
7 
The decay kinematics of the 
massless relativistic string 

7.1 Introduction 

In this chapter we consider the situation when a qq-state is produced 
with a large amount of energy at a single space-time point. It will be 
called the original pair and we assume that q and q interact through a 
constant attractive force, K. The pair will then form a yoyo-hadron state 
as described in the previous chapter and immediately start to separate. 

The state composed of the two particles and the force field, if it contains 
a larger mass than that of the stable hadrons, will decay into smaller-mass 
particles. Such a decay process is of course of a quantum mechanical 
nature. 

Although we will at this point use semi-classical arguments, we will 
later show that the resulting formulas fit into both a quantum mechanical 
tunnelling process and a statistical mechanics scenario. 

The major assumption will be that a string state may decay by the 
production of new pairs of qq-particles along the force field. Using the 
earlier interpretation that a q or q corresponds to the endpoint of a 
string, the production process corresponds to creating new endpoints, i.e. 
to breaking up the original string into smaller pieces. 

The q- and q-particles will be treated as massless during the discus
sion. This assumption is necessary in a semi-classical framework for the 
conservation of energy-momentum. A massless pair produced at a single 
space-time point does not take any energy from the field. A massive pair 
(mass /1) will, however, in classical physics need a field region 6x = 2/1/K. 
We will later consider the quantum mechanical modifications which are 
necessary in order to treat the production of massive pairs. 

The production point of a new pair is called a vertex. Figure 7.1 shows 
the development in space-time of parts of a qq-state, with some of the 
vertices produced. 

134 

https://doi.org/10.1017/9781009401296.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401296.007


7.1 Introduction 135 

Fig. 7.1. Space-time development in a breakup situation showing some of 
the vertices produced together with the state SAB discussed in the text. The 
rapidity y of the state SAB is the hyperbolical angle between the broken-line 
directions. 

We note that due to causality the two original endpoint particles will 
know nothing about the breakup vertices 'behind' them, at least not for 
some considerable time. As they are massless and move with the velocity 
of light there is no possibility of reaching them with a signal until they 
have turned around. 

We further note that a produced pair will immediately start to sepa
rate owing to the forces exerted by the two adjoining string pieces. The 
new particles in that way use up the field energy between them, i.e. the 
string field in between them vanishes. Their parting situation is actually 
irrevocable - they will never meet again. 

In this way the notion of confinement is smuggled in. A string force 
field is always confining in the sense that the force field vanishes at the 
endpoint 'charges'. This is in contrast to the situation in electrodynamics, 
where a newly produced electron-positron pair will continue to interact 
even if pulled apart by external forces. 

In our case, at every vertex there will be two independent string pieces 
with endpoint particles moving away in opposite directions. There may 
be several vertices along the string, as shown in Fig. 7.1. In this way 
every vertex actually partitions the set of all vertices into two parts, those 
belonging to the string piece moving to the left and those belonging to 
the string piece moving to the right. This observation will later on provide 
us with a convenient way to order the vertices. 
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7.2 The kinematics of the decay and its implications 

1 Preliminary remarks 

We will now consider the energy-momentum properties of one of the 
string pieces, the one ending in qA and ZiB. We will call the state consisting 
of the two particles and the force field between them SAB and we note that 
it is after formation isolated from the remaining system. The two particles 
are produced at adjacent vertices, at the space-time points A = (XA, tA) 
and B = (XB, tB), respectively. In order to compute the energy-momentum 
of SAB we consider the space-time point 0 = (xo, to). This is, according to 
Fig. 7.1, the first meeting point of qA and ZiB and there is no field between 
them when they are at this point. 

According to the equations of motion given in Chapter 6 the energies 
Ej and momenta Pj (j = A,B) at this point (note that momentum is 
counted positive along the positive x-axis) are given by 

EA = K(XA - xo), EB = K(XO - XB) 

PA = K(tA - to), PB = K(to - tB) 
(7.1) 

Therefore the state SAB will have a total energy-momentum depending only 
upon the space-time difference between the production vertices A and B: 

For reference we note that there is a relationship between some of the 
quantities in Eq. (7.1) because the positive (negative) lightcone component 
of the point labelled 0 is equal to the corresponding component for the 
vertex A (B): 

(7.3) 

If the state SAB corresponds to a meson state with mass m then the vertices 
A and B must lie on the two branches of the hyperbola 

E2 - p2 m2 2 2 
-K---;;2:--- = -K2 = (XA - XB) - (tA - tB) (7.4) 

Therefore there is a strong correlation between two vertices corresponding 
to the production of a definite mass in between. One can, assuming that 
one knows one of the vertices (e.g. A) draw the hyperbola branch along 
which B must be found (see Fig. 7.2) and vice versa. 

It is also useful to note that the velocity of the 'particle' produced 
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Fig. 7.2. Two neighboring vertices A and B with the requirement that they 
should each lie on a hyperbola. The hyperbolas are indicated for A and B. 

between the vertices A and B is given by 

p !:J.t 
VAB = - =-

E 1\x 
(7.5) 

where 1\ indicates the differences between the A and B coordinates. We 
remember from Chapter 2 that this result is to be expected in connection 
with spacelike vectors. The system is evidently at rest when qA and 7iB 
are produced at the same time. The rapidity of the system is given by 
the hyperbolic angle, y, shown in Fig. 7.1 and we note that the faster the 
system, the more tilted towards the lightcone is its velocity direction: 

_ 1 1 (1 + VAB) _ 11 (1\X + 1\t) 
Y AB - 2" og 1 _ VAB - 2: og 1\x - !:J.t 

2 The consequences 

(7.6) 

The distance between the vertices A and B must be space like in order that the 
mass should be real, according to Eq. (7.4). Thus the two production points 
are not causally related and no signal can be sent between the vertices. This 
has some interesting consequences, which we will now consider. According 
to Fig. 7.1 vertex A appears earlier than vertex B in the ordinary time 
sense. This is, however, a statement which depends upon the Lorentz 
system if A and Bare spacelike with respect to each other, since then 
we can always, according to Chapter 2, find a Lorentz boost to another 
frame such that the vertex B (in its new position By) will seem to appear 
earlier than vertex A (Ay, see Fig. 7.3). 
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Fig. 7.3. The situation in Fig. 7.1 after a Lorentz boost along the negative 
direction. The points (A,Ay), (B,By) and (O,Oy) are shown together with the 
hyperbolas on which they move during the Lorentz boost. 

The same considerations also apply to every other pair of adjacent 
vertices. We conclude that all the vertices must be spacelike with respect 
to each other for the produced states to have positive masses. Therefore 
no statement about (ordinary) time-ordering in the breakup process is 
Lorentz-invariant. There is consequently no 'first' vertex in this sense; the 
vertices all occur, in a relativistic setting, at the same time. We will later 
see that there are other possible ways to order the process and also other 
ways to define a useful time variable. 

Thus, for the description of the decay process to be Lorentz-invariant 
then there can be no vertex that is more significant than any other. Each 
vertex has the same property, i.e. it divides the system into two parts, the 
vertices to its left and those to its right. Evidently these parts can also be 
described as two independent groups of particles moving apart. One often 
uses the term 'jet' for such a connected group. (It may then happen that 
a jet will contain only a single particle, viz. if we consider the outermost 
vertex on one end.) 

It is an important constraint, when we provide a probabilistic description 
of the process, that all the vertices must be treated in the same way. This 
is what causality and Lorentz invariance imply. 

The fact that all the vertices occur at spacelike distances with respect to 
each other also seems to be necessary from the point of view of ordinary 
common sense. It seems evident that the field cannot break up at a space 
time point if such a breakup has already occurred earlier, i.e. in the 
backward lightcone with respect to the point. In accordance with what 
has been said above there is then no longer any field left, and therefore 
there is no energy left, and so on. 
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7.3 Ordering of the decay process along the lightcones 

Another property that we may deduce from the mass-shell condition (7.4) 
is that for every yoyo meson there is only a single degree of freedom. We 
may prescribe either the energy-momentum component p+ = E + P or 
the energy-momentum component p_ = E - P (the positive and negative 
lightcone components) of the system SAB. They are linked by the mass-shell 
condition 

2 p+p_ = m (7.7) 

(Let the reader be warned, as Carter Dickson or any other honest mystery 
writer would say. A very sophisticated reader might note that we are 
at this point introducing a slight mismatch between the ordinary space
time coordinates and the lightcone coordinates. We have already shown 
that the squared mass is given by the area spanned by the string during 
a complete period and not by a half period as Eq. (7.7) implies. The 
difference corresponds to using, instead of the normal metric dxdt, the 
lightcone metric dx+dx_ = 2dxdt. We will go on employing this mismatch 
in order to avoid writing several factors of 2 or -Ii in our formulas.) 

From the calculations in connection with Eq. (7.1) we note that for 
the state SAB the positive lightcone component is actually carried by the 
qB-particle and the negative one by the qA-particle at the time of their first 
meeting to form the final-state yoyo-hadron. (It is necessary to make use 
of Eq. (7.3) to prove this statement.) This property is in the same sense 
valid for all the yoyo-hadrons, i.e. that the positive (negative) lightcone 
energy-momentum is, at the meeting points, carried by the corresponding 
q(q)-particle. The assignment to the particles of positive and negative 
lightcones is of course related to the choice of directions of motion for 
the original pair. 

This observation provides a useful way of ordering the process. Consider 
Fig. 7.4, which exhibits the decay of a whole string system stemming from 
an original pair qo, qo with lightcone energy-momenta P+o, P-o into many 
yoyo-hadrons, which go off in different directions (i.e. with different ve
locities). From the remarks above we conclude that the production process 
is easily ordered along one of the lightcones. Then the corresponding light
cone energy-momentum of the yoyo-meson indexed j (composed of qj, qj 
from adjacent vertices) is given by the lightcone component of either the 
qj (the P_j if we use the negative lightcone ordering) or the qj (the P+j for 
the positive lightcone ordering). The other component can be computed 
from Eq. (7.7). We will normally choose to number the yoyo-hadrons 
along the positive lightcone. 

The sum of these components will, of course, add up to the light
cone components of the original pair; this corresponds to total energy-
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n n-l 

Fig. 7.4. A high-energy string breakup of a pair qo, qo having lightcone energy
momenta P+o, p-o· 

momentum conservation: 
n 

'" p+' = P+o ~ _1 _ (7.8) 
j=l 

Thus the production process can be characterised as a set of choices for the 
lightcone components of one set of constituents of the yoyo-hadrons, i.e. of 
either the qj or the ZJj. 

These lightcone components are evidently obtained from the field (re
member that all the pairs are produced 'at rest'). Therefore another way to 
describe the energy-momentum of the final-state yoyo-hadrons is to state the 
size of the space-time region within which the constituents have been acted 
upon by the string force field. In order to state the energy-momentum of 
the system SAB in Fig. 7.1 we may therefore prescribe a lightcone distance, 
either /1t + ~x = ~x+ or ~t - ~x = ~x_ (/1t = tA - tB, ~x = XA - XB). 

The other of these is then given by Eq. (7.7) rewritten as 

(7.9) 

In this way the production process can be considered as a series of 'steps' 
along the positive (negative) lightcone. Each step corresponds to the light
cone distance between two adjacent vertices. Then energy-momentum con
servation according to Eq. (7.8) corresponds to stepping all the way from 
the turning point of the original qo (Zio) back to the origin. 

After each step it is necessary to go along the opposite lightcone a 
distance ~X_j (~x+j) in order to keep the yoyo-meson on the mass 
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shell. In that way the string decay process corresponds to a Markovian 
stochastic process, where each vertex in the process is determined solely 
by the previous starting point, i.e. the vertex already reached, and by the 
probability of taking a particular step along the lightcone. 

It is convenient to define the scaled lightcone components z+ and L by 
means of the equations 

p+ 
z+ = -=-
- po± 

(7.10) 

where Po± are the corresponding lightcone components for the original q
and q-particles. The quantitities z± are Lorentz invariants, being the ratio 
between two quantities which transform with the same factors exp(±y) 
under a Lorentz boost along the x-axis. 

The total production process may then be looked upon as a set of 
steps {z+ j} along the positive lightcone (or equivalently {L j} along the 
negative lightcone). Energy-momentum conservation means that all the 
steps add up to unity. Each step corresponds to the production of a new 
meson containing a fraction of the original q- (or q-) particle's energy
momentum that corresponds to the step size. 

7.4 Iterative cascade fragmentation models 

The above situation as viewed in a frame boosted along the positive x-axis 
with a large velocity is shown in Fig. 7.5. We note that, while in Fig. 7.4 the 
hadrons in the centre are the slowest and also the first to be produced in 
time in that system, in Fig. 7.5 it is instead the hadrons which are furthest 
out along the lightcone (usually the fastest in Fig. 7.4) that are the slowest 
and the first to be produced (cf. the discussion of velocities and rapidities 
in connection with Eqs. (7.5), (7.6)). This is again a very general property 
of all Lorentz-covariant production processes and we will return to this 
observation in the next section. 

Up to now we have not been concerned with the conservation of 
internal quantum numbers, e.g. the flavor quantum numbers of the newly 
produced qq-pairs. We will from now on assume that the pairs produced 
are actually a quark and its antiparticle, an antiquark with the opposite 
flavor, i.e. the pairs will together have the quantum numbers of the vacuum. 

This means that it is possible to relate adjacently produced hadrons 
also by means of their flavor quantum numbers. We will introduce the 
notion of 'rank' in the following sense. The first-rank meson contains the 
quantum number of the original q-particle together with the antiflavor of 
the q-particle produced at the first vertex along the lightcone. 

In the same way we define a second-rank particle as the particle com
posed of the q-particle from the first vertex and the q-particle from the 
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1 

Fig. 7.5. The situation of Fig. 7.4 in a frame boosted along the positive lightcone 
direction in such a way that the first-rank particle is at rest. For simplicity we 
write z == Z+l. 

next, etc. It is evidently possible to introduce rank also by starting with 
the original q-particle and the negative lightcone. Thus ordering by rank 
and flavor corresponds, in this kind of model, to an ordering along the 
lightcone(s). 

From Fig. 7.5 we notice that the first vertex along the lightcone, VI, 
actually divides the decay event into a single first-rank particle moving to 
the right and all the remaining ones as a combined jet moving to the left. 

After the production of the first meson with lightcone fraction Z+1 the 
remainder of the system will share the fraction 1 - z+ 1. This means that 
the remaining system will have a squared mass SI equal to (using for 
simplicity z for z+d 

SI = (l-z)W+ (w_ - z;+) = (l-z) (s- :2) (7.11) 

where we suppose the original system to have squared mass s = W + W _( = 
P+oP-o, due to Lorentz invariance). 

The different parts of this formula have simple geometrical interpre
tations. The first term, i.e. the scaled-down mass-square is immediately 
recognised. For the second term it is easy to convince oneself that the 
area of the region below the first vertex, VI = K(X+I, x-d, and above the 
production point of the original pair, is 

(7.12) 
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1 

Fig. 7.6. An iterative cascade chain. 

This is (apart from the factor K2) the squared proper time "LI = tI - xI 
of the vertex Vl. The positive lightcone component of the vertex Vl (with 
respect to the origin) is what is left of the original q's energy-momentum, 
KX+l = (1 - z)W+. The negative lightcone component is similarly what 
was taken by the first particle, i.e. KX-l = m2/zW+. Therefore the quantity 
r 1 is equal to minus the second term in Eq. (7.11): 

m2 m2 
rl = (1- z)W+-- = (1- z)-. 

zW+ z 
(7.13) 

In the Lund model formulas both terms are taken into account and 
the model therefore exhibits complete energy-momentum conservation, 
i.e. every new particle takes away not only its forward lightcone energy
momentum z W + but also the negative fraction needed to put it on the 
mass shell. 

We will later see that the proper times of the vertices are generally 
of a limited size. For large values of s we may then neglect r 1 and 
approximate the remainder system as being the same as the original one 
apart from a scaling down of the positive lightcone component by the 
factor 1 - z == 1 - Zl. 

The basic idea of regarding particle production at high energies as 
a scaling process was conceived many years ago, [90], to describe the 
fragmentation regions in hadronic interactions. Later similar ideas were 
used in partonic scenarios as iterative cascade fragmentation schemes, [13]. 
Then one assumes that there is a certain probability 

(7.14) 

of producing the first-rank hadron (indexed by the original q's flavor i 
and the produced 7it's antiflavor) with fractional energy-momentum Zl, 
leaving the system with a ql-particle at the endpoint and with a scaled 
down energy-momentum 1 - Zl (see Fig. 7.6). 
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Then the process can be repeated, with a probability 

fd z2)dz2 (7.15) 

of producing a second-rank meson with flavors 12 (the second flavor-index 
refers to a q-particle) and with energy-momentum fraction 

(7.16) 

After that the system is left with a q2-particle at the end and with a scaled 
down energy-momentum equal to 

(7.17) 

Thus at each step a new flavor is produced, a certain probability distribu
tion is applied to find the fraction Zj and the remainder system is scaled 
down by a further factor 1 - Zj. 

In this way the problem has been reduced to finding a set of probability 
distributions fij(Z) and then repeatedly applying them to the situation at 
hand. This is the basis of what is often referred to as the iterative cascade 
jet or Feynman-Field model in honor of two of the main contributors. We 
will consider some of their main features in section 9.4 

In the next chapter we will see that there is a unique form for the 
distribution( s) f in the Lund model. To prove that we will require that the 
final-state meson production process should be statistically the same if 
we describe it in terms of steps along the positive or along the negative 
lightcones (left-right symmetry). 

We will end this chapter with a few remarks on a possible problem, to 
my knowledge first raised by Bjorken for the iterative cascade models, in 
the well-known Landau-Pomeranchuk 'formation time' concept. 

7.5 The formation time and iterative cascade jets 

Landau and Pomeranchuk considered the notion of a formation time in 
the context of QED bremsstrahlung. In its simplest setting the problem is 
as follows: 

• at what time can one distinguish between a state containing a single 
charged particle and a state containing the particle accompanied by 
a photon? 

They pointed out that in a Lorentz frame where the particle moves 
along one axis and the photon is moving transversely to this axis then 
it it is necessary to wait at least a time corresponding to the photon'S 
wavelength to make a measurement that can distinguish the photon. Since 
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the wavelength is inversely proportional to the transverse momentum of 
the photon k.L, it is thus necessary to wait a time 

k- 1 
TO c::::: .L. (7.18) 

In a frame where the photon has energy E there will be a time-dilation 
factor y(v) = E/k.L and one obtains 

E E 
T = TO- c::::: - (7.19) 

k.L kl 
With the wavelength exchanged for some rest frame typical production 
time, i.e. with k.L exchanged for some 'virtuality' Q (e.g. the transverse mass 
of a hadron), this formation time should, in any relativistically covariant 
and causal setting, provide a time-ordering of the process. Therefore it is 
always the slowest particles which will be the first to be emitted while the 
higher-energy particles will take a time proportional to their energy. 

In the iterative cascade models the first-rank particle, according to the 
considerations above, will take a fraction Zl of its energy-momentum leav
ing a fraction 1- Zl to the remaining ones. The second-rank particle then 
takes z2(1 - zI), etc. The values Zj are assumed to be given stochastically 
by means of a distribution J(z)dz. 

As we will later see, one basically obtains a geometrical series for the 
final-state particle energy-momentum fractions. Therefore the first-rank 
particle is generally faster than the rest, i.e. it will have a longer formation 
time. Bjorken's question was: 'how can it then be the first to be produced 
in the chain?' 

In the Lund model there is evidently a simple answer to this problem. 
Rank-ordering, as we have seen, corresponds to an ordering along the 
lightcone of the production vertices. There is no contradiction to an 
ordinary time-ordering with respect to the original qq production point, 
which is in accordance with the Landau-Pomeranchuk prescription. In any 
frame it is always the slowest mesons which are the first to be produced, 
according to the Lund model. 
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