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Abstract. We study on a contact metric manifold M2n+1(ϕ, ξ, η, g) such that g
is a Ricci soliton with potential vector field V collinear with ξ at each point under
different curvature conditions: (i) M is of pointwise constant ξ -sectional curvature, (ii)
M is conformally flat.
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1. Introduction. By a Ricci soliton we mean a Riemannian metric together with
a vector field (M, g, V ) and a constant λ that satisfies

£V g + 2S + 2λg = 0, (1)

where £V denotes the Lie derivative along V , S is the Ricci tensor. Obviously, a trivial
Ricci soliton is an Einstein metric with V zero or Killing. Thus, a Ricci soliton may
be considered as an apt generalisation of an Einstein metric. A Ricci soliton is said to
be shrinking, steady and expanding as λ is negative, zero and positive, respectively. If
V = −∇f (where f is a smooth function on M), then equation (1) can be written as

∇∇f = S + λg,

and is known as a gradient Ricci soliton. For background on Ricci solitons and their
interaction to Ricci flow, we refer to Cao-Zhu [6] and Chow–Knoff [9]. We also remark
that a Ricci soliton on a compact manifold is a gradient Ricci soliton (see [14]).

Recently, there has been a rising interest in the study of a contact metric manifold
whose metric is a Ricci soliton. In this direction, Sharma [15] proved that if the metric
g of K-contact manifold is a gradient soliton, then it is shrinking and the metric g is
Einstein–Sasakian. This result has been generalised by Ghosh et al. [12] for a (κ, μ)-
space (see [3]). Moreover, Sharma–Ghosh [16] studied Sasakian 3-metric as a Ricci
soliton and proved that it is expanding and homothetic to the standard Sasakian metric
on the Heisenberg group nil3. On the other hand, on a contact metric manifold, one may
think of another type of a Ricci soliton in which the vector field V is collinear with the
Reeb vector field ξ or V = ξ . In this direction, Sharma [15] proved that if a K-contact
metric g is a Ricci soliton with V pointwise collinear with ξ , then V, a constant multiple
of ξ and g, is Einstein. We now recall the following results of Cho [7] and Cho–Sharma
[8].

THEOREM (CHO–SHARMA). If a contact metric g of a compact contact metric
manifold M is a Ricci soliton with potential vector field V collinear with ξ , then g is
Einstein.
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THEOREM (CHO). A contact Ricci soliton is shrinking and is Einstein K-contact.

Here we generalise the last two results and prove.

THEOREM 1. Let M2n+1(ϕ, ξ, η, g) be a contact metric manifold such that g is a
Ricci soliton with a non-zero potential vector field V collinear with ξ at each point.
If M is of pointwise constant ξ -sectional curvature, then it is Einstein K-contact and
the soliton is shrinking. Moreover, if M is complete, then M is the compact Einstein–
Sasakian.

In [16], Sharma–Ghosh introduced a new class of contact metric manifold whose
curvature tensor R satisfies

R(X, ξ )ξ = κ(X − η(X)ξ ) + μ(hX),

which can also be written in terms of the Jacobi operator l = R(., ξ )ξ as

l = −κϕ2 + μh, (2)

for real constants κ, μ and h = 1
2£ξϕ. We call this manifold as the Jacobi (κ, μ) contact

manifold. This type of manifold may be considered as a generalisation of (κ, μ)-contact
manifold, introduced and studied by Blair et al. [3], and defined by

R(X, Y )ξ = κ(η(Y )X − η(X)Y ) + μ(η(Y )hX − η(X)hY ).

It is easy to observe that a Jacobi (κ, μ) includes K-contact (for which k = 1 and h = 0)
and the (κ, μ)-contact manifolds. Unlike a (κ, μ)-contact manifold, the associated CR-
structure on the Jacobi (κ, μ)-contact manifold need not be integrable. On the other
hand, a straightforward computation shows that like (κ, μ)-contact metric structures,
the Jacobi (κ, μ)-contact metric strucures are also invariant under a D-homothetic
deformation:

η̄ = aη, ξ̄ = 1
a
ξ, ϕ̄ = ϕ, ḡ = ag + a(a − 1)η ⊗ η.

Examples of a Jacobi (0,0)-contact structure (i.e. l = 0) are the normal bundles of
integral submanifolds of a Sasakian manifold (see [1], p. 153). Applying D-homothetic
deformation to the Jacobi (0,0)-contact structure, one can easily (see [17]) obtain the
Jacobi (1 − a−2, 2 − 2a−1)-contact structures.
Using Theorem 1, we prove the following.

COROLLARY 1. If the metric of a Jacobi (κ, μ)-contact manifold M2n+1(ϕ, ξ, η, g) is
a Ricci soliton with a non-zero potential vector field V collinear with ξ at each point,
then it is Einstein and K-contact. In addition, if M is complete, then M is compact
Einstein–Sasakian.

Now we turn our attention to conformally flat contact metrics. Conformal flatness
has been studied by several authors in the framework of contact metric manifolds.
Generalising the result of Tanno [18], Blair–Koufogiorgos [2] proved that a conformally
flat contact metric manifold with Qϕ = ϕQ (where Q is the Ricci operator associated
with the Ricci tensor, i.e. S(X, Y ) = g(QX, Y )) is a space form. Extending this further,
Ghosh et al. [11] proved that a conformally flat contact metric manifold satisfying
Qξ = (Trl)ξ and K(ξ, X) + K(ξ, ϕX) is a function independent of X orthogonal to ξ
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and is of constant curvature. But it is shown in [13] that the same conclusion can be
drawn without restriction on sectional curvatures.

Recently, Ghosh (see [10]) considered a real hypersurface of a complex space form
satisfying

(£ξ g)(X, Y ) + 2S(X, Y ) + 2λg(X, Y ) = 0

for all vector fields X , Y orthogonal to ξ . This is known as a generalised η-Ricci soliton.
Thus, as a generalisation of a contact Ricci soliton [7] as well as a generalised η-Ricci
soliton, in the framework of contact metric manifold, one may consider equation (1)
for all vector fields X , Y orthogonal to ξ . We call this as a generalised Ricci soliton. For
a contact Ricci soliton, it is easy to observe that Qξ = −λξ (see equation (9) in which
f = 1) and hence by the result of Gouli-Andreou and Tsolakidoua [13] we see that a
conformally flat contact Ricci soliton is a space form (see [7]). But for a generalised Ricci
soliton this is not true. Thus, we are motivated to study conformally flat contact metric
manifold whose metric is a generalised Ricci soliton. Precisely, we prove the following.

THEOREM 2. Let M2n+1(ϕ, ξ, η, g), n > 1 be a contact metric manifold such that g
is a generalised Ricci soliton with a non-zero potential vector field V collinear with ξ at
each point. If M is conformally flat, then it is of constant curvature 1.

2. Preliminaries. By a contact manifold we mean a (2n + 1)-dimensional smooth
manifold M that carries a global 1-form η such that η ∧ (dη)n is non-vanishing
everywhere on M. For a given contact 1-form η there exists a unique vector field
ξ , called the Reeb vector field such that dη(ξ, X)= 0 and η(ξ ) = 1. Polarising dη on
the contact sub-bundle η = 0, one obtains a Riemannian metric g and a (1,1)-tensor
field ϕ such that

dη(X, Y ) = g(X, ϕY ), η(X) = g(X, ξ ), ϕ2 = −I + η ⊗ ξ, (3)

where g is called an associated metric of η and (ϕ, η, ξ, g) is a contact metric structure.
Following [1] we recall two self-adjoint operators h = 1

2£ξϕ and l = R(., ξ )ξ that
satisfy hξ = 0 = lξ . The tensors h, hϕ are trace-free and hϕ = −ϕh . For a contact
metric manifold we also have the following formulas (for details we refer Blair [1]):

∇Xξ = −ϕX − ϕhX. (4)

l − ϕlϕ = −2(h2 + ϕ2). (5)

∇ξ h = ϕ − ϕl − ϕh2. (6)

Trl = S(ξ, ξ ) = 2n − Trh2. (7)

(div(hϕ))X = g(QX, ξ ) − 2nη(X). (8)

Formula (8) appears in Blair–Sharma [4]. A contact metric structure is said to be
K-contact if ξ is Killing with respect to g, equivalently, h = 0, or Tr.l = 2n. The
contact structure on M is said to be normal if the almost complex structure on M × R
defined by J(X, f d/dt) = (ϕX − f ξ, η(X)d/dt), where f is a real function on M × R, is
integrable. A normal contact metric manifold is called a Sasakian manifold. Sasakian
manifolds are K-contact and 3-dimensional K-contact manifolds are Sasakian. The
sectional curvature K(ξ, X) of a plane section spanned by ξ and a vector field X
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orthogonal to ξ is called ξ -sectional curvature, where as the sectional curvature
K(ξ, ϕX) of a plane section is spanned by ξ and ϕX , where X is orthogonal to ξ .

3. Proof of the results. Before entering into the proof of Theorem 1 we first prove
the following lemma.

LEMMA 1. On a contact metric manifold M2n+1(ϕ, ξ, η, g), if a function f depends
only on the direction of ξ , then it is constant on M.

Proof. By the hypothesis we see that ((ϕX)f ) = 0 for all vector field X on M.
Therefore, taking ϕX instead of X and recalling (3), we can write df = (ξf )η. Applying
d to this equation, using the Poincare lemma provides

(X(ξf ))η(Y ) − (Y (ξf ))η(X) + 2(ξf )g(X, ϕY ) = 0.

Choosing X , Y orthogonal to ξ , the above equation immediately gives ξf = 0. Hence,
f is constant.

Proof of Theorem 1. Since M is of pointwise constant ξ -sectional curvature, we
have

g(R(X, ξ )ξ, X) = κ(p)g(X, X)

for some function κ(p) and for any tangent vector field X orthogonal to ξ at p ∈ M.
Polarising the last equation and using the symmetries of curvature tensor, it is easy to
observe that the foregoing equation is equivalent to

lX = −κϕ2X.

Making use of this in (5) and (6), we get h2 = (κ − 1)ϕ2 (where Trl = 2nκ) and ∇ξ h = 0.

Moreover, the last equation implies that

∇ξ h2 = h(∇ξ h) + (∇ξ h)h = 0

and hence by (7), ξTrl = −ξTrh2 = 0 = ξκ. Next, by hypothesis we have V = f ξ and
V is non-zero. Therefore, f is non-zero on M. Taking covariant derivative of this along
an arbitrary vector field X and using (4) we obtain ∇X V = (Xf )ξ − f (ϕX + ϕhX). By
virtue of these equations, the soliton equation (1) becomes

2S(X, Y ) + {(Xf )η(Y ) + (Yf )η(X)} + 2fg(hϕX, Y ) + 2λg(X, Y ) = 0. (9)

Substituting X = Y = ξ in equation (9) and recalling (7), we get

Trl + λ + ξf = 0. (10)

Contracting equation (9) we also have

r + (2n + 1)λ + ξf = 0. (11)

Combining this with (10) yields

r − Trl + 2nλ = 0. (12)
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Next, substituting Y = ξ in equation (9) and using (10) it follows that

2Qξ + (λ − Trl)ξ + Df = 0, (13)

for all vector fields X in M and D is the gradient operator of g. Operating (13) by ϕ

gives

2g(QϕX, ξ ) + ϕXf = 0. (14)

Replacing X by ϕX and Y by ϕY in equation (9), we get

ϕQϕX + f hϕX + λϕ2X = 0, (15)

for all vector field Y on M. Operating (15) by ϕ and then replacing X by ϕX shows
that

QX − g(QX, ξ )ξ − η(X)Qξ + (Trl)η(X)ξ − λϕ2X + f hϕX = 0. (16)

Differentiating equation (16) along an arbitrary vector field Y, using (4) and then
contracting the resulting equation over Y, taking into account equation (8) and
(divϕ2) = 0 (follows from (3) and (4)), we get

1
2

(Xr) − g((∇ξ Q)X, ξ ) − g(QϕX + QhϕX, ξ ) + f (Trh2)η(X)

− 1
2

(ξr)η(X) + (ξTrl)η(X) + ((hϕX)f ) + f {g(QX, ξ ) − 2nη(X)} = 0. (17)

On the other hand, differentiating (13), using (4) and then applying the Poincare
lemma, g(∇X Df, Y ) = g(∇Y Df, X), provides

g((∇X Q)ξ, Y ) − g((∇Y Q)ξ, X) − g((Qϕ + Qϕh)X, Y ) − g((ϕQ + hϕQ)X, Y )

− (λ − Trl)g(ϕX, Y ) = 1
2
{(XTrl)η(Y ) − (YTrl)η(X). (18)

Now differentiating the first equation of (7) and applying (4) shows that

g((∇X Q)ξ, ξ ) = (XTrl) + 2g(QϕX + QϕhX, ξ ). (19)

Setting Y = ξ in (18) and by virtue of (19) it follows that

g((∇ξ Q)X, ξ ) − g(QϕX + QϕhX, ξ ) = 1
2
{(XTrl) + (ξTrl)η(X)}.

Utilising this in (17) and using (12), we find

2g(QϕX, ξ ) − f (Trh2)η(X) − f {g(QX, ξ ) − 2nη(X)} − ((hϕ)X)f = 0. (20)

Substituting X by ϕX in (20) and recalling (14) gives

f ((ϕX)f ) + 2((hX)f ) − 2((ϕ2X)f ) = 0. (21)

Taking hX instead of X in (21), making use of h2 = (κ − 1)ϕ2 and then subtracting the
resulting equation from (21) yields

f ((ϕX)f ) + f ((hϕX)f ) − 2κ((ϕ2X)f ) = 0. (22)
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Next, replacing X by ϕX in (21), multiplying the resulting equation by f , we obtain

f 2((ϕ2X)f ) + 2f ((hϕX)f ) + 2f ((ϕX)f ) = 0.

Finally, subtracting the last equation from twice of (22) yields

(f 2 + 4κ)((ϕ2X)f ) = 0. (23)

We now prove that f is constant on M. First, we note that if (ϕ2X)f = 0, then by
Lemma 1 it follows that f is constant on M. So we assume that f is not constant
(equivalently ((ϕ2X)f ) �= 0) in some open set N of M. Therefore, from (23) we see
that f 2 + 4κ = 0 on N. Covariant differentiation of this equation along ξ and since
ξκ = 0 (proved earlier) we at once obtain ξf = 0 (as f is non-zero). Consequently (10)
shows that κ(= Trl

2n ) is constant on N. This implies that f 2(= −4κ) is constant on
N, i.e. f is constant on N. Thus, we arrive at a contradiction. Hence, f is constant
on M. Therefore, equation (9) reduces to QX + f hϕX + λX = 0 for all vector fields
Y in M. Differentiating this equation along Y , contracting the resulting equation
over Y and then recalling equation (8) we find 1

2 (Xr) + f {g(QX, ξ ) − 2nη(X)} = 0.

Since f is constant, r is also (follows from (11)) constant and hence the foregoing
equation implies Qξ = 2nξ. This shows that M is K-contact and Einstein (see [15])
with λ = −2n. Making use of these in equation (9) we complete the proof of the first
part. Now, if M is complete then using the result of Sharma [15] it is easy to see
that M is compact, and from Boyer–Galicki’s result [5], a compact Einstein K-contact
manifold is Sasakian; we complete the proof.

Proof of Corollary 1: Since M is a Jacobi (κ, μ)-space, we see that Trl(= 2nκ) is
constant and h2 = (κ − 1)ϕ2. Hence the proof follows from Theorem 1.

Proof of Theorem 2: Since M admits a generalised Ricci soliton with potential
vector field V collinear with ξ , we have from equation (9)

S(X, Y ) + fg(hϕX, Y ) + λg(X, Y ) = 0,

for all X , Y orthogonal to ξ . This is equivalent to (15) for all vector fields Y and for
any vector field X . Hence, equation (16) also holds in this case. By hypothesis M is
conformally flat. So we have

R(X, Y )Z = 1
2n − 1

[{g(QY, Z)X − g(QX, Z)Y

+ g(Y, Z)QX − g(X, Z)QY} − r
2n

{g(Y, Z)X − g(X, Z)Y}]. (24)

Setting Y = Z = ξ in (24) and recalling (7), gives

(2n − 1)lX = QX + (Trl)X − g(QX, ξ )ξ − η(X)Qξ + r
2n

ϕ2X. (25)

Feeding equation (16) into (25) yields

(2n − 1)lX = (λ − Trl + r
2n

)ϕ2X − f hϕX. (26)
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Now the contraction of equation (16) shows that r − Trl + 2nλ = 0. Through this
equation, (26) reduces to

lX = −κϕ2 − f
2n − 1

hϕX, (27)

where κ = Trl
2n . Using (27) in (5) shows h2 = (κ − 1)ϕ2. By virtue of these equations,

(27) and (6), we at once obtain (2n − 1)∇ξ h = f h. Next, we differentiate (27) along an
arbitrary vector field Y and contract the resulting equation over Y with respect to an
orthonormal frame {ei : i = 1, 2, 3, ...} to get

(divR)(X, ξ )ξ − g(R(X, ϕei + ϕhei)ξ, ei) − g(R(X, ξ )(ϕei + ϕhei), ei)

= −((ϕ2X)κ) − f
2n − 1

((hϕX)f ) − f
2n − 1

{g(QX, ξ ) − 2nη(X)}, (28)

where we have used (divϕ2) = 0 and equation (8). As C = 0, we have divC = 0 or
equivalently

g((∇X Q)Y, Z) − g((∇Y Q)X, Z) = 1
4n

{(Xr)g(Y, Z) − (Yr)g(X, Z)}. (29)

Also, the contraction of the second Bianchi identity and equation (29) together implies

(divR)(X, ξ )ξ = 1
4n

{(Xr) − (ξr)η(X)}. (30)

Taking into account (24) we compute the following:

(2n − 1)g(R(X, ϕei + ϕhei)ξ, ei) = g(QϕX + QϕhX, ξ ) − (TrQϕh)η(X). (31)

(2n − 1)g(R(X, ξ )(ϕei + ϕhei), ei) = 2g(QϕX, ξ ). (32)

Making use of (30)–(32) in (28) and then replacing X by ϕX provides

2n − 1
4n

((ϕX)r) − 3g(Qϕ2X, ξ ) − g(QhX, ξ ) = ((ϕX)κ) + ((hX)f ) − fg(QϕX, ξ ).

(33)

Setting Y = Z = ξ in equation (29) and using (19), we obtain

(XTrl) + 2g(QϕX + QϕhX, ξ ) − g((∇ξ Q)X, ξ ) = 1
4n

{(Xr) − (ξr)η(X)}. (34)

Subtracting (34) from equation (16) (in this case equation (16) also holds) and then
replacing X by ϕX it follows that

2n + 1
4n

((ϕX)r) − ((ϕX)Trl) − 3g(Qϕ2X, ξ ) − g(QhX, ξ ) = ((hX)f ) − fg(QϕX, ξ ).

(35)

Subtracting (35) from (33), using (12) and noting that Trl = 2nκ, it is immediate
that (ϕX)Trl = 0, as n > 1. Taking ϕX instead of X and remembering that ξTrl = 0

https://doi.org/10.1017/S0017089512000389 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089512000389


130 AMALENDU GHOSH

shows Trl = 2nκ is constant. Consequently, differentiating h2 = (κ − 1)ϕ2 along ξ

gives ∇ξ h2 = 0. On the other hand, we note that

0 = ∇ξ h2 = h(∇ξ h) + (∇ξ h)h = 2f
2n − 1

h2.

Thus, we have f (κ − 1)ϕ2 = 0. Differentiating this along an arbitrary vector field X and
then contracting the resulting equation over X , we obtain (κ–1)((ϕ2X)f ) = 0, where
we have used div ϕ2 = 0. At this point, suppose that κ �= 1. Then the last equation
shows that (ϕ2X)f = 0. This implies that f is constant and since V is non-zero, f is
non-zero constant on M and hence κ = 1, a contradiction. Thus, the only possibility
is that κ = 1. This shows that M is K-contact and being conformally flat, by Tanno’s
theorem [18] it is of constant curvature +1, and hence Sasakian. This completes the
proof.
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