. We first provide a possible graphical representation from which
the spatial public debate model can be constructed starting from any initial configuration.
Though natural, this graphical representation does not allow us to derive a useful duality
relationship between the process and coalescing random walks. We then introduce an alternative
way to construct the process leading to such a duality relationship. Recall that

{x + Bs : x ∈ Z
d}, where Bs := {0, 1, . . . , s − 1}d

represents the collection of discussion groups. Each of these groups is updated in continuous
time at rate 1, i.e. at the arrival times of independent Poisson processes with intensity 1. In
addition, since the new opinion of the group after an update is chosen to be +1 with its probability
being the fraction of +1 individuals in the group just before the update, the new opinion can
be determined by comparing the fraction of +1 individuals with a uniform random variable
over the unit interval. In particular, a natural way to construct the spatial public debate model
graphically is to

• let Tn(x) := the nth arrival time of a Poisson process with rate 1 and

• let Un(x) := a uniform random variable over the interval (0, 1)

for all x ∈ Z
d and n > 0. At time t := Tn(x), all the individuals in x + Bs are simultaneously

updated as a result of a discussion and we set

ηt (y) := 2 1{Un(x)<s−d
∑

z∈x+Bs
1{ηt−(z)=+1}} −1 for all y ∈ x + Bs, (18)

while the configuration outside x + Bs stays unchanged. An idea of Harris [4] implies that
the process starting from any initial configuration can be constructed using this rule. We
now construct another process (ξt ) with the same state space as follows: the times at which
individuals in the same discussion group interact are defined as above from the same collection
of independent Poisson processes, but to determine the outcome of the discussion we now

• let Wn(x) := a uniform random variable over the set x + Bs

for all x ∈ Z
d and n > 0. At time t := Tn(x), all the individuals in x + Bs are simultaneously

updated as a result of a discussion and we set

ξt (y) := ξt−(Wn(x)) for all y ∈ x + Bs, (19)

while the configuration outside x + Bs stays unchanged. The next lemma, whose proof is
simply based on a rewriting of events under consideration, shows that both rules (18) and (19)
define in fact the same process: the processes (ηt ) and (ξt ) are stochastically equal.

Lemma 11. The constructions (18) and (19) are equivalent:

ηt− = ξt− �⇒ P(ηt (x) = 1) = P(ξt (x) = 1) for all x ∈ Z
d .

Proof. This is only nontrivial for pairs (x, t) ∈ Z
d × R+ such that

t := Tn(z), x ∈ z + Bs for some (z, n) ∈ Z
d × N

∗.
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In this case, we have

P(ξt (x) = 1) = P(ξt−(Wn(z)) = 1)

= P(Wn(z) ∈ {y ∈ z + Bs : ξt−(y) = 1})
= card {y ∈ z + Bs : ξt−(y) = 1}

card (z + Bs)

= s−d
∑

y∈z+Bs

1{ξt−(y)=1}

= P(Un(z) < s−d
∑

y∈z+Bs

1{ξt−(y)=1})

= P(Un(z) < s−d
∑

y∈z+Bs

1{ηt−(y)=1})

= P(ηt (x) = 1).

This completes the proof of the lemma.

Duality with coalescing random walks. The duality relationship between the voter model
and coalescing random walks results from keeping track of the ancestors of different space-time
points going backwards in time through the graphical representation. In the case of the public
debate model η·, the opinion of an individual just after an interaction depends on the opinion of
all the individuals in the corresponding discussion group just before the interaction. Therefore,
to define the set of ancestors of a given space-time point, we draw an arrow

z1 −→ z2 at time t := Tn(z) for all z1, z2 ∈ z + Bs, (z, n) ∈ Z
d × N

∗

to indicate that the opinion at (z2, t) depends on the opinion at (z1, t−), and say that there is
an η-path connecting two space-time points, which we write as

(y, t − s) −→η (x, t) for x, y ∈ Z
d , s, t > 0,

whenever there are sequences of times and spatial locations

t − s < s1 < s2 < · · · < sn−1 < t, z1 := y, z2, . . . , zn := x ∈ Z
d

such that there is an arrow

zj −→ zj+1 at time sj for j = 1, 2, . . . , n − 1.

The set of ancestors of (x, t) at time t − s is then encoded in the set-valued process

η̂s(x, t) := {y ∈ Z
d : (y, t − s) −→η (x, t)}. (20)

Note that the opinion at (x, t) can be deduced from the graphical representation of η· and the
initial opinion at sites that belong to η̂t (x, t). Note also that the process (20) grows linearly
going backwards in time, i.e. increasing s. See the left-hand side of Figure 5 for a representation.
This makes the process η· mathematically intractable to prove clustering and coexistence. To
establish the connection between the spatial process and coalescing random walks, we use
instead the other, mathematically equivalent, version ξ· of the spatial public debate model. For

https://doi.org/10.1239/aap/1444308877 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1444308877


690 N. LANCHIER AND N. TAYLOR

Figure 5: The graphical representation for a set of ancestors. In both cases, s = 4 and the times at which
discussion groups are updated (time goes up) are represented by horizontal line segments (bold), while the
set of ancestors is represented by vertical line segments (bold). Shown is an illustration of the set-valued
process (20) (left) and an illustration of the dual process (21) (right) starting from A = {x, y}. The open

circles (right) correspond to the value of the uniform W random variables.

this version, the opinion of an individual just after an interaction depends on the opinion of only
one individual in the corresponding discussion group just before the interaction. The location
of this individual is given by the value of the uniform W random variables. Therefore, to define
the set of ancestors of a given space-time point, we now draw an arrow

Wn(z) −→ z′ at time t := Tn(z) for all z′ ∈ z + Bs, (z, n) ∈ Z
d × N

∗

to indicate that the opinion at (z′, t) depends on the opinion at (Wn(z), t−). We then define
ξ -paths, which we now write ‘−→ξ ’, as previously but using this new random set of arrows.
The set of ancestors of (x, t) at time t − s is now encoded in

ξ̂s (x, t) := {y ∈ Z
d : (y, t − s) −→ξ (x, t)}. (21)

More generally, for A ⊂ Z
d finite, we define the dual process starting at (A, t) as

ξ̂s (A, t) := {y ∈ Z
d : y ∈ ξ̂s (x, t) for some x ∈ A}

:= {y ∈ Z
d : (y, t − s) −→ξ (x, t) for some x ∈ A}.

See the right-hand side of Figure 5 for a representation. Note that (21) is reduced to a singleton
for all times s ∈ (0, t) and that we have the duality relationship

ξt (x) = ξt−s(Zs(x)) = ξ0(Zt (x)) for all s ∈ (0, t),

where Zs(x) := ξ̂s (x, t). In the next lemma, we prove that Zs(x) is a symmetric random walk,
which makes the dual process itself a system of coalescing symmetric random walks with one
walk starting from each site in the finite set A.
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Lemma 12. The process Zs(x) := ξ̂s (x, t) is a symmetric random walk.

Proof. By construction of the dual process, for t − s := Tn(z),

Zs(x) := ξ̂s (x, t) =
{

Zs−(x) when Zs−(x) /∈ z + Bs,

Wn(z) when Zs−(x) ∈ z + Bs.

Since, in addition, discussion groups are updated at rate 1 and

P(Wn(z) = y) = s−d for all y ∈ z + Bs,

we obtain the following transition rates:

lim
h→0

h−1
P(Zs+h(x) = y + w | Zs(x) = y)

= s−dcard {z ∈ Z
d : y ∈ z + Bs and y + w ∈ z + Bs}. (22)

In addition, since for all w ∈ Z
d the translation operator y �→ y + w is a one-to-one

correspondence from the set of discussion groups to itself and since

y, y + w ∈ z + Bs ⇐⇒ y − w, y ∈ (z − w) + Bs,

we have the equality

card {z ∈ Z
d : y ∈ z + Bs and y + w ∈ z + Bs}

= card {z ∈ Z
d : y ∈ z + Bs and y − w ∈ z + Bs}. (23)

Combining (22) and (23), we conclude that

lim
h→0

h−1
P(Zs+h(x) = y + w | Zs(x) = y)

= lim
h→0

h−1
P(Zs+h(x) = y − w | Zs(x) = y) for all y, w ∈ Z

d ,

which completes the proof.

In fact, from some basic geometry, we have

lim
h→0

h−1
P(Zs+h(x) = y + w | Zs(x) = y) = s−d

d∏
j=1

(s − |wj |),

where wj is the j th coordinate of the vector w. The theorem can be deduced from the previous
two lemmas using the exact same approach as for the voter model. For the details on how to
deduce clustering and coexistence, see [2, Theorems 3.1] and [2, Theorems 3.2], respectively.
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