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A dynamical understanding of the physical process of surface gravity wave breaking
remains an unresolved problem in fluid dynamics. Conceptually, breaking can be described
by inception and onset, where breaking inception is the initiation of unknown irreversible
processes within a wave crest that precede the visible manifestation of breaking onset.
In the search for an energetic indicator of breaking inception, we use an ensemble of
non-breaking and breaking crests evolving within unsteady wave packets simulated in a
numerical wave tank to investigate the evolution of each term in the kinetic energy balance
equation. We observe that breaking onset is preceded by around one quarter of a wave
period by a rapid increase in the rate of convergence of kinetic energy that triggers an
irreversible acceleration of the kinetic energy growth rate. This energetic signature, which
is present only for crests that subsequently break, arises when the kinetic energy growth
rate exceeds a critical threshold. At this point the additional kinetic energy convergence
cannot be offset by converting excess kinetic energy to potential energy or by dissipation
through friction. Our results suggest that the ratio of the leading terms of the kinetic energy
balance equation at the time of this energetic signature is proportional to the strength of
the breaking crest. Hence this energetic inception point both predicts the occurrence of
breaking onset and indicates the strength of the breaking event.

Key words: wave breaking, surface gravity waves

1. Introduction

The physical process of wave breaking remains one of the classical unresolved problems
of fluid dynamics, yet is of fundamental importance for understanding the interaction
between the atmosphere and ocean. Wave breaking significantly influences the marine
wind drag (e.g. Suzuki, Hara & Sullivan 2013) and generates enhanced turbulence and
energy dissipation in the ocean, modifying the ocean boundary layer over significant
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depths when coupled with other processes such as Langmuir turbulence (Sullivan,
McWilliams & Melville 2007). The highly nonlinear nature of the breaking process
presents challenges for both observational and numerical studies, prompting a range of
approaches to develop an objective diagnostic breaking parameter that is valid for any
wave type or water depth. Perlin, Choi & Tian (2013) provides the most recent review of
progress in this field and groups diagnostic parameters into three categories that use either
the geometric, kinematic or dynamic properties of the wave crest.

More recently, Derakhti et al. (2020) introduced the concept of breaking inception,
which describes the initiation of an irreversible process within the crest that leads to
breaking and occurs before the instant of breaking onset, i.e. when the first surface
manifestation of breaking occurs at the crest. A diagnostic parameter that is able to
characterise breaking inception could therefore provide advance warning of a breaking
event and potentially also quantify the breaking strength and the energy dissipated
thereafter. A breaking inception parameter may also have broad application to the
simulation of wave fields in models where individual breaking events cannot be resolved
but in which the energetic processes and dynamic consequences of breaking are important
to capture accurately.

The breaking inception indicator proposed by Derakhti et al. (2020) is based on the
diagnostic parameter B (Barthelemy et al. 2018), which is formally the ratio of the local
energy flux to the local energy density normalised by the crest speed c. At the interface, this
reduces to the ratio of particle velocity to crest speed ‖u‖/‖c‖. Although this resembles
the kinematic breaking criterion in that the value of B at visible breaking initiation is close
to unity, it also reveals some remarkable complexities that are yet to be fully understood.
Specifically, Barthelemy et al. (2018) found that a threshold value Bth = 0.855 ± 0.05
exists, beyond which the crest will always evolve to break. This threshold value was
subsequently verified in laboratory and computational studies (Saket et al. 2017, 2018), for
a variety of wave packet types (Derakhti, Banner & Kirby 2018), water depths (Seiffert &
Ducrozet 2018; Derakhti et al. 2020) and in the presence of a constant shear layer (Touboul
& Banner 2021).

To avoid ambiguity, Derakhti et al. (2020) defined breaking inception as the instant at
which B first passes through the threshold value Bth, and characterised breaking onset
as the instant when visible breaking first occurs. This threshold, which we shall refer
to as the kinematic threshold for breaking inception, also provides information on the
strength of the subsequent breaking event. Derakhti et al. (2018) and later Na, Chang &
Lim (2020) found that the normalised rate of change of B as it passes through Bth, known
as Γ , accurately predicts the breaking strength parameter b (Phillips 1985), which has been
shown to quantify the energy dissipated through breaking (e.g. Drazen, Melville & Lenain
2008; Deike, Popinet & Melville 2015; Sutherland & Melville 2015).

The use of Bth is a robust and useful choice as an indicator of breaking inception
as it clearly separates breaking and non-breaking crests and can be determined from
measurements at the sea surface. However, a dynamical explanation for this threshold
value remains elusive and an explanation for why some waves break and others do
not requires further investigation. Given that the energetic definition of B reduces
to the kinematic diagnostic ‖u‖/‖c‖, it is possible that B is a proxy variable that
accurately distinguishes breaking from non-breaking waves but does not, in itself, track
the underlying dynamical cause for breaking inception.

Dynamic breaking diagnostics have generally focused on the energy growth rate
integrated over some region of the crest. Schultz, Huh & Griffin (1994) found that breaking
onset could be characterised by the wave integrated potential energy exceeding 52 %

959 A33-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

13
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.134


An energetic signature for breaking inception

of the total energy of the limiting Stokes wave, which suggests that a departure from
the equipartitioning of kinetic and potential energy may be a contributor to breaking
inception. Song & Banner (2002) constructed an energy growth rate based on the
local depth-integrated total energy and the instantaneous wavenumber. This was shown
experimentally to distinguish between breaking and non-breaking waves by Banner &
Peirson (2007) but technical challenges with accurately measuring the wavenumber in
complex wave packets and a requirement to track the temporal evolution over multiple
wave periods have limited its application (Barthelemy et al. 2018). While these dynamic
breaking diagnostics show that the energy growth rate is important to the breaking process,
they also demonstrate that accurately and consistently measuring the energetics of an
evolving nonlinear wave is non-trivial. Integrating the energy over some subdomain of
the wave does ameliorate some of these challenges; however, the energy field is highly
focused near the crest tip (e.g. Perlin, He & Bernal 1996; Alberello et al. 2018) and the
integration process inherently diffuses these local energetic values.

This motivates us to investigate the evolution of the local crest energy field in the time
leading up to breaking onset, with the aim of identifying an energetic process that robustly
signals breaking inception. Numerical simulation allows us to pursue this in much greater
detail than is possible within the constraints of laboratory experiments. We investigate an
ensemble of high-resolution numerical simulations of non-breaking and breaking wave
crests with a range of wave packet sizes and water depths. We track the point with the
largest value of local instantaneous kinetic energy, which occurs near the crest tip, and then
derive a balance equation for the kinetic energy at this location. We examine the relative
contributions of the individual source and sink terms and find that the convergence of
kinetic energy at the crest tip provides a reliable indicator of breaking inception a fraction
of a wave period prior to breaking onset. The results also indicate a relationship between
the convergence of kinetic energy, the rate of change of kinetic energy and the breaking
strength parameter Γ of Derakhti et al. (2018).

2. Experimental details

2.1. Numerical approach
We use the Gerris software package (Popinet 2003) to generate a suite of numerical
simulations of non-breaking, near-breaking and breaking waves across a range of wave
packet configurations and grid refinements. Gerris has been extensively validated for
simulations of surface gravity waves (Wroniszewski, Verschaeve & Pedersen 2014), wave
breaking kinematics (Pizzo, Deike & Melville 2016; Deike, Pizzo & Melville 2017)
and energy dissipation (De Vita, Verzicco & Iafrati 2018). We configure the model
to numerically solve the two-dimensional (x = (x, z)), incompressible, variable density
Navier–Stokes equations, including the effects of viscosity and surface tension

ρ
Du
Dt

= −∇p + ρg + f + nσκδs, (2.1)

Dρ

Dt
= 0, (2.2)

∇ · u = 0. (2.3)

Here, ρ = ρ(x, t) is the fluid density, u = (u, w) the fluid velocity, p the pressure and
g the gravitational body force. Viscous energy dissipation is characterised by f =
∇ · μ(∇u + ∇uT), where μ = μ(ρ) is the dynamic viscosity. The magnitude of the
surface tension force is a function of the surface tension coefficient σ and the interface
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Figure 1. Schematic of our numerical wave tank. Waves are generated at the paddle boundary and travel down
the tank in the positive x direction before being absorbed by the numerical sponge layer. A typical chirped wave
(enlarged for clarity) is shown, with tank dimensions normalised by the deep-water wavelength λp derived from
the paddle frequency ωp.

Refinement Total Total crests

level N d/λp Ap/λp simulations Breaking Non-breaking

210 5 0.59 0.025–0.05 44 13 249
210 9 0.59 0.025–0.045 49 26 234
210 5 0.20 0.08–0.092 9 6 34
211 5 0.59 0.037–0.043 19 15 40
211 9 0.59 0.037–0.0389 9 13 24

Table 1. Summary of experiments included in this study. The model was configured using a range of mesh
refinement levels, wave packet size N and water depth d/λp. For each configuration the amplitude of the paddle
Ap/λp was varied to generate an ensemble of breaking and non-breaking crest cases.

curvature κ , with the force localised at the interface by the Dirac delta δs and the interface
normal vector n. Surface tension is modelled through an improved implementation of
the continuum-surface-force approach (Popinet 2009) and gravity is applied using the
‘reduced gravity’ method described by Popinet (2018) and shown to minimise spurious
currents at the interface (Wroniszewski et al. 2014).

A two-phase air–water flow is simulated using the volume-of-fluid method, in which
the fluid phase is tracked by the conservative tracer T specifying the fraction of a cell
containing water. The limits of T = [0, 1] indicate that a cell contains purely air and water,
respectively, while a cell with any intermediate value contains a mixture of the two. We
define the location of the air–water interface as the T = 0.5 contour and take the value
of scalars on the water side of the interface as the nearest cell to the interface contour for
which T = 1.

The model is set up as a two-dimensional (x = (x, z)) numerical wave tank in which
waves are generated at the left-hand boundary, propagate along the tank and are absorbed
at the right-hand boundary (figure 1). Previous studies have reported no significant
difference in the integrated wave energetics between two- and three-dimensional
simulations (Derakhti & Kirby 2016; De Vita et al. 2018), so limiting our study to
two-dimensional simulations allows us to examine a wide range of parameters over a large
ensemble within computational constraints, while still accurately capturing the energetic
characteristics of the waves.

959 A33-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

13
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.134


An energetic signature for breaking inception

To generate the wave packet, we simulate a bottom-mounted flexible flap paddle by
deriving the exact solutions for the velocity and pressure gradient forcing from wavemaker
theory (Dean & Dalrymple 1991) and apply these at the fixed boundary. This method
removes the necessity of simulating a moving boundary and thereby greatly increases the
computational efficiency of our simulations, while still allowing us to generate a fully
nonlinear wave packet. The equivalent lateral movement of the paddle is <5 % of the
wavelength in most cases (table 1) so the approximation of a fixed boundary has little
effect on the resultant wave packet.

The motion of the paddle xp with time t follows the chirped packet function (Song &
Banner 2002)

xp(t) = −0.25Ap

(
1 + tanh

[
4ωpt
Nπ

])(
1 − tanh

[
4
(
ωpt − 2Nπ

)
Nπ

])

sin
(

ωpt
[

1 − ωpCcht
2

])
(2.4)

where xp is a function of the paddle forcing amplitude Ap, the forcing frequency ωp, the
number of waves in the paddle signal N and the packet linear chirp rate Cch = 1.0112 ×
10−2.

The numerical wave tank is configured in non-dimensional coordinates scaled by the
linear deep-water wavelength λp = 2πg/ω2

p and period Tp = 2π/ωp associated with the
paddle forcing frequency ωp. The height of the tank is 1.18λp with a total length of 23.5λp,
the final 4.7λp being configured as a numerical sponge layer. These dimensions allow the
wave packet to evolve over at least 18Tp after entering the tank, with wave breaking onset
generally occurring within half of this time interval.

Energy absorption at the far end of the tank is achieved through a number of
complementary approaches. The final 4.7λp of the tank consists of a numerical sponge
layer based on that derived by Clément (1996), which effectively absorbs high-frequency
waves. The reflection of low-frequency waves is minimised by gradually increasing
the grid spacing within the sponge layer to enhance numerical dissipation. An outflow
boundary condition is also applied to the dry portion of the lateral boundary to minimise
compression of the air phase caused by the paddle motion, which further improves the
performance of the model’s Poisson solver.

Gerris uses a quadtree mesh structure that enables efficient adaptive mesh refinement
(Popinet 2003). Each level of refinement divides the parent cell into four, resulting in a
maximum resolution equivalent to a uniform mesh with 2n × 2n grid cells, for n refinement
levels. As our primary interest in this study is focused on the air–water interface and
the water boundary layer, we determine the maximum required resolution based on the
boundary layer thickness δ ≈ λp/

√
Re (Batchelor 1967, (5.7.4)), where Re = ρcpλp/μ is

the wave Reynolds number formulated with the characteristic velocity (cp) and length (λp)
scales taken from the paddle signal. To reduce computational cost we set Re = 4 × 104

which allows us to resolve the boundary layer with approximately four cells at a refinement
level of 210 and equates to a resolution of dx = λp/870 with the scaling used. While the
wave Reynolds number for a physical deep-water gravity wave is Re ≈ 1 × 106, previous
studies (Deike et al. 2017; Mostert & Deike 2020) have shown that Re = 4 × 104 is
large enough that viscous effects are not dominant and all energy within the boundary
layer is adequately resolved. We also conducted a limited number of experiments with a
maximum refinement level of 211 (approximately eight cells within the boundary layer,
equivalent to dx = λp/1740) to confirm that the total energy of the simulation did not
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change (see Appendix A). For all experiments, mesh refinement criteria are configured to
ensure maximum resolution at the air–water interface and in regions of large vorticity.

2.2. The crest ensemble
We use our numerical wave tank to conduct a suite of simulations across a range of wave
packet configurations, water depths and grid resolutions (table 1). Each individual crest
in the wave packet is tracked in space and time (as described below) with the evolution
of the crest geometry and energetics recorded. To account for the finite resolution of our
numerical simulations, we characterise a crest as breaking if the interface contour exceeds
the vertical by a horizontal distance dηx � 0.5 dx over a length dηz � dx where dx is the
finest model grid scale. We use the qualitative term ‘near-breaking’ to describe the steepest
and most energetic non-breaking crests for which the local interface contour closely
approaches vertical but does not exceed it. The local crest energetics are measured at the
location x+ = [x+(t), z+(t)] where the local kinetic energy density Ek has its maximum
value. A crest reference location and time are set as [x0, t0] = [x+, t] at the instant of
breaking onset for breaking crests and at the instant of maximum local Ek for non-breaking
crests. The evolution of the crest in space and time is then referenced to these parameters
using the non-dimensional coordinates x∗ = (x − x0)/λp, z∗ = z/λp and t∗ = (t − t0)/Tp.

Cubic interpolation is used to determine the location of x+ and the value of the energetic
quantities at this point, but the unsteady movement of the crest (e.g. Derakhti et al. 2020;
Fedele, Banner & Barthelemy 2020) does lead to a level of uncertainty in the resultant
time-series. This is managed by filtering the data with a running mean of width 0.15Tp,
which we find effectively removes high-frequency noise without significantly smoothing
the temporal variability in the data. Peak values at breaking onset are preserved by
applying the filter independently for t∗ � 0 and t∗ > 0 (i.e. before and after breaking
onset) with the window width gradually reducing to zero for |t∗| < 0.15Tp. The difference
between the original and the filtered data is used to estimate the 5 %, 95 % confidence
interval using a bootstrap method. We use these confidence intervals to objectively discard
crests for which the energetic parameters presented in this study are not correctly captured
by our analysis methods, which usually occurs when a crest is impacted by droplets
from another breaking crest in the same wave packet. Any crests for which the relative
magnitude of the confidence intervals exceed the 95th percentile for that parameter are
discarded, which accounted for 7.5 % of the total. The final ensemble consists of 581
non-breaking and 73 breaking crests (table 1).

In figure 2(a), we characterise this ensemble in terms of the local Ek at x+ and the crest
steepness Sc = πa/λc, which captures the unsteady and time-dependant development of
the crest in terms of the amplitude a and zero-crossing wavelength λc (Banner et al. 2014).
Figure 2(a) illustrates the distinct energetic characteristics of each wave packet type: for
a given Ek, deep-water N = 5 crests are typically steeper than N = 9 crests, and N = 5
crests in intermediate depth are even steeper. However, the local Ek is not sufficient to
distinguish breaking from non-breaking crests, with a mix of both cases occurring in the
range 0.3 < Ek < 0.35.

We also examine the ensemble in terms of the breaking inception parameter B. We
find that the location x+ of maximum particle velocity and kinetic energy is found on
the forward face of the crest, corresponding with previous observational (Perlin et al.
1996) and viscous numerical (Varing et al. 2020) studies. This is in contrast to the inviscid
simulations of Barthelemy et al. (2018), who chose to follow the crest tip xc. We find that
the location x+ may be offset by up to 0.015λc from xc and with a particle velocity ‖u+‖
up to 10 % greater than the crest tip particle velocity uc at the time of breaking onset, with
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Figure 2. Summary of the individual crests included in the ensemble. The model was configured using a range
of mesh refinement levels (2x), wave packets N and water depth d/λp. For each configuration the amplitude
of the paddle Ap/λp was varied to generate an ensemble of crests with different energy levels. Non-breaking
(breaking) crests are indicated by hollow (filled) symbols. The representative crests shown in subsequent figures
are labelled NB1, B1 and B2. (a) The maximum kinetic energy Ek as a function of local wave steepness Sc.
(b) The value of B at t∗ = 0 (non-breaking crests with B < 0.8 not shown); the threshold Bth = 0.855 ± 0.05
reported by Barthelemy et al. (2018) is shown by the hatched region.

these differences generally being larger for more energetic crests. We also note that in a
recent Bth validation study by Derakhti et al. (2020), the particle velocity was taken as the
maximum value within ≈0.03λc of the crest tip. This motivates us to construct B as

B = ‖u+‖
‖b+‖ , (2.5)

where the denominator b+ = dx+/dt is chosen primarily to be consistent with the
mathematical formulation outlined in the following sections. We find that the threshold
Bth = 0.855 ± 0.05 is replicated by our ensemble (figure 2b) using (2.5). We also found
(not shown) that the same threshold value is also observed if the crest speed c is used in
the denominator of (2.5), but that B is underestimated if ‖uc‖ is used as the numerator.
Because the observed difference between ‖b+‖ and ‖c‖ is less than ±5 % we see that B
is relatively insensitive to the choice of crest velocity, although we do note that b varies
more smoothly in time than c as the latter can change rapidly if the crest is impacted by
surface ripples that make identification of xc challenging. With this measure, figure 2(b)
shows that our ensemble covers the threshold region between breaking and non-breaking
crests with both varying wave packets and water depths.

We have selected representative near-breaking (NB1) and breaking (B1, B2) crests from
the deep-water N = 5 cases that span the Ek and B parameter space (figure 2) and use
these in subsequent sections to illustrate the key features of the crest energetics. Some
initial observations of the characteristics of these crests can be made from figure 3, in
which the evolution of the local Ek field for each crest is shown. The NB1 crest is the
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Figure 3. The evolution of Ek for the (a) NB1 (near-breaking), (b) B1 and (c) B2 (breaking) representative
crests as they progress through the growing and decaying phase. Snapshots are equally spaced at intervals of
0.09T0 and the vertical axis is exaggerated by a factor of 7 : 1. The + indicates the location x+ where Ek has its
maximum value, and in (d) the temporal evolution of Ek at this location is shown. Periods of active breaking
are indicated in (d) by the dotted lines. The time of each snapshot (A–D) corresponds with the vertical dashed
lines. Snapshot C occurs at the time that Ek at x+ has its maximum value for the near-breaking crest, and the
time of breaking onset for breaking crests.

near-breaking case in our ensemble that most closely approaches breaking. As the crest
grows, a distinct bulge develops on the crest tip and the local interface angle becomes
near-vertical. This region is also associated with a local concentration of elevated Ek. The
B1 case is a weakly breaking crest in which the interface only briefly exceeds the vertical
before again relaxing. Conversely, the B2 case illustrates a stronger breaking example in
which more extensive overturning of the interface is evident.

If only the shape of these crests were considered it could be concluded that the
separation between near-breaking and breaking is simply a function of a marginal increase
in steepness which eventually leads to the local interface angle exceeding the vertical.
However, the values of Ek at the location of the maxima x+ (figure 3d) demonstrate that
the energetics of these crests follow diverging paths. Until t∗ ≈ −0.15 the values of Ek
are similar in all three cases, but at this point the Ek in the near-breaking case reaches a
plateau and begins to gently decrease, while the Ek in the breaking cases undergoes rapid
increase up to breaking onset (t∗ = 0) and beyond. The spatial extent of this increase
in Ek is seen in the snapshots of the crest evolution (figure 3b,c), with the region of
intensifying Ek magnitude fully encompassing the formation of the crest tip bulge. It is
evident from this that the convergence of Ek within the crest tip is an important factor
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in the breaking process. This motivates our analysis presented in the follow sections, in
which we mathematically describe and quantitatively track the evolution of this process.

3. Evolution of the crest energetics

3.1. Mathematical formulation
To examine the crest energetics we first construct a balance equation for the local kinetic
energy density Ek = 1

2ρ|u|2. This is derived by taking the scalar product of (2.1) with the
fluid velocity u and making use of ∇ · u = 0 to obtain

DEk

Dt
= ∂Ek

∂t
+ u · ∇Ek = −∇ · up − ρgw + u · f + u · nσκδs, (3.1)

where w is the vertical particle velocity. The terms on the right-hand side account for the
work against pressure, the work against gravity, viscous energy dissipation and the surface
tension force, respectively.

A similar balance equation for the potential energy density Ep = ρgζ is derived by
multiplying the mass-balance equation (2.2) by g and the particle vertical displacement ζ

to give
DEp

Dt
= ∂Ep

∂t
+ u · ∇Ep = ρgw. (3.2)

The ρgw term links (3.1) and (3.2) and quantifies the rate of conversion between Ek and
Ep. That is, an upward advection of water particles converts Ek to Ep, with the reverse
process occurring for downward advection. The net rate of change of Ek will then depend
on the sum of ρgw and the remaining terms on the right-hand side of (3.1). Because the
ρgw term depends only on the vertical component of the particle velocity, the efficiency of
this energy conversion process relative to the other terms in (3.1) depends on the direction
of the velocity vector u, which varies in space and time as the wave evolves.

The Lagrangian balance equations (3.1) and (3.2) provide useful insights into the
energetics following a fluid parcel; however, their interpretation as a function of time is not
useful in this context as the fluid particles follow an orbital motion that does not correspond
with the geometric evolution of the crest. A more insightful approach results from defining
a location that moves and evolves with the crest geometry. This may be a specific location
such as the highest point of the crest xc, or the location where a scalar quantity has its
maximum value. In our case, we choose to follow the location x+ of maximum Ek as
it is situated on the forward face of the crest tip, where breaking onset is first observed
(figure 3). This location also varies smoothly in time, which aids the interpretation of the
kinetic energy evolution. When following the location x+, the change in Ek has both a local
and a convective component described by the operator DbEk/Dt = ∂Ek/∂t + b+ · ∇Ek
(Tulin 2007, (2.2)), where b+ = dx+/dt. Henceforth we refer to the energetic values
evaluated at this location as local values. When applied to (3.1) this leads to

DbEk

Dt
= −∇ · (up + [u − b+]Ek)︸ ︷︷ ︸

CON

−ρgw︸ ︷︷ ︸
K2P

+ u · f︸︷︷︸
friction

+ u · nσκδs︸ ︷︷ ︸
sfc tension

(3.3)

where the relevant kinetic energy flux velocity is seen to be u − b+. This result can
also be derived by considering the rate of change of kinetic energy within an arbitrarily
small control volume (see Appendix B, where an application of this approach is shown
explicitly). We subsequently refer to the terms on the right-hand side as the convergence
term (CON), the kinetic to potential energy conversion term (K2P), friction and
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Figure 4. The rate of change of the local kinetic energy density Ek at the location x+ (figure 3) and its
contributing terms from (3.3) for the representative near-breaking (NB1) and breaking (B1, B2) crests. Positive
(negative) values indicate a source (sink) of Ek. Periods of wave breaking are indicated by the solid dots.

surface tension. The use of (3.3) allows us to track these energetic quantities and relevant
source terms at our location of interest on the evolving crest. While the magnitude of
kinetic energy does not discriminate between breaking and non-breaking crests (figure 2),
we show in the subsequent section that by tracking the location of maximum Ek we also
track the location where the leading terms in (3.3) have their maximum values.

3.2. Temporal evolution
We examine DbEk/Dt and its components in figure 4, where each term of (3.3) is
represented as a kinetic energy source/sink by applying the appropriate sign to the values,
so that positive (negative) values represent an increase (decrease) in kinetic energy.

For all cases, the kinetic energy generally increases (DbEk/Dt > 0) to reach a peak value
around t∗ ≈ 0 (i.e. when Ek reaches its maximum value for the non-breaking cases or when
breaking onset occurs for breaking cases) before decreasing (DbEk/Dt < 0) as t∗ > 0.
The evolution of DbEk/Dt is dominated by the convergence term CON and the kinetic
to potential energy conversion term K2P, with surface tension of negligible magnitude
and friction significant only near t∗ = 0. The CON and K2P terms are of nearly equal
magnitude and opposite sign, such that when one is acting as a source of Ek the other is a
sink.

The near-cancellation of these two terms is observed throughout the evolution of the
near-breaking case NB1 and is also seen throughout most of the growth phase of the
breaking cases B1, B2. But a striking deviation from this balance develops as the B1
and B2 crests approach breaking onset. From t∗ ≈ −0.1, a rapid increase in CON is seen
which is not balanced by a corresponding increase in K2P. As a result, Ek also increases
rapidly up to breaking onset. Unlike the CON term, the K2P term for all three example
crests are of similar magnitude and trajectory. This indicates that for a given crest there is
a limit to the amount of Ek that can be converted to Ep. The excess convergence of kinetic
energy results in the development of the visible Ek hotspot in figure 3 and the subsequent
breaking event.
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Figure 5. The evolution of the kinetic energy balance for the NB1 crest. The dominant terms of the local
balance equation (3.3) are (a) CON, (b) K2P and (c) DbEk/Dt. Vectors in (a) show the relative magnitude of the
u − b flux velocity at each snapshot. The + indicates the location x+ where Ek has its maximum instantaneous
value. Snapshots are equally spaced at intervals of 0.09T0 and the vertical axis is exaggerated by a factor of
7 : 1, with snapshot C occurring at the time that Ek at x+ reaches its maximum value. The temporal evolution
of each term in (a), (b) and (c) at x+ have been taken from figure 4 and shown in (d) for comparison.

The interplay between CON and K2P is examined in detail for the near-breaking crest
NB1 (figure 5) and breaking crests B1, B2 (figures 6–7) by exploring their spatial variation
within the evolving crests. The flux of kinetic energy within the crest is driven by the
u − b vectors (figures 5a, 6a and 7a), which follow the approximate shape of the wave,
decelerating as it moves upward and rearward from the forward side of the wave to the
crest tip and then accelerating down the rear face. This flux leads to a convergence of
kinetic energy on the forward side of the crest and divergence on the rear side. In the NB1
case, the local magnitude of the CON field is mostly offset by the K2P term (figure 5c),
so that the local rate of change of kinetic energy DbEk/Dt is near-zero across most of the
crest (figure 5).

In contrast, the CON fields in the B1 (figure 6) and B2 (figure 7) cases develop a local
hotspot on the forward face of the crest tip, which continues to intensify up to breaking
onset (t∗ = 0). However, this is not offset by an equivalent hotspot in the local K2P field,
whose characteristics are unchanged from the NB1 case. The imbalance between these
two leading terms results in a corresponding intensification in the local rate of change
DbEk/Dt.

Because of the large gradients in the evolving DbEk/Dt field (figures 5–7) the temporal
evolution of this and its contributing terms will be sensitive to the choice of the location x+
that is tracked within the crest. As described in § 2.2, we track the location of maximum Ek;
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Figure 6. As for figure 5 showing the B1 crest. Periods of wave breaking are indicated by the solid dots.
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Figure 7. As for figure 5 showing the B2 crest. Periods of wave breaking are indicated by the solid dots.
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this choice was made both for practical reasons as it can be applied in a laboratory setting
and because the location varies smoothly in time. But it can also be seen to correspond
closely with the location of maximum CON and DbEk/Dt (figures 5–7) and therefore
captures the maximum intensity of the signal of interest.

We quantify the degree to which DbEk/Dt at x+ is representative of the energetics
across the crest region by comparing these values with those integrated over a larger
region of interest (Appendix B) and find that the rapid increase in DbEk/Dt and CON
remains observable if the values are integrated over the top 20 % of the crest for the
weakly breaking B1 case and over the top 50 % for the stronger B2 case. However, if
the energetic values are integrated over the full water depth this energetic signature is no
longer evident. As well as validating our use of the local energetic quantities, these results
also demonstrate the subtlety of this process that is not easily observed in bulk energy
values.

3.3. Energy balance and breaking inception
The key feature of the kinetic energy evolution leading up to breaking onset has been
shown above to be a breakdown in the approximate equilibrium between the source of
kinetic energy CON and the sink K2P, with friction becoming significant only near t∗ = 0.
This phenomenon is most clearly observed in the local values at the Ek maxima, but is
also evident to a lesser extent when integrating over subregions of the crest tip of various
sizes (Appendix B). From this we can conclude that the evolution of the local energetic
quantities at x+ accurately characterises the broader dynamics of the crest tip region.

The relationship between these terms during the final wave period leading up to t∗ = 0
is further examined in figure 8, an animated version of which is also provided as a
supplementary movie available at https://doi.org/10.1017/jfm.2023.134. Here, the grey
dashed line denotes an equal balance between the source (CON) and sink (K2P, u · f )
terms with any departure above (below) this line indicating a resultant increase (decrease)
in Ek (ignoring the insignificant contribution of the surface tension term in (3.3)).

In the NB1 near-breaking crest, the initial convergence of kinetic energy is mostly offset
by the sink terms, with the magnitude of these terms eventually peaking as the trajectory of
the line reverses direction. Throughout this process, the magnitude of each of these terms
increases at a similar rate, which keeps the distance from the DbEk/Dt = 0 line consistent,
so that the growth rate of kinetic energy stays within reasonable bounds.

The breaking case B1 initially follows a near-identical trajectory, with the convergence
of kinetic energy sufficiently offset by the sink terms to ensure a steady increase in
Ek. However, at some time after the magnitude of CON begins to decrease, it suddenly
experiences a rapid increase (indicated by the � symbol) that is not balanced by a
corresponding increase in the magnitude of the sink terms. As a consequence DbEk/Dt
also rapidly grows up to breaking onset. A similar evolution is also observed for the
stronger B2 breaking case. Here, the imbalance between source and sink terms is larger
and so the trajectory is displaced farther from the DbEk/Dt = 0 line, indicating a faster
growth in kinetic energy. As in the B1 case, the magnitude of CON begins to decrease
before a striking deflection is seen and CON grows rapidly, driving a subsequent rapid
growth in DbEk/Dt.

In order to test the existence of this inflection point for all cases in our ensemble,
we define the critical point p� as the final local minimum of the parametric curve
(x, y) = ([K2P − u · f ], CON) that occurs before t∗ = 0. Without exception, we find that
all breaking crests feature a rapid increase in CON commencing at the critical point p�

(figure 9, solid symbols), which subsequently leads to a rapid increase in DbEk/Dt up to
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Figure 8. Relationship between the two leading terms in the Ek balance equation (3.3): K2P −u · f and CON,
for the period t∗ = −1 to t∗ = 0. Values above (below) the dashed line indicate an imbalance between these
terms which leads to an increase (decrease) in DbEk/Dt. The energetic inception time (�) and the kinematic
inception time (i.e. when B = Bth, indicated by a ×) for breaking crests are annotated, with the superposed
black lines indicating the period for which 0.83 < B < 0.88. An animated version of this figure is provided as
supplementary material.

breaking onset. This generic feature of the crest evolution therefore represents a critical
energy imbalance between the kinetic energy source and sink terms.

The occurrence of this critical point is not in itself a sufficient condition for breaking.
We observe that small inflections do occur for some non-breaking waves, although these
are not followed by a rapid increase in CON. In these non-breaking cases (figure 9, grey
symbols), the magnitude of the CON term at the critical point may even exceed that
of some of the breaking crests and by itself this is clearly not a distinguishing feature
between non-breaking and breaking waves. However, the magnitude of DbEk/Dt at this
critical point does distinguish between the two classes (figure 9b). For non-breaking crests,
DbEk/Dt is mostly near-zero whereas DbEk/Dt increases near-linearly with increasing
CON for breaking crests. Moreover, the values of DbEk/Dt for non-breaking and breaking
crests are clearly separated by a threshold region DbEk/Dt = [0.198, 0.235]. Therefore, we
see that the distinguishing energetic feature separating breaking and non-breaking crests
is the occurrence of a critical point in the counterbalance between Ek source and sink
terms when DbEk/Dt � 0.235. Beyond this threshold value of the kinetic energy growth
rate, the sink terms cannot absorb the continuing increase in Ek and the wave passes an
energetic point of no return that culminates in breaking onset. This process represents an
energetic indicator of breaking inception and we hereafter label this critical point in the
crest evolution the energetic signature for breaking inception.

3.4. Features of the energetic signature for breaking inception
We now explore the prognostic characteristics of this new energetic signature for breaking
inception and look first at the breaking strength. Up to this point we have characterised
this through a visual examination of the interface evolution of our representative breaking

959 A33-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

13
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.134


An energetic signature for breaking inception

0

B1

B1

B2D
b E

k /Dt > 0

D
b E

k /Dt < 0

d/λp = 0.50, N5, 210

d/λp = 0.50, N5, 211

d/λp = 0.50, N9, 210

d/λp = 0.50, N9, 211

d/λp = 0.17, N5, 210

B2

0

K2P – u · f
–0.5 0.2 0.4 0.6

DbEk/Dt
0.8 1.0

0

0.175

0.350

0.525

0.700

0.875

Γ

1.050

1.225

1.400

–1.0–1.5
0

0.5

1.0

1.5

C
O

N

2.0

2.5

3.0

0

0.5

1.0

1.5

2.0

2.5

3.0

(b)(a)

Figure 9. The magnitude of CON as a function of (a) K2P − u · f and (b) DbEk/Dt, at the time that the critical
point p� occurs. The 5 % and 95 % confidence intervals are also shown. Breaking crests are coloured by the
breaking strength indicator Γ , and non-breaking crests are coloured grey. The DbEk/Dt threshold separating
non-breaking and breaking crests is shown by the hatched region.

crests B1 and B2 (e.g. figure 3), with the B2 crest exhibiting more extensive overturning.
To quantify this assessment, we use the breaking strength parameter (Derakhti et al. 2018)

Γ = T
DbB
Dt

∣∣∣∣
Bth

. (3.4)

While other methods of defining the breaking strength exist (e.g. Drazen et al. 2008), we
utilise (3.4) as it is conveniently formulated with the same local energetic quantities that
we are investigating. The parameter DbB/Dt is calculated as the average rate of change
over the time that 0.83 < B < 0.88 and the wave period T is defined from the deep-water
relationship using the crest zero-crossing wavelength λc. The value of Γ for the B1 and
B2 crests is 0.85 and 1.1, respectively, which aligns with our initial qualitative assessment
of breaking strength. In figure 9, where all breaking crests are coloured by the magnitude
of Γ , we see that the largest Γ values are associated with the largest values of CON,
the largest imbalance between CON and ρgw − u · f and the largest DbEk/Dt values
at the time that the energetic inception signature occurs. These results demonstrate that
the magnitude of these terms at the instant of the energetic inception signature give an
indication of the strength of the subsequent breaking event.

The timing of the energetic inception signature is also of particular interest as the
identification of breaking inception provides advance warning of breaking onset. The
instant at which B = Bth, which we refer to as the kinematic inception threshold, is
shown for the B1 and B2 cases in figure 8 by the × symbol. The period over which
0.83 < B < 0.88 has also been coloured black to provide an indication of the rate of
change in B around this time. The timing of the energetic inception signature (�) is
clearly separated from the kinematic inception threshold and occurs earlier in both
examples. This is seen to be the case for all breaking crests in our ensemble (figure 10).
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Figure 10. The energetic inception time (�) and the kinematic inception time (×) for all breaking crests in our
ensemble, relative to the time of breaking onset t∗ = 0. Crests are grouped by wave packet size and water depth
and the representative breaking crests B1 and B2 discussed in the text are annotated.

While the kinematic inception threshold consistently occurs around 0.05–0.1 wave periods
prior to breaking onset regardless of wave packet size or water depth, the energetic
inception signature occurs much earlier, up to 0.4 wave periods prior to breaking onset
for our deep-water crests and up to 0.7 wave periods prior for our shallow water cases.

4. Discussion and conclusions

Using an ensemble of breaking, near-breaking and non-breaking wave crests simulated
with a numerical wave tank, we have examined the evolution of the kinetic energy balance
as crests transition from growth to decay. Our results provide new details on the energetic
processes leading up to the onset of breaking and the key difference between non-breaking
and breaking crest evolution.

Relative to the crest motion, the kinetic energy field is driven by a flux velocity that
moves upward and rearward to the crest tip before descending down the rearward face of
the wave. On the forward side of the crest, this flux drives a net convergence of kinetic
energy, the majority of which is converted to potential energy as the fluid is lifted. In
non-breaking crests, the net rate of change of kinetic energy only modestly varies between
growth and decay as this convergence of kinetic energy is nearly offset by conversion to
potential energy. In breaking crests the rate of kinetic energy convergence is significantly
larger than in non-breaking crests, but the rate of conversion to potential energy is similar
for all crests. This imbalance leads to a net increase in total kinetic energy, which continues
up to breaking onset. Of the remaining terms in the kinetic energy balance equation (3.3),
surface tension plays a negligible role and viscous dissipation is only significant on a local
scale at the crest tip.

These energetic processes are highly localised and, while the general characteristics
can be seen in bulk energetic values, the full detail is only revealed when observing the
local values. The maximum kinetic energy, as well as the largest values of kinetic energy
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convergence and rate of change, were observed to occur on the forward face of the crest
tip. We confirmed that the evolution of these terms at this location is representative of the
wider crest region by comparing these with the equivalent values integrated over various
subregions of the crest. We found that the local variability at this hotspot is still evident
even when integrating over the top 20 % of the crest for weaker breaking cases and the top
50 % for stronger breaking cases.

These local values highlight the energetic signature that distinguishes breaking crests
from their non-breaking counterparts. Throughout the evolution of a non-breaking crest,
the rate of change of kinetic energy at the crest tip is bounded by the interplay between
the source and sink terms, with the threshold range separating non-breaking and breaking
crests in our ensemble found to be DbEk/Dt = [0.198, 0.235]. But in a breaking crest, this
threshold is exceeded and any further increase in kinetic energy through convergence can
no longer be offset by conversion to potential energy or dissipation through friction. The
result is an irreversible and rapid increase in kinetic energy that leads to breaking onset.

Our results show that this energetic signature is a robust indicator of breaking inception.
For our ensemble, this typically occurs around 0.25 wave periods prior to breaking onset,
but up to 0.7 wave periods prior for the shallow water cases that we investigated with
d/λp = 0.2. Of fundamental interest is that this energetic inception signature occurs
significantly earlier than the kinematic inception threshold based on the transition of B
through the value Bth = 0.855.

A number of questions are left for future studies. We anticipate that the energetic
signature of breaking inception presented here will be a consistent feature regardless of
wave packet type, water depth or wind forcing, but our ensemble has so far explored only a
subset of these variables and further investigation is needed before this can be confirmed.
A full energetic explanation for the existence of the kinematic inception threshold Bth
also remains unresolved, particularly as the time of this threshold is clearly distinct from
our energetic inception signature presented here. Finally, while this study has focused on
the time period leading up to breaking onset, our results also indicate a clear correlation
between the breaking inception point and the strength of the breaking event, which has
implications for the amount of energy dissipated. While we show a strong relationship
between the kinetic energy convergence, the rate of change of kinetic energy and the
breaking strength parameter Γ , we leave a full examination of this result for future work.

Supplementary movie. A supplementary movie is available at https://doi.org/10.1017/jfm.2023.134.
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Appendix A. Convergence of the simulations with increasing resolution

The numerical wave tank is configured to efficiently focus high grid refinement only
where it is required to resolve the wave energetics. We confirm that the total simulation
energy converges as a function of maximum grid refinement 2n by performing a series of
simulations with varying refinement levels but identical tank and paddle forcing settings.
The total energy is calculated within a control volume covering the water phase but
excluding the numerical sponge layer (figure 1). The total kinetic energy K, potential
energy P and their sum E are

E(t) = K(t) + P(t) =
∫ xs

0

∫ η(x,t)

−H
E dx dz +

∫ t

0

(∫ η

−H
uE
∣∣∣∣
0

dz −
∫ η

−H
uE
∣∣∣∣
xs

dz

)
dt,

(A1)

where the integral limits extend from the bottom of the numerical wave tank z = −H to the
interface η(x, t) and horizontally from the paddle boundary x = 0 to the commencement of
the sponge layer x = xs. The flux of any energy in or out of the control volume is captured
by the final two terms.

In figure 11 the total E , K and P is shown for the simulation from which the breaking
B2 crest has been taken, as well as simulations with identical paddle amplitude settings but
smaller grid refinement. Energy values are normalised by the total energy E at simulation
time t/Tp = 12.5, when the wave packet has fully entered the simulation domain and flux
into the control volume is near-zero. This simulation is forced by one of the larger paddle
amplitudes in our ensemble and we see similar results for other simulations.

For the period leading up to breaking onset for the B2 crest, the energy levels at each
refinement level are similar. The equipartitioning of K and P within the wave packet is
evident, with the oscillations in these terms indicative of the conversion of energy within
the wave packet.

The onset of breaking is followed by the decrease in E and K, which can be seen
for both the 210 and 211 cases. Breaking is not observed for the lower refinement levels
and the decrease in E is due to viscous and numerical dissipation only. The E , K and P
results converge for grid refinement levels 210 and 211 both before and after breaking onset,
indicating that the energetic processes leading to breaking are sufficiently resolved at these
resolutions. Our confidence that the local energetic processes are sufficiently resolved is
further reinforced by the convergence of the 210 and 211 results presented in § 3.

Appendix B. Sensitivity of results to sampling location

The rate of change of a scalar quantity f integrated over a moving and deforming control
volume V with bounding surface S is calculated using the Reynolds transport theorem,

DvF
Dt

= d
dt

∫
V(t)

f dV =
∫

V(t)

∂f
∂t

dV +
∫

S(t)
b · nf dS, (B1)

where b is the local velocity of S. We define a control volume that moves and deforms to
follow the crest evolution, bounded at the top and sides by the interface η(x, t) and at the
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t/Tp

18 19

Figure 11. The integrated energy of the water phase (excluding the sponge layer) for the simulation from
which the near-breaking B2 crest has been taken (black) and for identical simulations with lower maximum
grid refinement levels 2n. The total E (top), kinetic K (middle) and potential energy P (bottom) are shown. All
values are normalised by E0: the total energy at the time which the wave packet has fully entered the numerical
wave tank. Breaking onset time for the 211 B2 crest is indicated by the dashed grey line.

z = 0

V(t)

xL(t) xR(t)
η(x, t)

z0(t)

Figure 12. Schematic of the control volume V(t) bounded at the top by the interface η(x, t), at the bottom by
the horizontal plane z0(t) and on the left and right by the vertical planes xL(t) and xR(t). The free variables z0,
xL and xR are set to examine a chosen subregion of the crest.

bottom by a horizontal slice through z = z0(t) that intersects the interface at the locations
xL(t), xR(t) (figure 12). In this case (B1) can be formulated as

DvF
Dt

=
∫ xR

xL

∫ η

z0

∂f
∂t

dx dz +
∫ xR

xL

b · nf
∣∣∣∣
z0

dS +
∫ xR

xL

b · nf
∣∣∣∣
η

dS, (B2)

where the first surface integral encompasses the part of the control surface within the crest
and the second is the remaining control surface along the interface.
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The integrated rate of change of Ek is found by substituting (3.1) for f in (B2)

DvK
Dt

=
∫ xR

xL

∫ η

z0

(−∇ · u (p + Ek) − ρgw + u · f + u · nσκδs) dx dz

+
∫ xR

xL

b · nEk

∣∣∣∣
z0

dS +
∫ xR

xL

b · nEk

∣∣∣∣
η

dS. (B3)

With application of the divergence theorem this becomes

DvK
Dt

=
∫ xR

xL

∫ η

z0

(−ρgw + u · f + u · nσκδs) dx dz

+
∫ xR

xL

u · np
∣∣∣∣
z0

dx +
∫ xR

xL

u · np
∣∣∣∣
η

dS

+
∫ xR

xL

(u − b) · nEk

∣∣∣∣
z0

dx +
∫ xR

xL

(u − b) · nEk

∣∣∣∣
η

dS, (B4)

where at the interface u · n = b · n so that the last term cancels and the remaining surface
integrals can be expressed as volume integrals to arrive at

DvK
Dt

=
∫ xR

xL

∫ η

z0

(−∇ · (up + [u − b]Ek) − ρgw + u · f + u · nσκδs) dx dz. (B5)

The balance equation (B5) has a number of favourable properties. Firstly, it can be seen
that if (B5) is applied to an arbitrarily small control volume the local kinetic energy balance
equation (3.3) is recovered. In addition, as the air–water interface at η is a material surface,
the divergence of kinetic energy within the control volume is equal only to the relative flux
of kinetic energy through the z0 plane∫ xR

xL

∫ η

z0

∇ · ([u − b]Ek) dx dz =
∫ xR

xL

[u − b] · nEk

∣∣∣∣
z0

dx, (B6)

with the right-hand side of (B6) providing a more numerically convenient method for
accurately calculating the divergence field within the control volume.

To account for the temporal change in the size of the control volume, (B5) can
alternatively be formulated as a volume-averaged quantity; however, this introduces an
additional dilation term in (B5) that complicates the interpretation of the energy budget.
The change in V(t) is small (less than 10 % over the final 0.2T0 prior to breaking onset
for the z0 = 0.9a(t) case) in comparison with the changes in the other terms. As our focus
is on the relative magnitude of these terms in individual cases, the time-varying nature of
V(t) does not impact the results presented in this section.

By adjusting the parameter z0 the terms in (B5) can be examined for subregions of the
crest tip of various sizes. We set z0 as a fraction of the crest amplitude a(t). The subregion
defined by z0 = 0.9a(t) is the smallest control volume that fully encompasses the crest
bulge and the region of large Ek values around the crest tip (figure 3).

In figure 13, we compare the evolution of DbEk/Dt and its components from figure 4
with the integrated values obtained from (B5) for a range of control volumes that vary
in size from the top 5 % (z0 = 0.95a(t)) to the top 50 % (z0 = 0.5a(t)) of the evolving
crest. The local DbEk/Dt values are converted to the same units as (B5) by multiplying
by the grid cell volume, which is a constant value as x+ is located in the high-resolution

959 A33-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

13
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.134


An energetic signature for breaking inception

∫CON ∫K2P

0–1.0 –0.5 0–1.0

DVK/Dt ∫u · nσκδs∫u ·  f

–0.5 0

t∗t∗t∗

0.02

0.01

–0.01

–1
(×

1
0

–
3
)

(×
1
0

–
4
)

(×
1
0

–
4
)

(×
1
0

–
4
)

(×
1
0

–
7
)

–5

–2

–1.0

–0.5

–5

5

B2B1NB1

z0 = 0.95a(t)

z0 = 0.90a(t)

z0 = 0.80a(t)

z0 = 0.50a(t)

z0 = – H

x+

0

0.5

1.0

0

2

1

0

0

0

5

–0.02

0

–1.0 –0.5

(e)

(b)(a) (c)

(h)(g) (i)

(k)( j) (l)

(n)(m) (o)

(q)(p) (r)

(d ) ( f )

Figure 13. Evolution of the rate of change of the integrated kinetic energy K and its contributing terms
from (B5) for the representative near-breaking (NB1) and breaking (B1, B2) crests. Positive (negative) values
indicate a source (sink) of K. Periods of wave breaking are indicated by the solid dots. The top row (a–c) shows
the local values taken at the location x+ (figure 4) and multiplied by the model cell volume. Each remaining row
displays values integrated over a control volume that encompasses increasing amounts of the crest as shown by
each crest schematic (left).
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interface region. For brevity we use a single integral symbol to refer to these integrated
terms (e.g.

∫
CON).

An initial observation from figure 13 is that the evolution of all terms is relatively
consistent as the region of interest is increased in size from a point location (figure 13a,b,c)
to a large control volume (figure 13 p,q,r). But in relation to the key findings from this
study, the features of most interest are the rapid increase in DvK/Dt (black line) and∫

CON (blue) just prior to t∗ = 0 that is observed for the breaking crests B1 and B2.
As the size of the control volume increases, the relative magnitude of this signal is
diminished, but remains observable in the z0 = 0.8a(t) control volume for the B1 case
(figure 13k) and in the z0 = 0.5a(t) control volume for the stronger B2 case (figure 13o).
In contrast, for all three representative crests the

∫
K2P and

∫
CON values are in close

balance when integrated over the full water depth (figure 13p,q,r) and the rate of change
of K is consequently near-zero.
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