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1. Introduction

This article aims to give a conceptual approach to unify various constructions of

representations of certain Lie algebras and construct new representations of some Lie
algebras using crossed homomorphisms, Lie–Rinehart algebras and Leibniz pairs.

1.1. Representations of Cartan-type Lie algebras

The representation theory of Lie algebras is of great importance due to its own overall

completeness and applications in mathematics and mathematical physics. The Cartan-
type Lie algebras, originally introduced and studied by Cartan, consist of four classes

of infinite-dimensional simple Lie algebras of vector fields with formal power series

coefficients: the Witt algebras, the divergence-free algebras, the Hamiltonian algebras

and the contact algebras. The representation theory of Cartan-type Lie algebras was first
studied by Rudakov [40, 41]. He showed that irreducible continuous representations can

be described explicitly as induced representations or quotients of induced representations.

Later, Shen [42] studied graded modules of graded Lie algebras of Cartan type (W+
n ,S+

n ,
and H+

n ) with polynomial coefficients of positive characteristic. Larsson constructed a

class of representations for the Witt algebras Wn with Laurent polynomial coefficients

[24]. More precisely, Shen’s modules, called mixed product, were constructed by certain
monomorphism, while Larsson’s modules, named conformal fields, came from a physics

background. We call the methods of constructing these modules Shen–Larsson functors.

Many other authors have contributed to the theory along these approaches in the last
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few decades. In particular, irreducible modules with finite-dimensional weight spaces over
the Virasoro algebra (universal central extension of the Lie algebra W1 of vector fields

on a circle) was classified by Mathieu in [33], while Billig and Futorny recently gave

the classification of irreducible modules over the Witt algebras Wn (n ≥ 2) with finite-
dimensional weight spaces [2]. Note that intrinsically there is a functor from the category

of finite-dimensional irreducible representations of finite-dimensional simple Lie algebras

to the category of representations of Cartan-type Lie algebras among these works. There

should be some essential part that applies to all of those constructions (even more) of
complicated modules over some classes of Lie algebras (not only Cartan-type Lie algebras)

as a whole regardless of any specific feature exhibited in each particular case. From this

point of view, it is no surprise that earlier results in this direction due to many authors
are fragments of the general theory. We find a unifying conceptual approach generalising

Shen–Larsson functors. This is one of the main purposes of the article.

1.2. Representations of Lie–Rinehart algebras and Leibniz pairs

Note that the abovementioned Cartan-type Lie algebras are either Lie–Rinehart algebras

or Leibniz pairs.
Lie–Rinehart algebras, originally studied by Rinehart in [39] in 1963, arose from a wide

variety of constructions in differential geometry and they have been introduced repeatedly

into many areas under different terminologies; for example, Lie pseudoalgebras. Lie–
Rinehart algebras are the underlying structures of Lie algebroids. See [32] and references

therein for more details. A Lie–Rinehart algebra is a quadruple (A,L,[·,·]L,α), where A

is a commutative associative algebra, L is an A-module, [·,·]L is a Lie bracket on L
and α : L→DerK(A) is an A-module homomorphism with some compatibility conditions
involving the Lie brackets. Lie–Rinehart algebras have been further investigated in many

aspects [6, 19, 20, 21, 31, 34]. In particular, Rinehart constructed the universal enveloping

algebra of a Lie–Rinehart algebra [39]. Huebschmann gave an alternative construction of
the universal enveloping algebra U(A,L) of a Lie–Rinehart algebra (A,L,[·,·]L,α) via the

smash product, namely, U(A,L) = (A#U(L))/J, where J is a certain two-sided ideal in

A#U(L), and showed that there is a one-to-one correspondence between representations
of a Lie–Rinehart algebra and representations of its universal enveloping algebra [19].

Representations of Lie–Rinehart algebras are deeply related to the theory of D-modules

[38], which are modules over the algebra D of linear differential operators on a manifold.

Since the algebra D is the universal enveloping algebra of the Lie–Rinehart algebra of
vector fields, a D-module is the same as a module with a representation of the Lie–

Rinehart algebra of vector fields. We introduce the notion of a weak representation

of a Lie–Rinehart algebra. The adjoint action is naturally a weak representation of
a Lie–Rinehart algebra on itself. There is a one-to-one correspondence between weak

representations of a Lie–Rinehart algebra and representations of the smash product

A#U(L).
The notion of a Leibniz pair was originally introduced by Flato–Gerstenhaber–Voronov

in [11], which consists of a K-Lie algebra (S,[·,·]S) and a K-Lie algebra homomorphism

β : S → DerK(A). In this article, we only consider the case that A is a commutative
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associative algebra. A Leibniz pair was also studied by Winter [47] and called a Lie

algop. Leibniz pairs were further studied in [18, 22]. A Lie–Rinehart algebra (A,L,[·,·]L,α)
naturally gives rise to a Leibniz pair by forgetting the A-module structure on L. We
introduce the notion of an admissible representation of a Leibniz pair. If WRepK(L)
denotes the category of weak representations of a Lie–Rinehart algebra L and ARepK(S)
denotes the category of admissible representations of a Leibniz pair S, then we have the
following category equivalence:

WRepK(L)� ARepK(L),

where the right-hand side L is considered as the underlying Leibniz pair of a Lie–Rinehart
algebra. On the other hand, a Leibniz pair also gives rise to a Lie–Rinehart algebra S⊗KA,

known as the action Lie–Rinehart algebra. We show that an admissible representation of

a Leibniz pair can be naturally extended to a representation of the corresponding action
Lie–Rinehart algebra. We have the following category equivalence:

ARepK(S)� Rep(S ⊗KA),

where Rep(S ⊗KA) denotes the category of representations of the Lie–Rinehart algebra
S ⊗KA. See Remark 3.34 for more details about this equivalence.

1.3. Crossed homomorphisms

The concept of a crossed homomorphism of Lie algebras was introduced in [30] in the study

of nonabelian extensions of Lie algebras in 1966. A special class of crossed homomorphisms

was recently called a differential operator of weight 1 in [14, 15]. A flat connection
1-form of a trivial principle bundle is naturally a crossed homomorphism. To the best

of our knowledge, this concept has not been investigated for many years, and we will

use it in this article. More precisely, by using crossed homomorphisms, we show that the
category of weak representations (respectively admissible representations) of Lie–Rinehart

algebras (respectively Leibniz pairs) is a left module category over the monoidal category

of representations of Lie algebras. In particular, we obtain bifunctors among categories

of certain representations:

FH : RepK(g)×WRepK(L)→WRepK(L), FH : RepK(h)×ARepK(S)→ ARepK(S),

which we call the actions of monoidal categories, generalising Shen–Larsson constructions

of representations for Cartan-type Lie algebras. Our construction sheds light on some
difficult classification problems in representation theory of Lie algebras.

We observe the importance of crossed homomorphisms in our above construction. To

better understand crossed homomorphisms and our actions of monoidal categories, we
also study deformations and cohomologies of crossed homomorphisms. The deformation of

algebraic structures began with the seminal work of Gerstenhaber [12, 13] for associative

algebras, followed by its extension to Lie algebras by Nijenhuis and Richardson [36].
A suitable deformation theory of an algebraic structure needs to follow a certain

general principle: on one hand, for a given object with the algebraic structure, there

should be a differential graded Lie algebra whose Maurer–Cartan elements characterise
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deformations of this object. On the other hand, there should be a suitable cohomology
so that the infinitesimal of a formal deformation can be identified with a cohomology

class. We successfully construct a differential graded Lie algebra such that crossed

homomorphisms are characterised as Maurer–Cartan elements. The cohomology groups
of crossed homomorphisms are also defined to control their linear deformations.

1.4. Outline of the article

In Section 2, we recall the concept of crossed homomorphisms between Lie algebras and
show that there is a one-to-one correspondence between crossed homomorphisms and

certain Lie algebra homomorphisms (Theorem 2.7). This fact is the key ingredient in our

later construction of the left module category.
In Section 3, we introduce the new concepts: weak representations (respectively

admissible representations) of Lie–Rinehart algebras (respectively Leibniz pairs). Using

crossed homomorphisms, we show that the category of weak representations (respectively

admissible representations) of Lie–Rinehart algebras (respectively Leibniz pairs) is a
left module category over the monoidal category of representations of Lie algebras. In

particular, the corresponding bifunctor FH , which we call the action of monoidal cate-

gories, is established to give new representations of Lie–Rinehart algebras (respectively
Leibniz pairs). See Theorems 3.26 and 3.36. This generalises and unifies various existing

constructions of representations of many Lie algebras by using this new bifunctor.

In Section 4, to show the power of our action of monoidal categories FH established in
Section 3, we construct some examples of crossed homomorphisms in different situations

using our action of monoidal categories to recover some known representations of various

Lie algebras (see Subsections 4.1–4.3) and to obtain new representations of generalised

Witt algebras and their Lie subalgebras (see Corollaries 4.13, 4.15, 4.16). Certainly,
our action of monoidal categories will be used to other situations to give new simple

representations of suitable Lie algebras.

In Section 5, we characterise crossed homomorphisms as Maurer–Cartan elements in a
suitable differential graded Lie algebra and introduce the cohomology theory of crossed

homomorphisms. We use the cohomology theory of crossed homomorphisms that we

established to study linear deformations of crossed homomorphisms and to prove that the
linear deformation Ht :=H+ tdρH

(−Hx) is trivial for any Nijenhuis element x (Theorem

5.14).

We conclude our article in Section 6 by asking three questions.

As usual, we denote by Z, Z+ and C the sets of all integers, positive integers and complex
numbers. All vector spaces are over an algebraically closed field K of characteristic 0.

2. Crossed homomorphisms between Lie algebras

Let (g,[·,·]g) and (h,[·,·]h) be Lie algebras. We will denote by Der(g) and Der(h) the Lie

algebras of derivations on g and h, respectively. A Lie algebra homomorphism ρ : g →
Der(h) will be called an action of g on h in the sequel.
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Definition 2.1 ([30]). Let ρ : g → Der(h) be an action of (g,[·,·]g) on (h,[·,·]h). A linear

map H : g→ h is called a crossed homomorphism with respect to the action ρ if

H[x,y]g = ρ(x)(Hy)−ρ(y)(Hx)+ [Hx,Hy]h, ∀x,y ∈ g. (1)

Remark 2.2. A crossed homomorphism from g to g with respect to the adjoint action

is also called a differential operator of weight 1. See [14, 15] for more details.

Example 2.3. Let P be a trivial G-principle bundle over a differential manifold M,

where G is a Lie group. Let ω ∈ Ω1(M,g) be a connection 1-form, where g is the Lie

algebra of G. Then ω is flat if and only if dω+ 1
2 [ω,ω]g = 0, which is equivalent to

Xω(Y )−Y ω(X)−ω([X,Y ])+ [ω(X),ω(Y )]g = 0, ∀X,Y ∈ X(M).

Therefore, a flat connection 1-form – that is, ω ∈ Ω1(M,g) = Hom(X(M),g⊗C∞(M))

satisfying the above equality – is a crossed homomorphism from the Lie algebra of vector
fields X(M) to the Lie algebra g⊗C∞(M) with respect to the action ρ given by

ρ(X)(u⊗f) = u⊗X(f), ∀X ∈ X(M),u ∈ g,f ∈ C∞(M).

Example 2.4. If the action ρ of g on h is zero, then any crossed homomorphism from g

to h is nothing but a Lie algebra homomorphism. If h is commutative, then any crossed
homomorphism from g to h is simply a derivation from g to h with respect to the

representation (h;ρ).

Definition 2.5. LetH andH ′ be crossed homomorphisms from g to h with respect to the

action ρ. A homomorphism from H ′ to H consists of two Lie algebra homomorphisms
φg : g−→ g and φh : h−→ h such that

H ◦φg = φh ◦H ′, (2)

φh(ρ(x)u) = ρ(φg(x))(φh(u)), ∀x ∈ g,u ∈ h. (3)

In particular, if φg and φh are invertible, then (φg,φh) is called an isomorphism from

H ′ to H.

The following result can be also found in [30].

Lemma 2.6. Let H be a crossed homomorphism from g to h with respect to the action

ρ. Define ρH : g−→ gl(h) by

ρH(x)u := ρ(x)u+[Hx,u]h, ∀x ∈ g,u ∈ h. (4)

Then ρH is also an action of g on h; that is, ρH : g → Der(h) is a Lie algebra

homomorphism.

We use g�ρH
h and g�ρh to denote the two semidirect products of g and h with respect

to the actions ρH and ρ, respectively. More precisely, we have

[(x,u),(y,v)]ρH
= [x,y]g+ρH(x)v−ρH(y)u+[u,v]h,

[(x,u),(y,v)]ρ = [x,y]g+ρ(x)v−ρ(y)u+[u,v]h.
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Theorem 2.7. Let H : g→ h be a linear map and ρ : g → Der(h) an action of g on h.

(a) Suppose that ρH given by (4) is an action of g on h. Then the linear map Ĥ :
g�ρH

h−→ g�ρ h defined by

Ĥ(x,u) :=
(
x,Hx+u

)
, ∀x ∈ g,u ∈ h, (5)

is a Lie algebra isomorphism if and only if H is a crossed homomorphism from g

to h with respect to the action ρ.

(b) H is a crossed homomorphism from g to h with respect to the action ρ if and only

if the map ιH : g−→ g�ρ h defined by

ιH(x) :=
(
x,Hx

)
, ∀x ∈ g (6)

is a Lie algebra homomorphism.

Proof. (a). Clearly, Ĥ is an invertible linear map. For all x,y ∈ g,u,v ∈ h, we have

[Ĥ(x,u),Ĥ(y,v)]ρ = [(x,Hx+u),(y,Hy+v)]ρ

= ([x,y]g,ρ(x)(Hy+v)−ρ(y)(Hx+u)+ [Hx+u,Hy+v]h)

=
(
[x,y]g,ρ(x)v−ρ(y)u+[Hx,v]h− [Hy,u]h+[u,v]h+[Hx,Hy]g

+ρ(x)(Hy)−ρ(y)(Hx)
)
,

Ĥ[(x,u),(y,v)]ρH
= ([x,y]g,H[x,y]g+ρH(x)v−ρH(y)u+[u,v]h)

= ([x,y]g,H[x,y]g+ρ(x)v−ρ(y)u+[Hx,v]h− [Hy,u]h+[u,v]h).

Thus, [Ĥ(x,u),Ĥ(y,v)]ρ = Ĥ[(x,u),(y,v)]ρH
, if and only if (1) holds for H, which is

equivalent to that H is a crossed homomorphism from g to h with respect to the action ρ.
(b) follows from the proof of (a) by taking u= v = 0.

Remark 2.8. In fact, crossed homomorphisms correspond to split nonabelian extensions

of Lie algebras. More precisely, we consider the following nonabelian extension of Lie

algebras:

0 → h → g⊕h → g → 0.

A section s : g → g⊕h must be of the form s(x) = (x,Hx), x ∈ g. Statement (b) says that

s is a Lie algebra homomorphism if and only if H is a crossed homomorphism. Such an
extension is called a split nonabelian extension. See [30] for more details.

3. Action of monoidal categories arising from Lie–Rinehart algebras and

Leibniz pairs

In this section, first we introduce the notion of a weak representation of a Lie–Rinehart

algebra and show that the category of weak representations of Lie–Rinehart algebras is a

left module category over the monoidal category of representations of Lie algebras by using
crossed homomorphisms. Then we introduce the notion of an admissible representation

of a Leibniz pair and obtain similar results. In particular, the corresponding bifunctors

are called the actions of monoidal categories for Lie–Rinehart algebras and Leibniz pairs.
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3.1. Weak representations of Lie–Rinehart algebras

Let A be a commutative associative algebra over K. We denote by DerK(A) the set of

K-linear derivations of A; that is,

DerK(A) = {D ∈ EndK(A) :D(ab) =D(a)b+aD(b),∀a,b ∈A}.

Definition 3.1 ([39]). A Lie–Rinehart algebra over A is a K-Lie algebra (L,[·,·]L)
together with an A-module structure on L and a map α :L→DerK(A) (called the anchor)
which is simultaneously a K-Lie algebra and an A-module homomorphism such that

[x,ay]L = a[x,y]L+α(x)(a)y, ∀x,y ∈ L, a ∈A.

We usually denote a Lie–Rinehart algebra over A by (A,L,[·,·]L,α) or simply by L.

Remark 3.2. It is clear that a Lie–Rinehart algebra with α=0 is exactly a Lie A-algebra.

Example 3.3. (A,DerK(A),[·,·]C,α = Id) is a Lie–Rinehart algebra, where [·,·]C is the
commutator bracket.

Example 3.4. Let M be an A-module. Denote by glA(M) the set of A-module

homomorphisms from M to M . It is obvious that (glA(M),[·,·]C) is a Lie A-algebra.

Example 3.5. Let M be an A-module. A first-order differential operator on M is

a pair (D,σ), where D :M → M is a K-linear map and σ = σD ∈DerK(A), satisfying the

following compatibility condition:

D(am) = aD(m)+σ(a)m, ∀a ∈A,m ∈M. (7)

Denote by D(M) the set of first-order differential operators on M . It is obvious that

D(M) is an A-module. Define a bracket operation [·,·]C on D(M) by

[(D1,σ1),(D2,σ2)]C := (D1 ◦D2−D2 ◦D1,σ1 ◦σ2−σ2 ◦σ1), ∀(D1,σ1),(D2,σ2) ∈D(M),

(8)

and an A-module homomorphism Pr :D(M) → DerK(A) by Pr(D,σ) = σ for all (D,σ) ∈
D(M). Then (A,D(M),[·,·]C,α= Pr) is a Lie–Rinehart algebra.

Remark 3.6. Let M be an A-module. It is straightforward to see that we have a
semidirect product commutative associative algebra A�M , where the multiplication is

given by

(a,m) · (b,n) = (ab,an+ bm), ∀a,b ∈A, m,n ∈M.

Then (D,σ) is a first-order differential operator on M if and only if (σ,D) is a derivation
on the commutative associative algebra A�M . This result is the algebraic counterpart

of the fact that a first-order differential operator on a vector bundle E can be viewed

as a linear vector field on the dual bundle E∗. In fact, functions on the vector bundle
E∗ →N are generated by C∞(N) and Γ(E), while the latter are fibre linear functions on

E∗. Since a first-order differential operator maps a fibre linear function to a fibre linear

function, it is viewed as a linear vector field on E∗.
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Definition 3.7.

(i) Let (A,L,[·,·]L,α) and (A,L′,[·,·]L′,α′) be Lie–Rinehart algebras. A Lie–Rinehart

weak homomorphism is a K-Lie algebra homomorphism f : L → L′ such that
α′ ◦f = α.

(ii) A Lie–Rinehart weak homomorphism f is called a Lie–Rinehart homomorphism

if f is also an A-module homomorphism; that is, f(ax) = af(x), for all a ∈ A and

x ∈ L.

Note that zero map from L to L′ is not a Lie–Rinehart weak homomorphism if α 	= 0.

Proposition 3.8. Let f1 : (A,L1,[·,·]L1
,α1) → (A,L2,[·,·]L2

,α2) and f2 : (A,L2,[·,·]L2
,α2)

→ (A,L3,[·,·]L3
,α3) be two Lie–Rinehart weak homomorphisms. Then f2 ◦ f1 is a Lie–

Rinehart weak homomorphism from (A,L1,[·,·]L1
,α1) to (A,L3,[·,·]L3

,α3).

Proof. This is easy to see.

We denote by WH(L,L′) the set of weak homomorphisms from the Lie–Rinehart algebra

(A,L,[·,·]L,α) to (A,L′,[·,·]L′,α′). By Proposition 3.8, it is easy to see that WH(L,L) is a
monoid.

Definition 3.9.

(i) A weak representation of a Lie–Rinehart algebra (A,L,[·,·]L,α) on an A-module

M is a Lie–Rinehart weak homomorphism ρ : L → D(M). We denote a weak
representation by (M ;ρ).

(ii) A weak representation (M ;ρ) is called a representation if ρ is also an A-module

homomorphism; that is, ρ : L → D(M) is a Lie–Rinehart homomorphism.

Remark 3.10. A weak representation of a Lie–Rinehart algebra (A,L,[·,·]L,α) on an
A-module M means a K-Lie algebra homomorphism ρ : L → glK(M) such that

ρ(x)(au) = aρ(x)(u)+α(x)(a)u, ∀x ∈ L,a ∈A,u ∈M ;

that is, (D = ρ(x),σ = α(x)) is a first-order differential operator on M .

Remark 3.11. In [19], Huebschmann showed that there is a one-to-one correspondence
between representations of a Lie–Rinehart algebra and representations of its universal

enveloping algebra U(A,L) := (A#U(L))/J , where J is a certain ideal of the smash

product A#U(L). More explicitly, it is known that U(L) is a Hopf algebra and A is

a U(L)-module algebra. Then the smash product A#U(L) (see [35]) is a K-vector space
A⊗U(L) with elements denoted by a#u and with product defined for all a,b ∈ A and

u,v ∈ U(L) by

(a#u)(b#v) =
∑

aα(u(1))b#u(2)v,

where we use the standard Sweedler notation Δ(u) =
∑

u(1) ⊗ u(2) for the coproduct
Δ. The algebra A#U(L) is also called the Massey–Peterson algebra in [19]. It is not

hard to see that there is a one-to-one correspondence between weak representations of a

Lie–Rinehart algebra and representations of the smash product A#U(L).
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Example 3.12. Let (A,L,[·,·]L,α) be a Lie–Rinehart algebra. Define ad : L → D(L) by

adxy = [x,y]L, σadx = α(x), ∀x,y ∈ L.

Then ad is a weak representation of L on L. Note that ad is generally not a representation
of L on itself.

Definition 3.13. Let (A,L,[·,·]L,α) be a Lie–Rinehart algebra and (M ;ρ) and (M ′;ρ′)
be two weak representations of L. An A-module homomorphism φ :M →M ′ is said to

be a homomorphism of weak representations if φ◦ρ(x) = ρ′(x)◦φ for all x ∈ L.

Proposition 3.14. Let φ : (M ;ρ) → (M ′;ρ′) and φ′ : (M ′;ρ′) → (M ′′;ρ′′) be two

homomorphisms of weak representations of L. Then φ′◦φ is a homomorphism from (M ;ρ)

to (M ′′;ρ′′).

Proof. This is easy to see.

We usually denote by M
φ→ M ′ a homomorphism between the weak representations

(M ;ρ) and (M ′;ρ′) and denote by WRepK(L) the category of weak representations of a

Lie–Rinehart algebra (A,L,[·,·]L,α) and RepK(g) the category of representations of a K-

Lie algebra (g,[·,·]g). It is obvious that the category of representations of a Lie–Rinehart
algebra (A,L,[·,·]L,α), denoted by Rep(L), is a full subcategory of the categoryWRepK(L).
Please note the subtle difference between the two categories RepK(L) and Rep(L).

Definition 3.15 ([6]). Let (A,L,[·,·]L,α) be a Lie–Rinehart algebra and (G,[·,·]G) be a Lie
A-algebra. We say that L acts on G if a K-Lie algebra homomorphism ρ : L → DerK(G)
is given such that

ρ(ax) = aρ(x), ρ(x)(au) = aρ(x)u+α(x)(a)u, ∀a ∈A,x ∈ L,u ∈ G.

Let (A,L,[·,·]L,α) be a Lie–Rinehart algebra and (G,[·,·]G) be a Lie A-algebra on which

L acts via ρ : L → DerK(G). On the A-module L⊕G, define a bracket operation [·,·]ρ by

[(x,u),(y,v)]ρ = ([x,y]L,ρ(x)v−ρ(y)u+[u,v]G), ∀x,y ∈ L,u,v ∈ G,

and define an A-module homomorphism α̃ : L⊕G → DerK(A) by

α̃(x,u) = α(x), ∀x ∈ L,u ∈ G.

Then (A,L⊕G,[·,·]ρ,α̃) is a Lie–Rinehart algebra [6], which is called the semi-direct

product of L and G and denoted by L�ρ G.
Note that the Lie algebra L�ρ G acts on the Lie algebra (G,[·,·]G) by

ρ̃(x,u)v = ρ(x)v, ∀x ∈ L, u,v ∈ G. (9)

Then using Theorem 2.7 (b), we can easily verify the following result.

Proposition 3.16. With the above notations, the projection Pr :L�ρG → G is a crossed
homomorphism with respect to the action ρ̃.
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3.2. Left module categories over monoidal categories

Proposition 3.17. Let (A,L,[·,·]L,α) be a Lie–Rinehart algebra and ρ an action of L
on a Lie A-algebra (G,[·,·]G). For a crossed homomorphism H : L → G between K-Lie

algebras, we define a K-linear map ιH : L→L�ρ G by

ιH(x) = (x,Hx), ∀x ∈ L.

Then ιH is a Lie–Rinehart injective weak homomorphism from L to L�ρ G.

Proof. By Theorem 2.7 (b), we know that ιH is a K-Lie algebra monomorphism.

Moreover, for all x ∈ L, we have

α̃(ιH(x)) = α̃(x,Hx) = α(x),

which implies that α= α̃◦ ιH . Thus, ιH is a Lie–Rinehart injective weak homomorphism.

Corollary 3.18. Let (M ;μ) be a Lie–Rinehart weak representation of (A,L�ρG,[·,·]ρ,α̃)
and H be a crossed homomorphism from L to G. Then (M ;μ◦ ιH) is a Lie–Rinehart weak

representation of (A,L,[·,·]L,α).

Proof. By Propositions 3.8 and 3.17, we deduce that μ◦ ιH : L ιH→ L�ρ G
μ→ D(M) is a

Lie–Rinehart weak homomorphism.

Let (A,L,[·,·]L,α) be a Lie–Rinehart algebra and (g,[·,·]g) be a K-Lie algebra. Then
G = g⊗KA is a Lie A-algebra, where the A-module structure and the Lie bracket [·,·]G
are given by

a(g⊗ b) = g⊗ab, [g⊗a,h⊗ b]G = [g,h]g⊗ab, ∀a,b ∈A, g,h ∈ g.

Moreover, the Lie–Rinehart algebra (A,L,[·,·]L,α) acts on the Lie A-algebra g⊗KA by α

as follows:

α(x)(g⊗a) = g⊗α(x)(a), ∀ x ∈ L,a ∈A,g ∈ g. (10)

Consequently, we have the semidirect product Lie–Rinehart algebra (A,L�α (g⊗K

A),[·,·]α,α̃).
Let (A,L,[·,·]L,α) be a Lie–Rinehart algebra and (M ;ρ) be a Lie–Rinehart weak

representation of (A,L,[·,·]L,α). Let (g,[·,·]g) be a K-Lie algebra and (V ;θ) be a

representation of g. Then V ⊗KM has a natural A-module structure:

a(v⊗m) = v⊗am, ∀ a ∈A,v ∈ V ,m ∈M.

We define a K-linear map ρ�θ : L�α (g⊗KA) → glK(V ⊗KM) by

(ρ�θ)(x,g⊗a)(v⊗m) := v⊗ρ(x)m+θ(g)v⊗am

for all x ∈ L, a ∈A, g ∈ g, m ∈M, v ∈ V .

Lemma 3.19. With the above notations, (V ⊗K M ;ρ � θ) is a Lie–Rinehart weak

representation of the Lie–Rinehart algebra (A,L�α (g⊗KA),[·,·]α,α̃).
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Proof. Since ρ : L → D(M) and θ : g → gl(V ) are K-Lie algebra homomorphisms, for all

a,b ∈A,x,y ∈ L,g,h ∈ g,m ∈M,v ∈ V , we have(
[(ρ�θ)(x,g⊗a),(ρ�θ)(y,h⊗ b)]C − (ρ�θ)([(x,g⊗a),(y,h⊗ b)]α)

)
(v⊗m)

= (ρ�θ)(x,g⊗a)
(
v⊗ρ(y)m+θ(h)v⊗ bm

)
− (ρ�θ)(y,h⊗ b)

(
v⊗ρ(x)m+θ(g)v⊗am

)
− (ρ�θ)

(
[x,y]L,h⊗α(x)(b)−g⊗α(y)(a)+ [g,h]g⊗ab

)
(v⊗m)

= v⊗ρ(x)(ρ(y)m)+θ(g)v⊗a(ρ(y)m)+θ(h)v⊗ρ(x)(bm)+θ(g)(θ(h)v)⊗a(bm)

−v⊗ρ(y)(ρ(x)m)−θ(h)v⊗ b(ρ(x)m)−θ(g)v⊗ρ(y)(am)−θ(h)(θ(g)v)⊗ b(am)

−v⊗ρ([x,y]L)m−θ(h)v⊗α(x)(b)m+θ(g)v⊗α(y)(a)m−θ([g,h]g)v⊗ (ab)m

= 0.

Therefore, we deduce that ρ�θ is a K-Lie algebra homomorphism.
Furthermore, by ρ(x) ∈D(M), we have

(ρ�θ)(x,g⊗ b)
(
a(v⊗m)

)
= (ρ�θ)(x,g⊗ b)(v⊗am)

= v⊗ρ(x)(am)+θ(g)v⊗a(bm)

= v⊗
(
aρ(x)(m)+α(x)(a)m

)
+θ(g)v⊗a(bm)

= a
(
(ρ�θ)(x,g⊗ b)(v⊗m)

)
+α(x)(a)(v⊗m),

which implies that (ρ�θ)(x,g⊗ b) ∈D(V ⊗KM) and α̃= Pr◦ (ρ�θ).

Therefore, ρ�θ :L�α (g⊗KA) → D(V ⊗KM) is a Lie–Rinehart weak homomorphism.

Corollary 3.20. Let (M ;ρ) be a Lie–Rinehart representation of (A,L,[·,·]L,α) and (V ;θ)

be a representation of g. Then (V ⊗KM ;ρ�θ) is a Lie–Rinehart representation of L�α

(g⊗KA).

Proof. Since ρ is an A-module homomorphism, we have(
(ρ�θ)(b(x,g⊗a))− b(ρ�θ)(x,g⊗a)

)
(v⊗m)

= v⊗ρ(bx)m+θ(g)v⊗ (ba)m− b
(
v⊗ρ(x)m+θ(g)v⊗am

)
= 0, ∀a,b ∈A, x ∈ L, g ∈ g, m ∈M, v ∈ V.

Thus, ρ�θ is also an A-module homomorphism.

Before we give the main result of the article, we recall the notions of a monoidal category
and a left module category over a monoidal category.

Definition 3.21 ([10]). A monoidal category is a 6-tuple (C,⊗ ,a,1,l,r) that consists

of the following data:

• a category C;
• a bifunctor ⊗ : C ×C → C called the monoidal product;
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• a natural isomorphism a : ⊗◦ (⊗× IdC) → ⊗◦ (IdC ×⊗) called the associativity
isomorphism;

• an object 1 ∈Ob(C) called the unit object;
• a natural isomorphism l :⊗◦ (1× IdC) → IdC called the left unit isomorphism and

a natural isomorphism r :⊗◦ (IdC ×1) → IdC called the right unit isomorphism.

These data satisfy the following two axioms:
(1) the pentagon axiom: the pentagon diagram

((W ⊗X)⊗Y )⊗Z

aW⊗X,Y ,Z

�������
����

����
����

�
aW,X,Y ⊗IdZ

������
����

����
����

��

(W ⊗X)⊗ (Y ⊗Z)

aW,X,Y ⊗Z

��

(W ⊗ (X⊗Y ))⊗Z

aW,X⊗Y ,Z

��
W ⊗ (X⊗ (Y ⊗Z)) W ⊗ ((X⊗Y )⊗Z)

IdW⊗aX,Y ,Z��

commutes for all W,X,Y ,Z ∈Ob(C).
(2) the triangle axiom: the triangle diagram

(X⊗1)⊗Y
aX,1,Y ��

rX⊗IdY ��

X⊗ (1⊗Y )

IdX⊗lY��
X⊗Y

commutes for all X,Y ∈Ob(C).
The monoidal category C is strict if the associativity isomorphism, left unit isomor-

phism and right unit isomorphism a,l,r are all identities.

Example 3.22. Let C be a category and End(C) be the category of endofunctors

(the functors from C into itself). Then End(C) is a strict monoidal category with the

composition of functors as the monoidal product and the identity functor as the unit
object of this category.

Example 3.23. The category of representations RepK(g) of a K-Lie algebra g is a
monoidal category: the monoidal product of (V1;θ1) and (V2;θ2) is defined by

(V1;θ1)⊗ (V2;θ2) := (V1⊗V2;θ1⊗ IdV2
+IdV1

⊗θ2),

and the unit object 1 is the 1-dimensional trivial representation (K;0) of g. Moreover,

the associativity isomorphism

a(V1;θ1),(V2;θ2),(V3;θ3) : ((V1;θ1)⊗ (V2;θ2))⊗ (V3;θ3) → (V1;θ1)⊗ ((V2;θ2)⊗ (V3;θ3))

is defined by

a(V1;θ1),(V2;θ2),(V3;θ3)

(
(v1⊗v2)⊗v3

)
:= v1⊗ (v2⊗v3), ∀vi ∈ Vi, i= 1,2,3, (11)

https://doi.org/10.1017/S147474802200007X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802200007X


2380 Y. Pei et al.

and the left unit isomorphism l(V ;θ) and the right unit isomorphism r(V ;θ) are defined by

l(V ;θ)(k⊗v) := kv, r(V ;θ)(v⊗k) := kv, ∀k ∈K, v ∈ V. (12)

Definition 3.24 ([10]). Let (C, ⊗ ,a,1,l,r) be a monoidal category. A left module

category over C is a category M equipped with a bifunctor ⊗M : C×M → M, a natural
isomorphism aM : ⊗M ◦ (⊗× IdM) → ⊗M ◦ (IdC ×⊗M) and a natural isomorphism

lM :⊗M ◦ (1× IdM) → IdM such that the pentagon diagram

((X⊗Y )⊗Z)⊗M M

aM
X⊗Y ,Z,M

�������
�����

�����
���� aX,Y ,Z⊗MIdM

������
�����

�����
�����

(X⊗Y )⊗M (Z⊗M M)

aM
X,Y ,Z⊗MM

��

(X⊗ (Y ⊗Z))⊗M M

aM
X,Y ⊗Z,M

��
X⊗M (Y ⊗M (Z⊗M M)) X⊗M ((Y ⊗Z)⊗M M)

IdX⊗MaM
Y ,Z,M��

and the triangle diagram

(X⊗1)⊗MM
aM
X,1,M ��

rX⊗MIdM 		

X⊗M (1⊗MM)

IdX⊗MlMM


X⊗MM

commute for all X,Y ,Z ∈Ob(C), M ∈Ob(M).

Example 3.25. Any monoidal category (C, ⊗ ,a,1,l,r) is a left module category over

itself. More precisely, we set ⊗C = ⊗, aC = a, lC = l. This left module category can be

considered as a categorification of the regular representation of an associative algebra.

Let (A,L,[·,·]L,α) be a Lie–Rinehart algebra and g be a K-Lie algebra. Let H be a

crossed homomorphism from the K-Lie algebra L to g⊗KA with respect to the action α
given by (10). For all x ∈ L, we set Hx=

∑
ix

g

i ⊗xA
i or Hx= xg

i ⊗xA
i for simplicity.

By Corollary 3.18 and Lemma 3.19, our main theorem can be stated as follows.

Theorem 3.26. Let (A,L,[·,·]L,α) be a Lie–Rinehart algebra and (g,[·,·]g) be a K-Lie

algebra. Then any crossed homomorphism H : L → g⊗KA induces a left module category

structure of the category of weak representations WRepK(L) over the monoidal category
RepK(g). More precisely, the left module structure is given by

• the bifunctor FH : RepK(g)×WRepK(L)→WRepK(L), which is defined on the set
of objects and on the set of morphisms respectively by

FH

(
(V ;θ),(M ;ρ)

)
= (V ⊗KM ; (ρ�θ)◦ ιH), (13)

FH(V
ψ→ V ′,M

φ→ M ′) = V ⊗M
ψ⊗φ→ V ′⊗M ′, (14)
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for (V ;θ),(V ′;θ′) ∈ RepK(g), (M ;ρ),(M ′;ρ′) ∈ WRepK(L), representation homo-

morphism V
ψ→ V ′ of the K-Lie algebra (g,[·,·]g) and weak representation homo-

morphism M
φ→ M ′ of the Lie–Rinehart algebra (A,L,[·,·]L,α);

• the natural isomorphism

a(V1;θ1),(V2;θ2),(M ;ρ) : FH

(
(V1;θ1)⊗ (V2;θ2),(M ;ρ)

)
→ FH

(
(V1;θ1),FH

(
(V2;θ2),(M ;ρ)

))
,

which is defined by

a(V1;θ1),(V2;θ2),(M ;ρ)((v1⊗v2)⊗m) = v1⊗ (v2⊗m), (15)

• the natural isomorphism l(M ;ρ) : FH

(
(K;0),(M ;ρ)) → (M ;ρ), which is defined by

l(M ;ρ)(k⊗m) = km. (16)

Proof. By Corollary 3.18 and Lemma 3.19, (V ⊗KM ; (ρ�θ)◦ιH) is a weak representation
of L. Thus, FH is well-defined on the set of objects. To see that FH is also well-defined on

the set of morphisms, we need to show that the linear map ψ⊗φ : V ⊗M → V ′⊗M ′ is
indeed a homomorphism from (V ⊗KM ; (ρ�θ)◦ ιH) to (V ′⊗KM ′; (ρ′�θ′)◦ ιH). In fact,
for all a ∈A, v ∈ V , m ∈M , we have

(ψ⊗φ)
(
a(v⊗m)

)
−a

(
(ψ⊗φ)(v⊗m)

)
= (ψ⊗φ)(v⊗am)−a

(
ψ(v)⊗φ(m)

)
= ψ(v)⊗φ(am)⊗−ψ(v)⊗aφ(m)

= 0.

For all x ∈ g, v ∈ V and m ∈M , we have

(ψ⊗φ)
((

(ρ�θ)ιH(x)
)
(v⊗m)

)
−
(
(ρ′�θ′)ιH(x)

)(
(ψ⊗φ)(v⊗m)

)
= (ψ⊗φ)

((
(ρ�θ)(x,xg

i ⊗xA
i )

)
(v⊗m)

)
−
(
(ρ′�θ′)(x,xg

i ⊗xA
i )

)(
ψ(v)⊗φ(m)

)
= (ψ⊗φ)

(
v⊗ρ(x)m+θ(xg

i )v⊗xA
i m

)
−
(
ψ(v)⊗ρ′(x)φ(m)+θ′(xg

i )ψ(v)⊗xA
i φ(m)

)
=
(
ψ(v)⊗φ(ρ(x)m)+ψ(θ(xg

i )v)⊗φ(xA
i m)

)
−
(
ψ(v)⊗ρ′(x)φ(m)+θ′(xg

i )ψ(v)⊗xA
i φ(m)

)
= 0.

Thus, we obtain that FH(ψ,φ) = ψ⊗φ is a homomorphism of the weak representations.

Moreover, by straightforward computations, we deduce that FH preserves identity

morphisms and composite morphisms. Therefore, FH is a bifunctor.
Let (V1;θ1) and (V2;θ2) be representations of the K-Lie algebra g and (M ;ρ) be a weak

representation of the Lie–Rinehart algebra (A,L,[·,·]L,α). For all b ∈ A, v1 ∈ V1, v2 ∈ V2

and m ∈M , we have

a(V1;θ1),(V2;θ2),(M ;ρ)

(
b
(
(v1⊗v2)⊗m

))
− ba(V1;θ1),(V2;θ2),(M ;ρ)

(
(v1⊗v2)⊗m

)
= a(V1;θ1),(V2;θ2),(M ;ρ)

(
(v1⊗v2)⊗ bm

)
− b

(
v1⊗ (v2⊗m)

)
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= v1⊗ (v2⊗ bm)−v1⊗ b(v2⊗m)

= 0.

For all x ∈ L, v1 ∈ V1, v2 ∈ V2 and m ∈M , we have

a(V1;θ1),(V2;θ2),(M ;ρ)

(((
ρ�

(
θ1⊗ IdV2

+IdV1
⊗θ2

))
ιH(x)

)(
(v1⊗v2)⊗m

))
−
(((

(ρ�θ2)◦ ιH
)
�θ1

)
ιH(x)

)
a(V1;θ1),(V2;θ2),(M ;ρ)((v1⊗v2)⊗m)

= a(V1;θ1),(V2;θ2),(M ;ρ)

(((
ρ�

(
θ1⊗ IdV2

+IdV1
⊗θ2

))
(x,xg

i ⊗xA
i )

)
((v1⊗v2)⊗m)

)
−
(((

(ρ�θ2)◦ ιH
)
�θ1

)
ιH(x)

)
(v1⊗ (v2⊗m))

= a(V1;θ1),(V2;θ2),(M ;ρ)

(
(v1⊗v2)⊗ρ(x)m+(θ1⊗ IdV2

+IdV1
⊗θ2)(x

g

i )(v1⊗v2)⊗xA
i m

)
−
(((

(ρ�θ2)◦ ιH
)
�θ1

)
(x,xg

i ⊗xA
i )

)
(v1⊗ (v2⊗m))

= v1⊗ (v2⊗ρ(x)m)+θ1(x
g

i )v1⊗ (v2⊗xA
i m)+v1⊗ (θ2(x

g

i )v2⊗xA
i m)

−
(
v1⊗

(
(ρ�θ2)ιH(x)(v2⊗m)

)
+θ1(x

g

i )v1⊗xA
i (v2⊗m)

)
= v1⊗ (v2⊗ρ(x)m)+θ1(x

g

i )v1⊗ (v2⊗xA
i m)+v1⊗ (θ2(x

g

i )v2⊗xA
i m)

−
(
v1⊗

(
v2⊗ρ(x)m+θ2(x

g

i )v2⊗xA
i m

)
+θ1(x

g

i )v1⊗ (v2⊗xA
i m)

)
= 0.

Thus, we obtain that a(V1;θ1),(V2;θ2),(M ;ρ) is a homomorphism of the weak representa-

tions. Moreover, by straightforward computations, we obtain that a(V1;θ1),(V2;θ2),(M ;ρ) is
a natural isomorphism and satisfies the pentagon diagram in Definition 3.24.

Let (M ;ρ) be a weak representation of the Lie–Rinehart algebra (A,L,[·,·]L,α). We have

l(M ;ρ)(a(k⊗m)) = l(M ;ρ)(k⊗am) = k(am) = a(km)

= al(M ;ρ)(k⊗m), ∀a ∈A, k ∈K, m ∈M.

For all x ∈ L, k ∈K and m ∈M , we have

l(M ;ρ)

((
(ρ�0)ιH(x)

)
(k⊗m)

)
−ρ(x)

(
l(M ;ρ)(k⊗m)

)
= l(M ;ρ)

((
(ρ�0)(x,xg

i ⊗xA
i )

)
(k⊗m)

)
−ρ(x)(km) = l(M ;ρ)

(
k⊗ρ(x)m

)
−ρ(x)(km)

= k(ρ(x)m)−ρ(x)(km) = 0.

Thus, we deduce that l(M ;ρ) is a homomorphism of weak representations. Moreover, by
straightforward computations, we obtain that l(M ;ρ) is a natural isomorphism and satisfies

the triangle diagram in Definition 3.24. The proof is finished.

Since (A;α) is a representation of a Lie–Rinehart algebra (A,L,[·,·]L,α), which is known

as the natural representation, we obtain the following result.

https://doi.org/10.1017/S147474802200007X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802200007X


Actions of monoidal categories and crossed homomorphisms 2383

Corollary 3.27. Let (A,L,[·,·]L,α) be a Lie–Rinehart algebra, (g,[·,·]g) a K-Lie algebra

and H a crossed homomorphism from L to g⊗KA. Then we have a functor

FA
H : RepK(g)→WRepK(L),

(V ;θ) 
→ (V ⊗KA; (α�θ)◦ ιH), ∀(V ;θ) ∈ RepK(g).

We can also have a very useful functor on WRepK(L) as follows.

Corollary 3.28. Let (A,L,[·,·]L,α) be a Lie–Rinehart algebra, (g,[·,·]g) a K-Lie algebra,
H a crossed homomorphism from L to g⊗K A and (V ;θ) a given representation of g.

Then we have a functor

F θ
H :WRepK(L)→WRepK(L),

(M ;ρ) 
→ (V ⊗KM ; (ρ�θ)◦ ιH), ∀(M ;ρ) ∈WRepK(L).

A special but very interesting case of the above result is that (V ;θ) = (g;ad). In the next

section we will show that Corollary 3.28 is a very efficient way to construct interesting
modules from easy modules.

3.3. Admissible representations of Leibniz pairs

In this subsection, we introduce the notion of an admissible representation of a Leibniz
pair. In the sequel, A is always a commutative associative algebra. The notion of a Leibniz

pair was originally given in [11].

Definition 3.29 ([11]). A Leibniz pair consists of a K-Lie algebra (S,[·,·]S) and a K-Lie
algebra homomorphism β : S → DerK(A).

We denote a Leibniz pair by (A,S,[·,·]S,β) or simply by S.

Definition 3.30. An admissible representation of a Leibniz pair (A,S,[·,·]S,β)
consists of an A-module M and a K-Lie algebra homomorphism ρ : S → glK(M) such
that

ρ(x)(am) = aρ(x)m+β(x)(a)m, ∀x ∈ S,a ∈A,m ∈M. (17)

Definition 3.31. Let (A,S,[·,·]S,β) be a Leibniz pair and (M ;ρ) and (M ′;ρ′) two
admissible representations of S. An A-module homomorphism φ : M → M ′ is said to

be a homomorphism of admissible representations if φ ◦ ρ(x) = ρ′(x) ◦ φ for all

x ∈ S.

Admissible representations of Leibniz pairs are like weak representations of Lie–
Rinehart algebras. We use ARepK(S) to denote the category of admissible representations

of S.
It is straightforward to obtain the following result.

Lemma 3.32. Let (A,S,[·,·]S,β) be a Leibniz pair, M an A-module and ρ : S → glK(M) a

K-linear map. Then (M ;ρ) is an admissible representation of S if and only if (A�M,S⊕
M,[·,·]ρ,β̂) is a Leibniz pair, where A�M is the commutative associative algebra given
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in Remark 3.6, [·,·]ρ is the semidirect product Lie bracket and β̂ : S⊕M → DerK(A�M)
is defined by

β̂(x,m)(a,n) := (β(x)a,ρ(x)n), ∀x ∈ S,a ∈A,m,n ∈M.

It is obvious that any Lie–Rinehart algebra is a Leibniz pair. A weak representation of a
Lie–Rinehart algebra is naturally an admissible representation of the underlying Leibniz

pair. We have the following category equivalence:

WRepK(L)� ARepK(L),

where the right-hand side L is considered as a Leibniz pair.

Conversely, given a Leibniz pair (A,S,[·,·]S,β), we also have an action Lie–Rinehart
algebra (A,S ⊗KA,[·,·],α), where the A-module structure and the K-Lie bracket [·,·] are
given by

a(x⊗ b) = x⊗ab, [x⊗a,y⊗ b] = [x,y]S ⊗ab+y⊗ (aβ(x)b)−x⊗ (bβ(y)a),

and an A-module homomorphism α : S ⊗KA → DerK(A) is defined by α(x⊗a) := aβ(x)

for all a,b ∈A, x,y ∈ S. Furthermore, we obtain the following result.

Proposition 3.33. Let (M ;ρ) be an admissible representation of a Leibniz pair
(A,S,[·,·]S,β). Define ρ : S ⊗KA → glK(M) by

ρ(x⊗a) := aρ(x), ∀x ∈ S,a ∈A.

Then (M ;ρ) is a representation of the Lie–Rinehart algebra (A,S ⊗KA,[·,·],α).

Proof. First, it is obvious that ρ is an A-module homomorphism from S⊗KA to glK(M).

Then it is straightforward to deduce that ρ is a K-Lie algebra homomorphism. Finally,
by (17), we deduce that

ρ(x⊗a)(bm) = aρ(x)(bm) = a
(
bρ(x)m+β(x)(b)m

)
= bρ(x⊗a)m+α(x⊗a)(b)m.

Thus, (M ;ρ) is a representation of the Lie–Rinehart algebra S ⊗KA.

Remark 3.34. We have the following category equivalence if A is unital:

ARepK(S)� Rep(S ⊗KA).

First, the construction of Proposition 3.33 can be easily enhanced to a functor. In fact,

assume that φ :M →M ′ is a homomorphism of admissible representations of a Leibniz
pair (A,S,[·,·]S,β); then it is straightforward to deduce that

φ◦ρ(x⊗a) = ρ′(x⊗a)◦φ

for all x ∈ S,a ∈ A. Thus, φ :M →M ′ is also a homomorphism of representations of the

Lie–Rinehart algebra S⊗KA. So we obtain a functor P :ARepK(S)→Rep(S⊗KA), which

is defined on the sets of objects and morphisms respectively by

P (M ;ρ) = (M ;ρ),

P (φ :M →M ′) = (φ :M →M ′).
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Conversely, let (M ;ρ) be a representation of the Lie–Rinehart algebra S ⊗K A. Define

ρ̃ : S → glK(M) by

ρ̃(x) := ρ(x⊗1), ∀x ∈ S.

Similar to the above discussion, this can also be enhanced to a functor and give the
equivalence between the categories ARepK(S) and Rep(S ⊗KA).

Let (A,S,[·,·]S,β) be a Leibniz pair and h be a K-Lie algebra. Then (A,S ⊕ (h⊗K

A),[·,·],β̃) is a Leibniz pair, where the K-Lie algebra structure on S⊕ (h⊗KA) is given by

[(x,g⊗a),(y,h⊗ b)]

= ([x,y]S,h⊗β(x)(b)−g⊗β(y)(a)+ [g,h]h⊗ab), ∀x,y ∈ S,g⊗a,h⊗ b ∈ h⊗KA,

and β̃ : S ⊕ (h⊗KA) → DerK(A) is given by

β̃(x,g⊗a) = β(x).

Denote this Leibniz pair by S�β (h⊗KA).

Let (M ;ρ) be an admissible representation over S and (V ;θ) be a representation of a
K-Lie algebra h. Then V ⊗KM has a natural A-module structure:

a(v⊗m) = v⊗am, ∀ a ∈A,v ∈ V ,m ∈M.

We define a K-linear map ρ�θ : S�β (h⊗KA) → glK(V ⊗KM) by

(ρ�θ)(x,g⊗a)(v⊗m) := v⊗ρ(x)m+θ(g)v⊗am, ∀x ∈ S, a ∈A, g ∈ h, m ∈M, v ∈ V.

Then it is straightforward to verify the following result.

Lemma 3.35. With the above notations, (V ⊗KM ;ρ�θ) is an admissible representation

of the Leibniz pair S�β (h⊗KA).

Let H be a crossed homomorphism from the K-Lie algebra S to h⊗KA. Then we have

the Lie algebra homomorphism

ιH : S → S�β (h⊗KA)

ιH(x) = (x,Hx), ∀x ∈ S.

Similar to Theorem 3.26, we have the following result.

Theorem 3.36. Any crossed homomorphism H : S → h⊗K A induces a left module

category structure of the category of admissible representations ARepK(S) over the

monoidal category RepK(h),

FH : RepK(h)×ARepK(S)→ ARepK(S)

FH

(
(V ;θ),(M ;ρ)

)
= (V ⊗KM ; (ρ�θ)◦ ιH).
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Proof. We verify that the representation (V ⊗KM ; (ρ�θ)◦ ιH) satisfies (17). For any x∈
S,a ∈A,v ∈ V ,m ∈M . Suppose H(x) =Hx=

∑
ix

h

i ⊗xA
i or Hx= xh

i ⊗xA
i for simplicity.

Then

((ρ�θ)◦ ιH)(x)(a(v⊗m)) =(ρ�θ)(x,xh

i ⊗xA
i )(v⊗am)

=v⊗ρ(x)(am)+θ(xh

i )v⊗xA
i am

=a
(
v⊗ρ(x)(m)+θ(xh

i )v⊗xA
i m

)
+β(x)(a)(v⊗m)

=a((ρ�θ)◦ ιH)(x)(v⊗m)+β(x)(a)(v⊗m).

The proof is similar to Theorem 3.26, so the details will be omitted.

Since (A;β) is an admissible representation of a Leibniz pair (A,S,[·,·]S,β), we obtain

the following result.

Corollary 3.37. Let (A,S,[·,·]S,β) be a Leibniz pair, (h,[·,·]h) a K-Lie algebra and H a

crossed homomorphism from S to h⊗KA. Then we have a functor

FA
H : RepK(h)→ ARepK(S),

(V ;θ) 
→ (V ⊗KA; (β�θ)◦ ιH), ∀(V ;θ) ∈ RepK(h).

We can also have a very useful functor on WRepK(L) as follows.

Corollary 3.38. Let (A,S,[·,·]S,β) be a Leibniz pair, (h,[·,·]h) a K-Lie algebra and H a
crossed homomorphism from S to h⊗KA and (V ;θ) a given representation of h. Then we

have a functor

Fθ
H : ARepK(S)→ ARepK(S),

(M ;ρ) 
→ (V ⊗KM ; (ρ�θ)◦ ιH), ∀(M ;ρ) ∈ ARepK(S).

A special but very interesting case of the above result is that (V ;θ) = (h;ad).
According to Corollaries 3.27 and 3.37, the bifunctors FH in Theorem 3.26 and FH

given in Theorem 3.36 are the actions of monoidal categories.

4. Representations of Cartan-type Lie algebras

From the definition of a crossed homomorphism we see that it is generally hard to

find nontrivial crossed homomorphisms. Next, we will show some examples of crossed
homomorphisms and their tremendous power in obtaining new irreducible modules via

results in the previous section.

4.1. Shen–Larsson functors of Witt type

For n ≥ 1, recall the Witt algebra Wn = Der(An) over the Laurent polynomial algebra

An = C[x±1
1 , · · · ,x±1

n ], which can be interpreted as the Lie algebra of (complex-valued)

polynomial vector fields on an n-dimensional torus. Let ∂i =
∂

∂xi
be the partial derivation
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with respect to the variable xi for i=1,2, . . . ,n, and denote di = xi∂i and xr = xr1
1 xr2

2 · · ·xrn
n

for r = (r1,r2, · · · ,rn)T ∈ Z
n. Then

Wn = span{xrdi | r ∈ Z
n,1≤ i≤ n}

with the Lie bracket

[xrdi,x
sdj ]Wn

= six
r+sdj − rjx

r+sdi, ∀1≤ i,j ≤ n,r,s ∈ Z
n.

Obviously, (An,Wn,[·,·]Wn
,Id) is a Lie–Rinehart algebra. Certainly, (An; Id) is the natural

representation of the Lie–Rinehart algebra (An,Wn,[·,·]Wn
,Id). Let g = gln be the Lie

algebra of all n×n complex matrices. Then G = gln⊗An is a Lie An-algebra. For 1 ≤
i,j ≤n, we use Eij to denote the n×nmatrix with 1 at the (i,j) entry and zeros elsewhere.

Lemma 4.1. The linear map H :Wn → gln⊗An defined by

H(xrdj) =

n∑
i=1

riEij ⊗xr, ∀r ∈ Z
n,1≤ j ≤ n

is a crossed homomorphism from Wn to gln⊗An.

Proof. This follows from (2.5) in [16] (or (2.3) and Lemma 2.1 in [25]) and Theorem 2.7.

By Lemma 4.1 and Corollary 3.27, we obtain the following result.

Corollary 4.2. We have a functor FAn

H : RepC(gln)→WRepC(Wn) given by

FAn

H (V ;θ) = (V ⊗CAn; (Id�θ)◦ ιH), ∀(V ;θ) ∈ RepC(gln).

Let An = C[x±1
1 , · · · ,x±1

n ,∂1, · · · ,∂n] be the Weyl algebra, which is the universal

enveloping algebra of the Lie–Rinehart algebra (An,Wn,[·,·]Wn
,Id). Let (P ;ρ) be a

representation of An. It is obvious that (P ;ρ|Wn
) is a Wn-module. By Lemma 4.1 and

Corollary 3.28, we obtain the following result.

Corollary 4.3. We have a functor FP
H : RepC(gln)→WRepC(Wn) given by

FP
H (V ;θ) = (V ⊗CP ; (ρ|Wn

�θ)◦ ιH), ∀(V ;θ) ∈ RepC(gln).

Remark 4.4. The functor FP
H , introduced by Liu, Lu and Zhao in [25] is a generalisation

of the Shen–Larsson functor of type (Wn,gln), which gives a class of new simple modules
over Wn. This class of simple Wn-modules was used in the classification of simple Wn-

modules that are finitely generated as modules over its Cartan subalgebra (see [16]).

Next we take g = C, the 1-dimensional trivial Lie algebra. Let p = (p1,p2, · · · ,pn) ∈
C[t±1

1 ]×C[t±1
2 ]×·· ·×C[t±1

n ],q ∈ C. Similar to the automorphism σb in Section 2 of [45],

we can easily see that the linear map

Wn →Wn�IdAn,

xrdi 
→ xr(di+pi)+ qrix
r,

https://doi.org/10.1017/S147474802200007X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802200007X


2388 Y. Pei et al.

is a Lie algebra homomorphism. By Theorem 2.7, we see that the linear map

Hp,q :Wn → g⊗An
∼=An,

xrdi 
→ (pi+ qri)x
r, ∀r ∈ Z

n,1≤ i≤ n,

is a crossed homomorphism from Wn to An. In fact, Hp,q ∈DerC(Wn,An). By Lemma 4.1

and Corollary 3.28, we obtain the following result.

Corollary 4.5. We have a functor Fp,q :WRepC(Wn)→WRepC(Wn) defined by

Fp,q(M ;ρ) = (M ;ρ◦ ιHp,q
), ∀(M ;ρ) ∈WRepC(Wn).

Remark 4.6. By forgetting the An-module structure, the corresponding functor Fp,q is

just the twisting functor in the Wn-module category introduced in [28, 29, 45], where a

lot of new simple modules were obtained over the Virasoro algebra and Wn.

4.2. Shen–Larsson functors of divergence zero type

In this section we assume that n ≥ 2. Let us recall the divergence map div : Wn → An

with xrdi 
→ rix
r, for all r ∈ Z

n. It is well-known that

Sn = {w ∈Wn | div(w) = 0}

is a Lie subalgebra of Wn, called the Lie algebra of divergence zero vector fields on an

n-dimensional torus. Let dij(r) = rjx
rdi− rix

rdj . Then

Sn = spanC{di,dij(r) | i,j = 1,2 · · · ,n}

with the Lie bracket

[dk,dij(r)]Wn
= rkdij(r),

[dij(r),dpq(s)]Wn
= rjspdiq(r+s)− rjsqdip(r+s)− rispdjq(r+s)+ risqdjp(r+s),

for r,s ∈ Z
N,i,j,p,q = 1, · · · ,n.

Note that Sn is not a Lie–Rinehart subalgebra since Sn is not an An-module. It is
straightforward to see that (An,Sn,[·,·]Wn

,Id) is a Leibniz pair.

Recall that sln is the Lie subalgebra of gln consisting of all traceless complex matrices.

The restriction H|Sn
of the crossed homomorphism H in Lemma 4.1 is a crossed

homomorphism from Sn to sln⊗An. By Corollary 3.37, we obtain the following result.

Corollary 4.7. We have a functor FAn

H : RepC(sln)→ ARepC(Sn) defined by

FAn

H (V ;θ) = (V ⊗CAn; (Id�θ)◦ ιH), ∀(V ;θ) ∈ RepC(sln).

Let (P ;ρ) be a representation of An. It follows that (P ;ρ|Sn
) is an admissible

representation of Sn since Sn ⊂An. By Theorem 3.36, we obtain the following result.

Corollary 4.8. We have a functor FP
H : RepC(sln)→ ARepC(Sn) defined by

FP
H(V ;θ) = (V ⊗CP ; (ρ|Sn

�θ)◦ ιH), ∀(V ;θ) ∈ RepC(sln).

Remark 4.9. The functor FP
H was introduced in [8] and is a generalisation of the Shen–

Larsson functor of type (Sn,sln), to give a class of new simple modules over Sn.
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4.3. Shen–Larsson functors of Hamiltonian type

For r ∈ Z
2n, let

h(r) =

n∑
i=1

(rn+ix
r∂i− rix

r∂n+i) ∈W2n.

It is well-known that Hn = SpanC{h(r) | r ∈ Z
2n} is a Lie subalgebra of W2n, with

[h(r),h(s)]W2n
=

n∑
i=1

(rn+isi−sn+iri)h(r+s), ∀r,s ∈ Z
2n.

This Lie algebra Hn is called the Lie algebra of Hamiltonian vector fields on a 2n-

dimensional torus. Note that Hn is not a Lie–Rinehart algebra since Hn is not an A2n-

module. It is straightforward to see that (An,Hn,[·,·]W2n
,Id) is a Leibniz pair.

Let sp2n be the Lie subalgebra of gl2n consisting of all symplectic matrices. The
restriction H|Hn

of the crossed homomorphism H in Lemma 4.1 is a linear map

Hn → sp2n⊗A2n given by

H(h(r)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1rn+1 · · · r1r2n −r1r1 · · · −r1rn
... · · ·

...
... · · ·

...
rnrn+1 · · · rnr2n −rnr1 · · · −rnrn

rn+1rn+1 · · · rn+1r2n −rn+1r1 · · · −rn+1rn
... · · ·

...
... · · ·

...

r2nrn+1 · · · r2nr2n −r2nr1 · · · −r2nrn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⊗xr ∈ sp2n⊗A2n,

which is certainly a crossed homomorphism from Hn to sp2n⊗A2n. By Corollary 3.37,

we obtain the following result.

Corollary 4.10. We have a functor FA2n

H : RepC(sp2n)→ ARepC(Hn) defined by

FA2n

H (V ;θ) = (V ⊗CA2n; (Id�θ)◦ ιH), ∀(V ;θ) ∈ RepC(sp2n).

Remark 4.11. The functors defined in Corollaries 4.2, 4.7 and 4.10 are the well-known
Shen–Larsson functors of type (Wn,gln), type (Sn,sln) and type (Hn,sp2n), respectively.

The functor of type (Wn,gln) was introduced by Shen [42] (over polynomial algebras) and

Larsson [24] (over Laurent polynomial algebras) independently in different settings. The
functors of type (Sn,sln) and (Hn,sp2n) were introduced by Shen over polynomial algebras

[42] and further studied in [5, 44] over Laurent polynomial algebras. For any simple gln-

module V the simplicity of the Wn-module FAn

H (V ;θ) was determined in [9, 17, 26]. In
particular, simple Wn-modules of this class (with V as simple finite-dimensional gln-

modules) are all simple Harish–Chandra Wn-modules [2]. Note that there are still no

results for Hn similar to those in [9, 17, 26].
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4.4. Actions of monoidal categories for generalised Cartan type

Let A be a commutative associative C-algebra and let Δ be a nonzero C-vector space of

commuting C-derivations of A. Let us first recall the construction of the generalised Witt

algebras from [37]. The tensor product AΔ :=A⊗CΔ acts on A by

a⊗∂ : x 
→ a∂(x), a,x ∈A,∂ ∈Δ.

Since A is commutative, this gives rise to a linear transformation α : AΔ → DerC(A).
Define a bracket [·,·]AΔ on AΔ by

[a∂,bδ]AΔ = a∂(b)δ− bδ(a)∂, ∀a,b ∈A,∂,δ ∈Δ,

which gives a Lie algebra structure on AΔ. Then α is clearly an action of AΔ on the

commutative Lie algebra A. Assume that dimCΔ<∞. Then there are ∂1, · · · ,∂n ∈Δ such
that AΔ is a free A-module with basis {∂1, · · · ,∂n} (see [49]). We denote this Lie algebra

by Wn(A,Δ). Note that (A,Wn(A,Δ),[·,·]
AΔ

,α) is a Lie–Rinehart algebra.

Now we have a generalisation of Lemma 4.1.

Lemma 4.12. The linear map H :Wn(A,Δ)→ gln⊗A defined by

H

(
n∑

i=1

ai∂i

)
=

n∑
i=1

n∑
j=1

Eij ⊗∂i(aj), ai ∈A

is a crossed homomorphism from Wn(A,Δ) to gln⊗A.

Proof. It is straightforward but tedious to verify the above formula. We omit the
details.

Similar to Corollary 4.2, by Lemma 4.12 and Theorem 3.26 we obtain the following

result.

Corollary 4.13. We have a functor FA
H : RepC(gln)→WRepC(Wn(A,Δ)) defined by

FA
H (V ;θ) = (V ⊗CA; (α�θ)◦ ιH), ∀(V ;θ) ∈ RepC(gln).

Remark 4.14.

(1) If A=C[x±1
1 , · · · ,x±1

n ] and Δ= SpanC{x1
∂

∂x1
, · · · ,xn

∂
∂xn

}, Wn(A,Δ) is the standard

Witt algebra Wn and the corresponding FA
H is the Shen–Larsson functor of type

(Wn,gln).

(2) If A=C[x±1
1 , · · · ,x±1

n ] and Δ̄ = SpanC{ ∂
∂x1

, · · · , ∂
∂xn

}, Wn(A,Δ̄) is also the standard

Witt algebra Wn. However, the corresponding Shen–Larsson functor F̄A
H is different

from the standard FA
H except on the category of finite-dimensional gln-modules.

This was pointed out by Liu, Lu and Zhao in [25].

(3) If A is taken to be a polynomial algebra with finitely many variables xi together with

some x−1
i and Δ to be some mixed differential operators w.r.t. xi, the Lie algebra

Wn(A,Δ) was introduced by Xu [48]. The corresponding Shen–Larsson functor FA
H

was introduced and studied by Zhao [50], generalising Rao’s results in [9].

(4) Under certain finite conditions, the functor FA
H is the Shen–Larsson functor

Wn(A,Δ) introduced and studied by Skryabin in [43].

https://doi.org/10.1017/S147474802200007X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802200007X


Actions of monoidal categories and crossed homomorphisms 2391

(5) Let A be the coordinate ring of an irreducible affine variety and Δ a certain

subalgebra of Der(A). The corresponding Shen–Larsson functor FA
H was introduced

and studied in [3, 4] to give new simple modules over Wn(A,Δ).

Now let us define the divergence map div :Wn(A,Δ)→A to be the C-linear extension of

div(a∂) = ∂(a), ∀a ∈A,∂ ∈Δ.

Let Sn(A,Δ)= {w ∈AΔ | div(w) = 0}. Then Sn(A,Δ) is a Lie subalgebra of Wn(A,Δ); see

[1] for more details. If A = C[x±1
1 , · · · ,x±1

n ] and Δ = SpanC{x1
∂

∂x1
, · · · ,xn

∂
∂xn

}, Sn(A,Δ)
is the Lie algebra Sn of divergence zero vector fields on an n-dimensional torus.

Note that Sn(A,Δ) is not a Lie–Rinehart subalgebra since Sn(A,Δ) is not an A-module.

It is straightforward to see that (A,Sn(A,Δ),[·,·]AΔ,Id) is a Leibniz pair.

It is clear that H|Sn(A,Δ) is a crossed homomorphism from Sn(A,Δ) to sln⊗A. Similar
to Corollary 4.5, by Lemma 4.12 and Corollary 3.37 we obtain the following result.

Corollary 4.15. We have a functor FA
H : RepC(sln)→ ARepC(Sn(A,Δ)) defined by

FA
H(V ;θ) = (V ⊗CA; (α�θ)◦ ιH), ∀(V ;θ) ∈ RepC(sln).

Now let us define a map D :A→W2n(A,Δ) to be the linear extension of

D(a) =
n∑

i=1

(∂i(a)∂n+i−∂n+i(a)∂i), ∀a ∈A.

Let Hn(A,Δ) = {D(a) | a ∈A}. Then Hn(A,Δ) is a Lie subalgebra of W2n(A,Δ), with

[D(a),D(b)]AΔ =D

(
n∑

i=1

(∂i(a)∂n+i(b)−∂n+i(a)∂i(b))

)
, ∀a,b ∈A.

If A = C[x±1
1 , · · · ,x±1

2n ] and Δ = SpanC{x1
∂

∂x1
, · · · ,x2n

∂
∂x2n

}, then Hn(A,Δ) is the Lie

algebra of Hamiltonian vector fields on a 2n-dimensional torus.

Note that Hn(A,Δ) is not a Lie–Rinehart algebra since Hn(A,Δ) is not an A-module.
It is straightforward to see that (A,Hn(A,Δ),[·,·]AΔ,Id) is a Leibniz pair.

The restriction H|Hn(A,Δ) of the crossed homomorphism H in Lemma 4.12 is a crossed

homomorphism from Hn(A,Δ) to sp2n ⊗A. Similar to Corollary 4.10, by Lemma 4.12
and Corollary 3.37 we obtain the following result.

Corollary 4.16. We have a functor FA
H : RepC(sp2n)→ ARepC(Hn(A,Δ)) defined by

FA
H(V ;θ) = (V ⊗CA; (α�θ)◦ ιH), ∀(V ;θ) ∈ RepC(sp2n).

5. Deformation and cohomologies of crossed homomorphisms

In this section, first we give the Maurer–Cartan characterisation of crossed homomor-

phisms of Lie algebras. In particular, we give the differential graded Lie algebra that
controls deformations of crossed homomorphisms. Then we define the cohomology groups

of crossed homomorphisms, which can be applied to study linear deformations of crossed

homomorphisms.
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5.1. The differential graded Lie algebra controlling deformations

Definition 5.1. A differential graded Lie algebra (g,[·,·],d) is a Z-graded vector

space g=⊕i∈Zgi together with a bilinear bracket [·,·] : g⊗g→ g and a linear map d : g→ g

satisfying the following conditions:

• [gi,gj ]⊂ gi+j and [a,b] =−(−1)ab[b,a] for every a,b homogeneous.
• Every a,b,c homogeneous satisfies the Jacobi identity

[a,[b,c]] = [[a,b],c]+ (−1)ab[b,[a,c]].

• d(gi) ⊂ gi+1, d ◦ d = 0 and d[a,b] = [da,b] + (−1)a[a,db]. The map d is called the
differential of g.

We have used the notation ā= i if a ∈ gi.

Definition 5.2 ([27]). Let (g = ⊕k∈Zgk,[·,·],d) be a differential graded Lie algebra. A

degree 1 element θ ∈ g1 is called a Maurer–Cartan element of g if it satisfies the

following Maurer–Cartan equation:

dθ+
1

2
[θ,θ] = 0. (18)

Proposition 5.3 ([27]). Let (g=⊕k∈Zgk,[·,·],d) be a differential graded Lie algebra and

let μ ∈ g1 be a Maurer–Cartan element. Then the map

dμ : g−→ g, dμ(x) := d(x)+ [μ,x], ∀x ∈ g,

is a differential on the graded Lie algebra (g,[·,·]). For any v ∈ g1, the sum μ+ v is a
Maurer–Cartan element of the differential graded Lie algebra (g,[·,·],d) if and only if v is

a Maurer–Cartan element of the differential graded Lie algebra (g,[·,·],dμ).

Let (g,[·,·]g) and (h,[·,·]h) be Lie algebras and ρ : g → Der(h) be an action of g on h.

Consider the graded vector space

C∗(g,h) :=⊕k≥0Hom(∧kg,h).

Define d : Hom(∧mg,h) → Hom(∧m+1g,h) by

(df)(x1, · · · ,xm+1) =
m+1∑
i=1

(−1)m+iρ(xi)f(x1, · · · ,x̂i, · · · ,xm+1) (19)

+
∑

1≤i<j≤m+1

(−1)m+i+j−1f([xi,xj ]g,x1, · · · ,x̂i, · · · ,x̂j, · · · ,xm+1),

for all f ∈Hom(∧mg,h). Define a skew-symmetric bracket operation [[·,·]] :Hom(∧mg,h)×
Hom(∧ng,h)−→ Hom(∧m+ng,h) by

[[f1,f2]](x1,x2, · · · ,xm+n)

= (−1)mn+1
∑

σ∈S(m,n)

(−1)σ[f1(xσ(1), · · · ,xσ(m)),f2(xσ(m+1), · · · ,xσ(m+n))]h (20)
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for all f1 ∈ Hom(∧mg,h) and f2 ∈ Hom(∧ng,h). Here S(m,n) denotes the set of all (m,n)-

shuffles.

Note that for all u,v ∈ h, [[u,v]] =−[u,v]h.

Proposition 5.4. With the above notations, (C∗(g,h), [[·,·]],d) is a differential graded Lie

algebra. Its Maurer–Cartan elements are precisely crossed homomorphisms from g to h

with respect to the action ρ.

Proof. In short, the graded Lie algebra (C∗(g,h), [[·,·]]) is obtained via the derived bracket
[23, 46]. In fact, the Nijenhuis–Richardson bracket [·,·]NR associated to the direct sum

vector space g⊕V gives rise to a graded Lie algebra (⊕k≥0Hom(∧k(g⊕h),g⊕h),[·,·]NR).
Obviously, ⊕k≥0Hom(∧kg,h) is an abelian subalgebra. We denote the Lie brackets [·,·]g
and [·,·]h by μg and μh, respectively. Since ρ is an action of the Lie algebra (g,[·,·]g), we
deduce that μg+ ρ is a semidirect product Lie algebra structure on g⊕h. Thus, μg+ ρ

and μh are Maurer–Cartan elements of the graded Lie algebra (C∗(g⊕ h,g⊕ h),[·,·]NR).
Define a differential dμh

on (C∗(g⊕h,g⊕h),[·,·]NR) via

dμh
:= [μh,·]NR.

Further, we define the derived bracket on the graded vector space ⊕k≥0Hom(∧kg,h) by

[[f1,f2]] := (−1)m−1[[μh,f1]NR,f2]NR, ∀f1 ∈ Hom(∧mg,h), f2 ∈ Hom(∧ng,h),

which is exactly the bracket given by (20). By [μh,μh]NR =0, we deduce that (C∗(g,h), [[·,·]])
is a graded Lie algebra.
Moreover, by Imρ ⊂ Der(h), we have [μg + ρ,μh]NR = 0. We define a linear map d =:

[μg+ρ,·]NR on the graded space C∗(g⊕h,g⊕h). We obtain that d is closed on the subspace

⊕k≥0Hom(∧kg,h) and is given by (19).
By [μg+ρ,μg+ρ]NR = 0, we obtain that d ◦d = 0. Moreover, by [μg+ρ,μh]NR = 0, we

deduce that d is a derivation of (C∗(g,h), [[·,·]]). Therefore, (C∗(g,h), [[·,·]],d) is a differential

graded Lie algebra.

Finally, for a degree 1 element H ∈ Hom(g,h), we have(
dH+

1

2
[[H,H]]

)
(x,y) = ρ(x)(Hy)−ρ(y)(Hx)−H[x,y]g+[Hx,Hy]h.

Thus, Maurer–Cartan elements are precisely crossed homomorphisms from (g,[·,·]g) to

(h,[·,·]h) with respect to the action ρ. The proof is finished.

Let H : g −→ h be a crossed homomorphism with respect to the action ρ. Since H

is a Maurer–Cartan element of the differential graded Lie algebra (C∗(g,h), [[·,·]],d) by
Proposition 5.4, it follows from Proposition 5.3 that dH := d+[[H,·]] is a graded derivation

on the graded Lie algebra (C∗(g,h), [[·,·]]) satisfying d2H = 0. Therefore, (C∗(g,h), [[·,·]],dH)

is a differential graded Lie algebra. This differential graded Lie algebra can control
deformations of crossed homomorphisms. We have obtained the following result.

Theorem 5.5. Let H : g−→ h be a crossed homomorphism with respect to the action ρ.

For a linear map H ′ : g−→ h, H+H ′ is still a crossed homomorphism from g to h with
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respect to the action ρ if and only if H ′ is a Maurer–Cartan element of the differential

graded Lie algebra (C∗(g,h), [[·,·]],dH).

5.2. Cohomologies of crossed homomorphisms

In this subsection, we define cohomologies of a crossed homomorphism, which can be used

to study linear deformations in Section 5.3.
Recall that ρH defined by (4) is a representation of g on h. Let dρH

: Hom(∧kg,h) −→
Hom(∧k+1g,h) be the corresponding Chevalley–Eilenberg coboundary operator. More

precisely, for all f ∈ Hom(∧kg,h) and x1, · · · ,xk+1 ∈ g, we have

dρH
f(x1, · · · ,xk+1)

=

k+1∑
i=1

(−1)i+1ρ(xi)f(x1, · · · ,x̂i, · · · ,xk+1)+

k+1∑
i=1

(−1)i+1[Hxi,f(x1, · · · ,x̂i, · · · ,xk+1)]h

(21)

+
∑

1≤i<j≤k+1

(−1)i+jf([xi,xj ]g,x1, · · · ,x̂i, · · · ,x̂j, · · · ,xk+1).

It is obvious that u ∈ h is closed if and only if ρ(x)u+ [Hx,u]h = 0 for all x ∈ g, and
f ∈ Hom(g,h) is closed if and only if

ρ(x1)f(x2)−ρ(x2)f(x1)+ [Hx1,f(x2)]h− [Hx2,f(x1)]h−f([x1,x2]g) = 0, ∀x1,x2 ∈ g.

Definition 5.6. Let H : g−→ h be a crossed homomorphism with respect to the action

ρ. Denote by Ck(g,h) = Hom(∧kg,h) and (C∗(g,h) =⊕k≥0Ck(g,h),dρH
) the above cochain

complex. Denote the set of k -cocycles by Zk(g,h) and the set of k -coboundaries by

Bk(g,h). Denote by

Hk(g,h) = Zk(g,h)/Bk(g,h), k ≥ 0, (22)

the kth cohomology group, which will be taken to be the kth cohomology group for

the crossed homomorphismH.

Comparing the coboundary operators dρH
given above and the operators dH = d+[[H,·]]

defined by the Maurer–Cartan element H, we have the following.

Proposition 5.7. Let H : g−→ h be a crossed homomorphism. Then we have

dρH
f = (−1)k−1dHf, ∀f ∈ Hom(∧kg,h).

Proof. Indeed, for all x1,x2, · · · ,xk+1 ∈ g and f ∈ Hom(∧kg,h), we have

(−1)k−1(dHf)(x1,x2, · · · ,xk+1)

= (−1)k−1(df +[[H,f ]])(x1, · · · ,xk+1)

=
i+1∑
i=1

(−1)i+1ρ(xi)f(x1, · · · ,x̂i, · · · ,xk+1)

https://doi.org/10.1017/S147474802200007X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802200007X


Actions of monoidal categories and crossed homomorphisms 2395

+
∑

1≤i<j≤k+1

(−1)i+jf([xi,xj ]g,x1, · · · ,x̂i, · · · ,x̂j, · · · ,xk+1)

+(−1)k−1(−1)k+1
∑

σ∈S(1,k)

(−1)σ[Hxσ(1),f(xσ(2), · · · ,xσ(k+1))]h

=
i+1∑
i=1

(−1)i+1ρ(xi)f(x1, · · · ,x̂i, · · · ,xk+1)

+
∑

1≤i<j≤k+1

(−1)i+jf([xi,xj ]g,x1, · · · ,x̂i, · · · ,x̂j, · · · ,xk+1)

+
k+1∑
i=1

(−1)i−1[Hxi,f(x1, · · · ,x̂i, · · · ,xk+1)]h

= (dρH
f)(x1,x2, · · · ,xk+1),

which implies that dρH
f = (−1)k−1dHf .

At the end of this section, we show that certain homomorphisms between crossed

homomorphisms induce homomorphisms between the corresponding cohomology groups.
Let H and H̃ be two crossed homomorphisms from g to h with respect to the action ρ

and (φg,φh) a homomorphism from H̃ to H in which φg is invertible. For all k ≥ 0, define

Φ :Hom(∧kg,h) → Hom(∧kg,h)

f 
→ φh ◦f ◦ (φ−1
g )⊗k.

Theorem 5.8. Let H and H̃ be two crossed homomorphisms from g to h with respect
to the action ρ of g on h and (φg,φh) be a homomorphism from H̃ to H in which φg is

invertible. Then the above Φ is a cochain map from the cochain complex (C∗(g,h),dρ
˜H
) to

(C∗(g,h),dρH
). Consequently, Φ induces a homomorphism Φ∗ : H̃k(g,h) → Hk(g,h) between

corresponding cohomology groups.

Proof. By the fact that (φg,φh) is a homomorphism from H̃ to H, we have

(Φ(dρ
˜H
f))(x1, · · · ,xk+1) = φh(dρ

˜H
f)(φ−1

g (x1), · · · ,φ−1
g (xk+1))

=

i+1∑
i=1

(−1)i+1φhρ(φ
−1
g (xi))f(φ

−1
g (x1), · · · ,x̂i, · · · ,φ−1

g (xk+1))

+
∑

1≤i<j≤k+1

(−1)i+jφhf([φ
−1
g (xi),φ

−1
g (xj)]g,φg

−1(x1), · · · ,x̂i, · · · ,x̂j, · · · ,φ−1
g (xk+1))

+

k+1∑
i=1

(−1)i+1φh[H̃φ−1
g (xi),f(φ

−1
g (x1), · · · ,x̂i, · · · ,φ−1

g (xk+1))]h

=
i+1∑
i=1

(−1)i+1ρ(xi)φhf(φ
−1
g (x1), · · · ,x̂i, · · · ,φ−1

g (xk+1))
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+
∑

1≤i<j≤k+1

(−1)i+jφhf(φ
−1
g [xi,xj ]g,φg

−1(x1), · · · ,x̂i, · · · ,x̂j, · · · ,φ−1
g (xk+1))

+
k+1∑
i=1

(−1)i+1[H(xi),φhf(φ
−1
g (x1), · · · ,x̂i, · · · ,φ−1

g (xk+1))]h

= dρH
Φ(f)(x1, · · · ,xk+1),

which implies that Φ is a cochain map.

Corollary 5.9. Let H and H̃ be two isomorphic crossed homomorphisms. Then the
cohomology groups H̃k(g,h) and Hk(g,h) are isomorphic for any k ∈ Z+.

5.3. Linear deformations of crossed homomorphisms

In this subsection, we study linear deformations of crossed homomorphisms using

the cohomology theory introduced in Subsection 5.2 and show that isomorphic linear
deformations are identified with the same class in the second cohomology group. We give

the notion of a Nijenhuis element associated to a crossed homomorphism, which gives rise

to a trivial deformation.

Definition 5.10. Let H : g−→ h be a crossed homomorphism with respect to the action

ρ and H : g−→ h be a linear map. If Ht =H+ tH is still a crossed homomorphism from g

to h with respect to the action ρ for all t, we say that H generates a (one-parameter)

linear deformation of the crossed homomorphism H.

It is direct to check thatHt =H+tH is a linear deformation of a crossed homomorphism

H if and only if for any x,y ∈ g,

ρ(x)Hy−ρ(y)Hx+[Hx,Hy]h+[Hx,Hy]h−H[x,y]g = 0, (23)

[Hx,Hy]h = 0. (24)

Note that Equation (23) means that H is a 1-cocycle of the crossed homomorphism H.

Definition 5.11. Let H be a crossed homomorphism from g to h with respect to the
action ρ.

(i) Two linear deformations H1
t =H+tH1 andH2

t =H+tH2 are said to be equivalent
if there exists an x ∈ g such that (Idg+ tadx,Idh+ tρ(x)) is a homomorphism from

H2
t to H1

t .

(ii) A linear deformation H+ tH of a crossed homomorphism H is said to be trivial if

there exists an x ∈ g such that (Idg+ tadx,Idh+ tρ(x)) is a homomorphism from Ht

to H.

Let (Idg+ tadx,Idh+ tρ(x)) be a homomorphism from H2
t to H1

t . Then Idg+ tadx and

Idh+ tρ(x) are Lie algebra endomorphisms. Thus, we have

(Idg+ tadx)[y,z]g = [(Idg+ tadx)(y),(Idg+ tadx)(z)]g, ∀y,z ∈ g,

(Idh+ tρ(x))[u,v]h = [(Idh+ tρ(x))(u),(Idh+ tρ(x))(v)]h, ∀u,v ∈ h,
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which implies that x satisfies

[[x,y]g,[x,z]g]g = 0, ∀y,z ∈ g, (25)

[ρ(x)u,ρ(x)v]h = 0, ∀u,v ∈ h. (26)

Then by Equation (2), we get

(H+ tH1)(Idg+ tadx)(y) = (Idh+ tρ(x))(H+ tH2)(y), ∀y ∈ g,

which implies

(H2−H1)(y) =−ρ(y)Hx− [Hy,Hx]h, (27)

H1[x,y]g = ρ(x)(H2y), ∀y ∈ g. (28)

Finally, Equation (3) gives

(Idh+ tρ(x))ρ(y)(u) = ρ((Idg+ tadx)(y))(Idh+ tρ(x))(u), ∀y ∈ g,u ∈ h,

which implies that x satisfies

ρ([x,y]g)ρ(x) = 0, ∀y ∈ g. (29)

Note that Equation (27) means that H2−H1 = dρH
(−Hx). Thus, we have the following.

Theorem 5.12. Let H be a crossed homomorphism from g to h with respect to the

action ρ. If two linear deformations H1
t =H+ tH1 and H2

t =H+ tH2 are equivalent, then
H1 and H2 are in the same cohomology class of H1(g,h) = Z1(g,h)/B1(g,h) defined in

Definition 5.6.

Definition 5.13. Let H be a crossed homomorphism from g to h with respect to the

action ρ. An element x ∈ g is called a Nijenhuis element associated to H if x satisfies
Equations (25), (26), (29) and the equation

ρ(x)
(
ρ(y)Hx+[Hy,Hx]h

)
= 0, ∀y ∈ g. (30)

Denote by Nij(H) the set of Nijenhuis elements associated to a crossed homomorphism H.

By Equations (25)–(29), it is obvious that a trivial linear deformation gives rise to a

Nijenhuis element. The following result is in close analogy to the fact that the differential

of a Nijenhuis operator on a Lie algebra generates a trivial linear deformation of the Lie
algebra [7], justifying the notion of Nijenhuis elements.

Theorem 5.14. Let H be a crossed homomorphism from g to h with respect to the action

ρ. Then for any x ∈ Nij(H), Ht :=H+ tH with H := dρH
(−Hx) is a linear deformation

of the crossed homomorphism H. Moreover, this deformation is trivial.

We need the following lemma to prove this theorem.

Lemma 5.15. Let H be a crossed homomorphism from g to h with respect to the action

ρ. Let φg : g −→ g and φh : h −→ h be Lie algebra isomorphisms such that Equation (3)
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holds. Then φ−1
h

◦H ◦ φg is a crossed homomorphism from g to h with respect to the

action ρ.

Proof. It follows from straightforward computations.

(The proof of Theorem 5.14.). For any Nijenhuis element x ∈ Nij(H), we define

H= dH(−Hx). (31)

By the definition of Nijenhuis elements of H, for any t, Ht =H+ tH satisfies

H ◦
(
Idg+ tadx

)
=
(
Idh+ tρ(x)

)
◦Ht,(

Idh+ tρ(x)
)
◦ρ(y) = ρ

(
(Idg+ tadx)(y)

)
◦
(
Idh+ tρ(x)

)
, ∀y ∈ g.

For t sufficiently small, we see that Idg + tadx and Idh + tρ(x) are Lie algebra
isomorphisms. Thus, we have

Ht =
(
Idh+ tρ(x)

)−1

◦H ◦
(
Idg+ tadx

)
.

By Lemma 5.15, we deduce that Ht is a crossed homomorphism from g to h, for t

sufficiently small. Thus, H given by Equation (31) satisfies the conditions (23) and (24).
Therefore, Ht is a crossed homomorphism for all t, which means that H given by Equation

(31) generates a deformation. It is straightforward to see that this deformation is trivial.

It is generally not easy to find Nijenhuis elements associated to a crossed homomorphism
H from a Lie algebra g to h. Next, we give examples on some special Lie algebras where

the Nijenhuis elements can be explicitly determined.

Example 5.16. Let g be a 2-step nilpotent Lie algebra; that is, [g,[g,g]] = 0 and H : g→ g

a crossed homomorphism with respect to the adjoint action ad of g on g. It is easy to

see that (25), (26), (29), (30) hold for any x ∈ g. Therefore, Nij(H) = g for any crossed

homomorphism H with respect to the adjoint action ad of g on g. For example, we can
take g to be any Heisenberg algebra.

Example 5.17. Consider the unique 2-dimensional nonabelian Lie algebra on C
2. The

Lie bracket is given by [e1,e2] = e1 for a given basis {e1,e2}. For a matrix

(
a11 a12
a21 a22

)
,

define

He1 = a11e1+a21e2, He2 = a12e1+a22e2.

H is a crossed homomorphism from C
2 to C

2 with respect to the adjoint action if and

only if

H[e1,e2] = [He1,e2]+ [e1,He2]+ [He1,He2].

By a straightforward computation, we conclude that H is a crossed homomorphism if

and only if a21 = 0, (1+a11)a22 = 0. So we have the following two cases to consider.
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(i) If a22 = 0, then we deduce that any H =

(
a11 a12
0 0

)
is a crossed homomorphism. In

this case, x= t1e1+ t2e2 is a Nijenhuis element of H if and only if t2(t1a11+ t2a12) = 0.

Then for any t1 ∈ C,t1e1 is a Nijenhuis element for the crossed homomorphism H =(
a11 a12
0 0

)
.

(ii) If 1+a11 =0, then we deduce that any H =

(
−1 a12
0 a22

)
is a crossed homomorphism.

In this case, x = t1e1+ t2e2 is a Nijenhuis element of H if and only if t2(t2a12− t1a22−
t1) = 0. In particular, e1+ e2 is a Nijenhuis element for the crossed homomorphism H =(
−1 2

0 1

)
.

Example 5.18. For any crossed homomorphism H from a finite-dimensional semisimple

Lie algebra g over C to another Lie algebra h with respect to any action ρ, we claim that

Nij(H) = 0.
Let x ∈ g be a fixed nonzero vector and assume that g0 = [x,g] is abelian; that is, (25)

holds. We will show that this is impossible.

Denote n= dimg,gx = {y ∈ g : [x,y] = 0}. Considering the linear map ad(x) : g→ g, we

see that dimg0+dimgx = n. Let (·,·) be a nondegenerate invariant bilinear form on g. It
is easy to see that gx = g⊥0 . From 0 = (0,g) = ([[x,g],[x,g]],g) = ([x,g],[[x,g],g]) we have

[[x,g],g]⊂ g⊥0 = gx.

We deduce that 0= [x,[[x,g],g]] = [[x,[x,g]],g]. Since g is semisimple, we see that [x,[x,g]] =

0. Thus, x is nilpotent. From Jacobson–Morozov theorem, there are elements f,h∈ g such
that

[h,x] = 2x, [h,f ] =−2f, [x,f ] = h.

We see that [[x,h],[x,f ]] = 4x 	= 0. So g0 is noncommutative, which is a contradiction.

Therefore, Nij(H) = 0.

6. Conclusion

We introduce the notions of weak representations of Lie–Rinehart algebras and admissible
representations of Leibniz pairs. By using crossed homomorphisms between Lie algebras,

we construct two actions of the monoidal category of representations of Lie algebras on the

category of weak representations of Lie–Rinehart algebras and the category of admissible
representations of Leibniz pairs, respectively. In particular, the corresponding bifunctors,

called the actions of monoidal categories, unify and generalise various constructions of

modules over certain Cartan-type Lie algebras. New representations of some Lie algebras
are also constructed using the actions of monoidal categories. To better understand

crossed homomorphisms and the actions of monoidal categories, we also give a systematic

study of deformations and cohomologies of crossed homomorphisms.
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There are some natural questions worthy of consideration in the future:

(i) Whether the bifunctors FH and FH preserve certain properties of representations.

For example, when FH(V ,M) and FH(V ,M) are simple if both V and M are

simple.

(ii) For two crossed homomorphisms H and H ′, under what conditions are the

bifunctors FH and FH′ naturally isomorphic?

(iii) How to classify simple objects in the categories WRepK(L) and ARepK(S) under

certain conditions.
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