
9
Multipole analysis

Start by taking the photon momentum to define the z-axis (Fig. 9.1); the
generalization follows below. In this case the plane wave can be expanded
as [Fe80]

eik·x =
∑
l

il
√

4π(2l + 1)jl(kx)Yl0(Ωx) (9.1)

The vector spherical harmonics are defined by the relations [Ed74]

YM
Jl1 ≡

∑
mλ

〈lm1λ|l1JM〉Ylm(Ωx)eλ (9.2)

Note this sum goes over all three spherical unit vectors, λ = ±1, 0. The
definition in Eq. (9.2) can be inverted with the aid of the orthogonality
properties of the Clebsch–Gordan (C–G) coefficients

Ylmeλ =
∑
JM

〈lm1λ|l1JM〉YM
Jl1 (9.3)

The eλ are now just fixed vectors; they form a complete orthonormal set.
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Fig. 9.1. Coordinate system with z-axis defined by photon momentum.
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9 Multipole analysis 35

Therefore any vector can be expanded in spherical components as

v =
∑
λ

(v·eλ) e
†
λ =

∑
λ

vλe
†
λ

v±1 = ∓ 1√
2
(vx ± ivy) v0 = vz (9.4)

As we shall see, the vector spherical harmonics project an irreducible
tensor operator (ITO) of rank J from any vector density operator in the
nuclear Hilbert space. A combination of Eqs. (9.1) and (9.3) and use of
the properties of the C–G coefficients yields1

ekλe
ik·x =

∑
l

∑
J

il
√

4π(2l + 1)jl(kx)〈l01λ|l1Jλ〉Yλ
Jl1(Ωx) (9.5)

The C–G coefficient limits the sum on l to three terms l = J, l = J ± 1,
and these C–G coefficients can be explicitly evaluated to give for λ = ±1
[Ed74]

ekλe
ik·x =

∑
J≥1

iJ

√
4π(2J + 1)

2

⎧⎨
⎩ − λ jJ(kx)Yλ

JJ1

−i

⎡
⎣√ J + 1

2J + 1
jJ−1(kx)Yλ

J,J−1,1 −
√

J

2J + 1
jJ+1(kx)Yλ

J,J+1,1

⎤
⎦
⎫⎬
⎭ (9.6)

From [Ed74] one has

∇ × jJ(kx)Yλ
JJ1 = i

⎡
⎣( d

dx
− J

x

)
jJ(kx)

√
J

2J + 1
Yλ

J,J+1,1

+

(
d

dx
+

J + 1

x

)
jJ(kx)

√
J + 1

2J + 1
Yλ

J,J−1,1

⎤
⎦ (9.7)

The differential operators just raise and lower the indices on the spher-
ical Bessel functions, giving −kjJ+1(kx) and kjJ−1(kx), respectively. A
combination of these results gives for λ = ±1

ekλe
ik·x =

∑
J≥1

√
2π(2J + 1) iJ

{
− λ jJ(kx)Yλ

JJ1(Ωx)

−1

k
∇ × [jJ(kx)Yλ

JJ1(Ωx)]

}
; λ = ±1 (9.8)

1 Note this is the amplitude for photon absorption.
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36 Part 2 General analysis

Note the divergence of both sides of this equation vanishes [Ed74].2 Now
use

Yλ†
JJ1 = −(−1)λY−λ

JJ1 (9.9)

to arrive at the basic result for photon emission with λ = ±1

−ep

(
h̄c2

2ωkΩ

)1/2 ∫
e−ik·x e

†
kλ·Ĵ(x) d3x (9.10)

= ep

(
h̄c2

2ωkΩ

)1/2 ∑
J≥1

(−i)J
√

2π(2J + 1) [T̂ el
J,−λ(k) + λT̂

mag
J,−λ(k)]

The transverse electric and magnetic multipole operators are defined by

T̂ el
JM(k) ≡ 1

k

∫
d3x

[
∇ × jJ(kx)YM

JJ1(Ωx)
]

·Ĵ(x)

T̂
mag
JM (k) ≡

∫
d3x

[
jJ(kx)YM

JJ1(Ωx)
]

·Ĵ(x) (9.11)

This important result merits several observations.
In a nucleus both the convection current density arising from the motion

of charged particles (e.g. protons) and the intrinsic magnetization density
coming from the intrinsic magnetic moments of the nucleons contribute to
the electromagnetic interaction. The appropriate interaction hamiltonian
should actually be written as

H ′ = −ep

∫
Ĵc(x)·A(x) d3x − ep

∫
μ̂(x)·[∇ × A(x)] d3x

= −ep

∫ [
Ĵc(x) + ∇ × μ̂(x)

]
·A(x) d3x (9.12)

To obtain the second line, a vector identity has been employed

∇·(a × b) = b·(∇ × a) − a·(∇ × b) (9.13)

The total divergence has been converted to a surface integral far away
from the nucleus using Gauss’ theorem∫

V
∇ · v d3x =

∫
S
v·dS (9.14)

Finally, the integral over the far-away surface can be discarded for a
localized source. A second application of this procedure yields the relation∫

d3x
[
∇ × jJ(kx)YM

JJ1

]
·∇ × μ̂(x) (9.15)

=

∫
d3x μ̂(x)·∇ × [∇ × jJ(kx)YM

JJ1] = k2
∫

d3x μ̂(x)·[jJ(kx)YM
JJ1]

2 The relation to be used is ∇·[jJ (kx)YM
JJ1] = 0.
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9 Multipole analysis 37

In arriving at the second equality the relation ∇ × (∇ × v) = ∇(∇ · v) − ∇2v
has been employed; the term ∇ · v vanishes here, and in this application
the remaining term satisfies the Helmholtz equation (∇2 + k2)v = 0, as the
reader can readily verify. Thus the multipole operators can be rewritten
to explicitly exhibit the individual contributions of the convection current
and the intrinsic magnetization densities

T̂ el
JM(k) =

1

k

∫
d3x

{
[∇ × jJ(kx)YM

JJ1]·Ĵc(x) + k2jJ(kx)YM
JJ1·μ̂(x)

}
T̂

mag
JM (k) =

∫
d3x

{
jJ(kx)YM

JJ1·Ĵc(x) + [∇ × jJ(kx)YM
JJ1] · μ̂(x)

}
(9.16)

The T̂JM are now irreducible tensor operators of rank J in the nuclear
Hilbert space. This can be proven in general by utilizing the properties of
the vector density operator Ĵ(x) under rotations. It is easier to prove this
property explicitly in any particular application. For example, consider the
case where the nucleus is pictured as a collection of non-relativistic nucle-
ons, and the intrinsic magnetization density at the point x is constructed
in first quantization by summing over the contribution of the individual
nucleons

epμ̂(x) = μN

A∑
i=1

λiσ(i)δ(3)(x − xi) (9.17)

Here λi is the intrinsic magnetic moment of the ith nucleon in nuclear
magnetons (see below).3 The contribution to T̂ el

JM , for example, then takes
the form

ep

∫
jJ(kx)YM

JJ1 · μ̂(x) d3x =

μN

A∑
i=1

λijJ(kxi)
∑
mq

〈Jm1q|J1JM〉YJm(Ωi)σ1q(i) (9.18)

Here the definition of the vector spherical harmonics in Eq. (9.2) has been
introduced. Each term in this sum is now recognized, with the aid of
[Ed74], to be a tensor product of rank J formed from two ITO of rank
J and 1, respectively.4 Thus T̂ el

JM is evidently an ITO of rank J under
commutation with the total angular momentum operator, which in this

3 One could be dealing with a density operator in second quantization, or expressed

in collective coordinates, etc; to test for an ITO, one first constructs the appropriate

total angular momentum operator Ĵ, and then examines the commutation relations (see

[Ed74]).
4 Any spherically symmetric factor does not affect the behavior under rotations.

https://doi.org/10.1017/9781009290616.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290616.012


38 Part 2 General analysis

case takes the form

Ĵ =
A∑
i=1

J(i) =
A∑
i=1

[L(i) + S(i)] ; angular momentum (9.19)

As another example, the convection current in this same picture of the
nucleus is

Ĵc(x) =
Z∑
i=1

1

mpc
{δ(3)(x − xi), p(i)}sym

.
=

Z∑
i=1

δ(3)(x − xi)
p(i)

mpc
(9.20)

The need for symmetrization5 arises from the fact that p(i) and xi do not
commute; the current density arising from the matrix element of this ex-
pression takes the appropriate quantum mechanical form (h̄/2impc)[ψ

∗∇ψ
− (∇ψ)∗ψ]. The last equality in Eq. (9.20) follows since one of the sym-
metrized terms can be partially integrated in the required matrix elements
of the current, using the hermiticity of p(i) and the observation that
∇ · A = 0 in the Coulomb gauge. Multipoles constructed from the convec-
tion current density in Eq. (9.20) are now shown to be ITO by arguments
similar to the above.

The parity of the multipole operators is [Bl52]

Π̂ T̂ el
JM Π̂−1 = (−1)JT̂ el

JM

Π̂ T̂
mag
JM Π̂−1 = (−1)J+1T̂

mag
JM (9.21)

Again the general proof follows from the behavior of the current density
Ĵ(x) as a polar vector under spatial reflections. It is easy to see this behavior
in any particular application. For example, it follows from Eqs. (9.17) and
(9.20) if one uses the properties of the individual quantities under spatial
reflection: σ1q → σ1q; p1q → −p1q; and Ylm(−x/|x|) = (−1)lYlm(x/|x|).
Parity selection rules on the matrix elements of the transverse multipole
operators now follow directly.

There is no J = 0 term in the sum in Eq. (9.10). This arises from the fact
that the vector potential is transverse, and hence there are only transverse
unit vectors, or equivalently unit helicities λ = ±1, arising in its expansion
into normal modes [see Eqs. (8.2) and (8.4)]. This has the consequence,
for example, that there can be no J = 0 → J = 0 real photon transitions
in nuclei.

The Wigner–Eckart theorem [Ed74] can now be employed to exhibit
the angular momentum selection rules and M-dependence of the matrix

5 {A,B}sym ≡ (AB + BA)/2.
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9 Multipole analysis 39

element of an ITO between eigenstates of angular momentum

〈JfMf |T̂JM |JiMi〉 =
(−1)Ji−Mi

(2J + 1)1/2
〈JfMfJi − Mi|JfJiJM〉〈Jf ||T̂J ||Ji〉 (9.22)

The Clebsch–Gordan (C–G) coefficients provide all the relevant informa-
tion. They contain the entire M-dependence, and they vanish unless the
angular momentum quantum numbers satisfy the triangle inequality, e.g.
|Ji − Jf | ≤ J ≤ Ji + Jf . We adopt the convention that this selection rule
is built into the reduced matrix elements themselves, and that they are
defined to be zero unless the triangle inequality is satisfied.

Note that the required matrix elements of Eq. (9.10) imply Mf = Mi−λ.
This means that the photon carries away the angular momentum λ along
the z-axis, which is the direction of emission of the photon in the preceding
analysis (Fig. 9.1); thus the helicity of the photon (its angular momentum
along k) is λ = ±1.

If the target is unpolarized and unobserved, one can simply pick a
convenient z-axis along which to quantize, and the photon momentum
k provides such a choice. In that case, the average over initial target
orientations

∑
i = (2Ji + 1)−1 ∑

Mi
and sum over final target orientations∑

f =
∑

Mf
can be immediately evaluated with the aid of the Wigner–

Eckart theorem and the orthonormality properties of the C–G coefficients
to give

1

2Ji + 1

∑
Mi

∑
Mf

∣∣∣∣∣∑
J

(−i)J
√

2J + 1〈JfMf |T̂JM |JiMi〉
∣∣∣∣∣
2

=
1

2Ji + 1

∑
J

|〈Jf ||T̂J ||Ji〉|2 (9.23)

One then proceeds directly to the transition rate given below in Eq. (9.41).
It is useful for the subsequent discussion of angular correlations to

first digress and consider the more general situation where the photon is
emitted in an arbitrary direction relative to the coordinate axes picked to
describe the quantization of the nuclear system. The situation is illustrated
in Fig. 9.2. The unit vectors describing the photon are assumed to have
Euler angles {α, β, γ} with respect to the nuclear quantization axes. The
difficulty in achieving this configuration is that the photon axes here are
the axes that are assumed to be fixed in space, having been determined,
for example, by the detection of the photon, and the rotations are to be
carried out with respect to these axes.

Now one knows how to carry out a rotation of the nuclear state
vector relative to a fixed set of axes. For example, consider the rotation
operator that rotates a physical state vector through the angle β relative
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Fig. 9.2. Photon emitted in arbitrary direction relative to quantization axes for
nuclear system. Note {α, β, γ} are Euler angles.

Fig. 9.3. Rotate physical state vector by angle β about y-axis.

to a laboratory-fixed y-axis as indicated in Fig. 9.3. It follows entirely
from the defining commutation relations for the angular momentum,

that the operator which accomplishes this task is R̂−β ≡ e−iβĴy . This is
demonstrated as follows. Introduce a new unit vector along the z′ direction
and dot this into the angular momentum operator

ez′ = ez cos β + ex sin β

ez′ · Ĵ = Ĵz cos β + Ĵx sin β (9.24)

Now make use of the following identity and basic commutation relations

e−iβĴy Ĵze
iβĴy = Ĵz + (−iβ)[Ĵy, Ĵz] +

(−iβ)2

2!
[Ĵy, [Ĵy, Ĵz]]

+
(−iβ)3

3!
[Ĵy, [Ĵy, [Ĵy, Ĵz]]] + · · ·

[Ĵi, Ĵj] = iεijkĴk (9.25)

One finds

e−iβĴy Ĵze
iβĴy = Ĵz

(
1 − β2

2!
+ · · ·

)
+ Ĵx

(
β − β3

3!
+ · · ·

)

= Ĵz cos β + Ĵx sin β

= ez′ · Ĵ (9.26)
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9 Multipole analysis 41

Thus, from general principles,

(ez′ · Ĵ)e−iβĴy = e−iβĴy Ĵz (9.27)

Now apply this relation to the state vector |jm〉 representing a particle

with angular momentum j and z-component m, and let Ĵz act on this
eigenstate.

(ez′ · Ĵ)[e−iβĴy |jm〉] = m[e−iβĴy |jm〉] (9.28)

This is the desired result. The quantity e−iβĴy |jm〉 is a rotated eigenstate
with angular momentum m along the new z′-axis.

The goal now is to rotate the nuclear state vector |JiMi〉 quantized
with respect to the photon axes into a nuclear state vector |Ψi(JiMi)〉
correctly quantized with respect to the indicated {x, y, z} coordinates. A
concentrated effort, after staring at Fig. 9.2, will convince the reader that
the following rotations, carried out with respect to the laboratory-fixed
photon coordinate system in the indicated sequence, will achieve this end

1. −α about k/|k|
2. −β about ek2

3. −γ about k/|k|
The rotation operator that accomplishes this rotation is

R̂+γ,+β,+α = exp {iγĴ3} exp {iβĴ2} exp {iαĴ3} (9.29)

The {2, 3} axes are now the laboratory-fixed {ek2, k/|k|} axes. Thus

|Ψi(JiMi)〉 = R̂γ,β,α|JiMi〉 =
∑
Mk

DJi
MkMi

(γ, β, α)|JiMk〉 (9.30)

Here the rotation matrices have been introduced that characterize the
behavior of the eigenstates of angular momentum under rotation [Ed74].
It is clear from Fig. 9.2 that one can identify the usual polar and azimuthal
angles that the photon makes with respect to the nuclear coordinate system
according to β ↔ θ and α ↔ φ; the angle γ ↔ −φ of the orientation of the
photon polarization vector around the photon momentum is a definition
of the overall phase of the state vector, and, as such, merely involves a
phase convention; the choice here is that of Jacob and Wick [Ja59]. It will
be apparent in the final result that this phase is irrelevant. Equation (9.30)
expresses the required nuclear state vector as a linear combination of state
vectors quantized along the photon axes. Since now only matrix elements
between states quantized along k are required, all the previous results can
be utilized. The required photon transition matrix element takes the form

〈Ψf(JfMf)|ĤJ,−λ|Ψi(JiMi)〉 = 〈JfMf |R̂−1
γ,β,αĤJ,−λR̂γ,β,α|JiMi〉 (9.31)
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Fig. 9.4. Configuration for transition matrix element describing photon emission
and nuclear process JiMi → JfMf with nuclear quantization axis along the z-axis.

Here λ is the photon helicity, and ĤJ,−λ indicates one of the contributions
to the operator in Eq. (9.10). Evidently

R̂−1
γ,β,α = R̂−α,−β,−γ (9.32)

The definition of an ITO can now be used to simplify the calculation
[Ed74]

R̂−α,−β,−γĤJ,−λR̂
−1
−α,−β,−γ =

∑
M′

DJ
M′,−λ(−α,−β,−γ)ĤJM′ (9.33)

The previous identification of the angles, and a combination of these
results, permits one to write the transition matrix element describing the
nuclear process JiMi → JfMf with the nuclear quantization axis along z

and emission of a photon with helicity λ (Fig. 9.4) as

〈Ψf(JfMf)|Ĥ ′(kλ)|Ψi(JiMi)〉 = 〈JfMf |Ĥem
1 (kλ)|JiMi〉 (9.34)

where the appropriate transition operator is given by

Ĥem
1 (kλ) = ep

(
h̄c2

2ωkΩ

)1/2 ∑
JM

(−i)J
√

2π(2J + 1)

×[T̂ el
JM(k) + λT̂

mag
JM (k)] DJ

M,−λ(−φk,−θk, φk) (9.35)

The Wigner–Eckart theorem in Eq. (9.22) now permits one to extract all
the angular momentum selection rules and M-dependence of the matrix
element in Eq. (9.34). All M’s now refer to a common set of coordinate
axes.6

6 These axes were originally the photon axes with the z-axis along k, but they can

now just as well be the nuclear {x, y, z} axes in Fig. 9.4; the equivalence of these

two interpretations is readily demonstrated by taking out the M-dependence in a C–G

coefficient with the aid of the Wigner–Eckart theorem — it is the same in both cases. The

two interpretations differ only by an overall rotation (with R̂−1R̂ inserted everywhere),

which leaves the physics unchanged.
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Fig. 9.5. Nuclear transition with real photon emission.

The final DJ
M,−λ in Eq. (9.35) plays the role of a “photon wave function,”

since the square of this quantity gives the intensity distribution in (θk, φk)
of electromagnetic radiation carrying off {J,−M, λ} from the target.

We proceed to calculate the transition rate for the process indicated in
Fig. 9.5. The total transition rate for an unoriented nucleus is given by the
Golden Rule

ω =
2π

h̄

∑
f

∑
i

|〈JfMf; kλ|H ′|JiMi〉|2δ(Ef + ωk − Ei) (9.36)

The appropriate sum over final states is given by

∑
f

=
Ω

(2π)3

∑
λ

∑
Mf

∫
d3k (9.37)

The
∫
dk allows one to integrate over the energy-conserving delta function∫

dk δ(Ef+ωk −Ei) = 1/h̄c. The integral over final solid angles of the pho-
ton

∫
dΩk can be performed with the aid of the orthogonality properties

of the rotation matrices [Ed74]∫ π

0
sin θdθ

∫ 2π

0
dφ DJ

M,−λ(−φ,−θ, φ)∗DJ ′
M′,−λ(−φ,−θ, φ)

=
4π

2J + 1
δJJ ′δMM′ (9.38)

Note that since λ is the same in both functions, the dependence on the
last φ (which was the phase convention adopted for the third Euler angle
−γ in Fig. 9.2) drops out of this expression, as advertised.

The average over initial nuclear states is performed according to
∑

i =
(2Ji + 1)−1 ∑

Mi
. The use of the Wigner–Eckart theorem in Eq. (9.22) and

the orthonormality of the C–G coefficients then permits one to perform
the required sums over Mf and Mi∑

Mf

∑
Mi

|〈JfMfJi − Mi|JfJiJM〉|2 = 1 (9.39)

The final sum on M gives
∑

M = 2J + 1.
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44 Part 2 General analysis

Since the matrix element of one or the other multipoles must vanish by
conservation of parity, assumed to hold for the strong and electromagnetic
interactions, it follows that

|〈Jf ||T̂ el
J + λT̂

mag
J ||Ji〉|2 = |〈Jf ||T̂ el

J ||Ji〉|2 + |〈Jf ||T̂mag
J ||Ji〉|2 (9.40)

This expression is now independent of λ, and the sum over final photon
polarizations gives

∑
λ = 2.

A combination of these results yields the total photon transition rate
for the process illustrated in Fig. 9.5

ωf i = 8πα kc
1

2Ji + 1

∑
J≥1

{
|〈Jf ||T̂ el

J (k)||Ji〉|2 + |〈Jf ||T̂mag
J (k)||Ji〉|2

}
(9.41)

The multipole operators are now dimensionless. Equation (9.41) is a very
general result. It holds for any localized quantum mechanical system.
All that has been assumed about the target is that there is a local
electromagnetic current operator. For most nuclear transitions of interest
involving real photons, the wavelength is large compared to the size of the
nucleus. It is thus important to consider the long-wavelength reduction of
the multipole operators. This informative analysis is somewhat technical,
and in order to not break the thread of the present development, we
relegate the details to appendix A.7

7 We leave it as an exercise for the reader to demonstrate that the inclusion of target

recoil in the density of final states leads to an additional factor of r on the right side of

Eq. (9.41) where r−1 = 1 + h̄k/MTc.
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