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Radionuclide scanning images published in Nature by Di Chiro in 1964 showed a
downward migration along the spinal canal of particle tracers injected in the brain
ventricles while also showing an upward flow of tracers injected in the lumbar
region of the canal. These observations, since then corroborated by many radiological
measurements, have been the basis for the hypothesis that there must be an active
circulation mechanism associated with the transport of cerebrospinal fluid (CSF) deep
down into the spinal canal and subsequently returning a portion back to the cranial
vault. However, to date, there has been no physical explanation for the mechanism
responsible for the establishment of such a bulk recirculating motion. To investigate
the origin and characteristics of this recirculating flow, we have analyzed the motion
of the CSF in the subarachnoid space of the spinal canal. Our analysis accounts for
the slender geometry of the spinal canal, the small compliance of the dura membrane
enclosing the CSF in the canal, and the fact that the CSF is confined to a thin annular
subarachnoid space surrounding the spinal cord. We apply this general formulation to
study the characteristics of the flow generated in a simplified model of the spinal canal
consisting of a slender compliant cylindrical pipe with a coaxial cylindrical inclusion,
closed at its distal end, and subjected to small periodic pressure pulsations at its
open entrance. We show that the balance between the local acceleration and viscous
forces produces a leading-order flow consisting of pure oscillatory motion with axial
velocities on the order of a few centimetres per second and amplitudes monotonically
decreasing along the length of the canal. We then demonstrate that the nonlinear term
associated with the convective acceleration contributes to a second-order correction
consisting of a steady streaming that generates a bulk recirculating motion of the CSF
along the length of the canal with characteristic velocities two orders of magnitude
smaller than the leading-order oscillatory flow. The results of the analysis of this
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idealized geometry of the spinal canal are shown to be in good agreement not only
with experimental measurements in an in-vitro model but also with radiological
measurements conducted in human adults.

Key words: biological fluid dynamics

1. Introduction
1.1. Anatomical and physiological considerations

The cerebrospinal fluid (CSF) is a colourless fluid that is continuously secreted
from the blood plasma in the choroid plexus of the brain ventricles and fills the
subarachnoid space (SAS), bathing the external surfaces of the brain and the spinal
cord, as shown schematically in figure 1. At normal body temperatures, the CSF is
an incompressible Newtonian fluid with constant density ρ and kinematic viscosity
ν similar to those of water. The CSF is reabsorbed back into the venous circulation
at fingerlike projections of the arachnoid membrane called villi and may also drain
into the lymphatic vessels around the cranial cavity (Davson 1966; Cutler et al. 1968;
Milhorat et al. 1971; Milhorat 1975; Chikly 1998; Boulton et al. 1999; Orešković
& Klarica 2010). Its primary mechanical functions are to cushion the brain within
the skull, thus serving as a shock absorber for the central nervous system (CNS),
and to reduce the compression exerted by the brain on the stem of the spinal
cord by buoyancy effects. CSF also plays an important physiological function by
maintaining the electrolytic environment, transporting hormones, circulating nutrients
and chemicals filtered from the blood, and removing waste products from the cell
metabolism of the brain and the CNS (Greitz, Franck & Nordell 1993; Greitz &
Hannerz 1996; Pollay 2010). Therefore, it is generally accepted that the absence of
CSF circulation around the CNS may compromise its normal physiologic functions
(Whedon & Glassey 2009).

In healthy humans, CSF secretion and reabsorption are balanced, maintaining a
constant mean intracranial pressure. In adults, there are 140–170 ml of CSF at any
given time, of which approximately 30 ml are in the four ventricles of the brain,
70–80 ml in the cerebral subarachnoid space, and V = 40–60 ml in the spinal SAS
Ambarki et al. 2012. In normal physiological conditions, the mean rate of CSF
production and reabsorption is 0.3–0.4 ml min−1 (400–600 ml day−1) which means
that the entire volume of CSF bathing the CNS is replaced every 6–10 h (Davson
1966; Milhorat 1969; Johanson et al. 2008; Pardridge 2011).

The volume of the cranial vault is filled by the brain, the CSF and blood, and is
enclosed by the rigid skull, which is connected at its base (foramen magnum) to a
compliant slender spinal canal enclosing the spinal cord, of length L ∼ 60–80 cm.
The spinal SAS, filled with CSF, is a thin annular canal bounded internally by the
pia mater, which surrounds the spinal cord, and externally by the deformable dura
membrane, as indicated in figure 1. The average intracranial volume in an adult is
1700 ml, with the brain tissue composing approximately 1400 ml, and the balance
comprised of the CSF and blood.

1.2. Observed CSF circulation
With each heart beat the volume oscillations of the blood flowing in and out of
the rigid cranial vault cause the intracranial pressure to change in a time–periodic
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FIGURE 1. Schematic view of the anatomical features of the cranial cavity and the spinal
canal, with indication of the curvilinear coordinates used in the analysis and of the bulk
motion of the CSF in the spinal canal.

fashion with an approximate frequency of 1 Hz (Nitz et al. 1992; Bhadelia et al.
1997; Wagshul et al. 2006; Wagshul, Eide & Madsen 2011). This pressure fluctuation
drives CSF periodically in and out of the compliant spinal canal (Loth, Yardimci &
Alperin 2001), as needed to ensure that the sum of the volumes of the brain, CSF
and the intracranial blood in the rigid cranial vault remains constant, following a
straightforward conservation-of-mass principle known in the neurological community
as the Monro–Kellie doctrine or hypothesis (Mokri 2001). The oscillating CSF flow
in the spinal canal is accommodated by the displacement of the venous flow and the
compression of the venous and fatty tissue in the epidural space that surrounds the
dural sac, which, in turn, determines the effective elastic properties (compliance) of
the spinal canal. In healthy adults, the tidal volume displaced in and out across the
foramen magnum and into the cervical SAS during each cardiac cycle is 1V∼1–2 ml
of CSF, corresponding to a very small fraction 1V/V ∼ 0.02–0.03 of the total CSF
volume inside the spinal canal. The associated stroke length S= (1V/V)L∼ 1 cm is
much smaller than the canal length L, resulting in oscillatory velocities u∼ (1V/V)ωL,
where ω' 2p rad s−1 is the relevant angular frequency. Magnetic resonance imaging
(MRI) measurements have shown that the amplitude of these velocity fluctuations, on
the order of a few centimetres per second near the foramen magnum, progressively
decreases as one moves downwards along the length of the canal to reach zero value
at its closed–end sacral region (Loth et al. 2001; Haughton & Mardal 2014). It has
also been observed in many radiological studies that, in addition of the pulsatility
of the arterial blood flow supplying the cranial vault, the respiration also produces
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a modulation of the intracranial pressure, resulting in a smaller additional oscillation
of the CSF in the spinal canal at a lower frequency (12–18 cycles per minute in
adults) (Kao et al. 2008; Dreha-Kulaczewski et al. 2015). An overview of the current
knowledge of pulsatile CSF motion can be found in the excellent review by Linninger
et al. (2016).

In a seminal radionuclide scanning study, Di Chiro (1964) reported the upward
migration of a labeled compound from the lumbar region of the spinal canal to
the cranial vault. He also showed the rapid migration of the compound injected
in the brain ventricles downwards into the spinal canal (Di Chiro 1966; Di Chiro
et al. 1973). These findings, which were later corroborated by numerous radiological
studies (Levy & Di Chiro 1990; Greitz & Hannerz 1996; Castillo 2016), gave partial
support to the hypothesis that in addition to the observed biphasic periodic tides
of ebb-and-flow described above, there must be an active circulation mechanism
associated with transport of CSF produced by the choroid plexus into the spinal
canal and returning a portion of it back to the cranial vault. Following Di Chiro’s
experiments there have been numerous radiological observations confirming that in
adult humans the tracer injected in the lumbar region is detected moving upwards
and reaching the basal cisterns of the cranial vault in 15–20 min (see, for example,
the measurements of Greitz & Hannerz (1996)). These observations suggest that the
characteristic velocities of the bulk motion of the CSF along the spinal canal are on
the order of 1 cm min−1. However, even though all current physiology text books
depict this bulk recirculation (right-hand side sketch in figure 1), the existence of this
slow-moving, bulk recirculation of the CSF in the spinal canal has continued to be the
subject of dispute for the past 50 years. To date, more than 50 years after Di Chiro’s
radiological observations, there has been no comprehensive physical explanation for
the mechanism responsible for the establishment of such a bulk motion. Understanding
the mechanism that regulates this bulk motion of the CSF in the spinal canal has
important implications in optimizing targeted drug delivery systems to the intrathecal
space (injections in the CSF surrounding the spinal cord) (Lanz et al. 1986; Kroin
et al. 1993; Penn 2003; Nelissen 2008; Hettiarachchi et al. 2011; Bottros & Christo
2014), and in improving the current understanding of the etiology of a large class
of neurological conditions. This lack of a conclusive description of the physical
mechanism responsible for the establishment of this slow recirculating flow in the
spinal canal has motivated us to address the question of whether a periodic pressure
pulsation in the rigid cranial vault could also induce a bulk recirculating flow along
the length of the compliant spinal canal. In addition, the work is motivated by the
important physiological question of how the characteristics of this bulk recirculating
motion could be deregulated due to specific anatomical characteristics and other
physiological parameters (i.e. changes in the compliance of the spinal canal due to
ageing, increased blood pressure, cardiac rate, etc.).

1.3. Potential physical mechanisms
Several different physical processes have been postulated to account for the observed
transport of radiological markers up and down the spinal canal. These include partial
CSF reabsorption within the spinal canal and shear-enhanced diffusion. Although
there is a lack of precise measurements, it appears that the spinal canal is not
a major site of CSF reabsortion (Lorenzo, Page & Watters 2016). Nevertheless,
reabsorption of CSF in the spinal canal will contribute to a downward transport
but it cannot explain the upward migration of the traces towards the cranial vault
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reported in numerous radiological studies. An alternative physical mechanism that
may contribute to enhance the spreading of the tracers is shear-enhanced diffusion,
often also referred to as Taylor diffusion (Taylor 1953; Watson 1983; Yasuda 1984),
i.e. transverse diffusion coupled with the underlying radial shear of the oscillatory
motion along the canal. However, because of the small diffusivity of the tracer,
approximately κ = 5 × 10−10 m2 s−1, the resulting enhanced diffusion velocities are
much too small to explain the radiological observations. To see this, one may begin
by writing K = κ(1 +R) for the coefficient of enhanced diffusivity due to shear in
an oscillatory flow in a pipe. This expression was obtained by Watson (1983) by
assuming a linear gradient for the concentration of the passive scalar along the canal.
For an oscillatory motion with stroke length S in a channel of characteristic width
hc, the relative increase R is linearly proportional to (S/hc)

2, with a proportionality
factor of order unity that depends on the Schmidt number and on the frequency
through the Womersley number α = hc/(ν/ω)

1/2 (Watson 1983; Elad, Halpern &
Grotberg 1992). For the flow in the spinal canal S ∼ 1 cm and hc ∼ 1 mm, thereby
yielding R ∼ 100 and K ' 5 × 10−8 m2 s−1 for the effective diffusivity, with an
associated enhanced diffusion velocity K/L∼ 10−7 m s−1 that is about three orders of
magnitude smaller than the velocities inferred from the radiological observations. In
view of these estimates, it can be concluded that, although shear-enhanced diffusion
contributes to the transport rate of the tracer in the spinal canal, its role will be at
most secondary due to the extremely small value of the tracer molecular diffusivity.
Clearly, shear-enhanced diffusion may have a more pronounced effect on the transport
of lighter molecules with higher diffusivities.

The previous considerations indicate that, contrary to some pervasive speculations
in the neuroradiology literature (Greitz & Hannerz 1996), neither the reabsorption
of CSF in the spinal canal nor the shear-enhanced diffusion of tracer markers are
sufficiently efficient to produce the observed bulk motion that brings CSF downwards
along the length of spinal canal and returns a portion of it back into the cranial
vault with characteristic transport velocities on the order of 1 cm min−1. A different
mechanism is postulated below to be responsible for the observed steady circulatory
flow of CSF in the spinal canal, namely, the steady-streaming motion resulting from
the nonlinear cumulative effects of convective acceleration (Riley 2001), a phenomena
that has already been shown to play an important role in many oscillatory flows,
including respiratory and cardiovascular flows (Haselton & Scherer 1980, 1982;
Grotberg 1984; Gaver & Grotberg 1986; Padmanabhan & Pedley 1987; Wang &
Tarbell 1992; Grotberg & Jensen 2001; Sarkar & Jayaraman 2001; Waters & Guiot
2001; Muthu, Rathish Kumar & Chandra 2003; Jayaraman & Sarkar 2005; Ambarki
et al. 2012, among many others).

In the following, we present a perturbation analysis of the flow–structure interaction
problem responsible for the motion of CSF in the spinal canal. Our analysis takes
advantage of the disparity of scales associated with the geometry of the subarachnoid
space, which is modelled as a thin annular canal with slowly changing properties,
and also of the limited compliance of the dura membrane bounding the CSF, whose
small deformations are measured by a small asymptotic parameter ε, on the order of
the ratio 1V/V � 1 of the tidal volume to the total CSF volume inside the spinal
canal. At leading order in the limit ε� 1, we find an unsteady lubrication problem
that generates an oscillatory flow with axial velocities that decrease monotonically
along the length of the canal. More importantly, we show that the nonlinear terms
associated with the convective acceleration, negligible at leading order, yield first-order
corrections that include a steady-streaming component, corresponding to a bulk
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recirculating motion of the CSF along the length of the canal, with characteristic
velocities that are a factor ε smaller than those of the leading-order oscillatory flow.
We applied our general asymptotic formulation to a canonical configuration consisting
of a slender compliant cylindrical pipe with a coaxial cylindrical inclusion that is
closed at the distal end and subjected to small periodic pressure pulsations at its open
entrance. The results of the analysis of this idealized geometry of the spinal canal
are shown to be in agreement not only with experimental measurements conducted in
a in-vitro model but also to be consistent with radiological measurements in human
adults.

2. CSF motion in the spinal canal
2.1. Geometrical considerations

In analyzing the motion of CSF, the spinal SAS will be modelled as a thin annular
gap of length L whose cross-section varies slowly between the base of the cranial
cavity and the lumbar region. The orthogonal curvilinear coordinates (x, y, s) shown
in the lower inset of figure 1 will be employed in the analysis, with x denoting the
distance from the canal entrance measured along the spinal cord, y being the normal
distance to the pia mater (the inner surface), and s being the distance measured from
the symmetry plane around the surface of the pia mater normalized with the spinal–
cord perimeter `(x). The values of the coordinates are in the ranges 0 6 x 6 L, 0 6
y 6 h(x, s, t) and 0 6 s 6 1, where h(x, s, t) is the canal width. Characteristic values of
h and ` are hc ∼ 0.1 cm and `c ∼ 2 cm, respectively, while L∼ 60–80 cm, resulting
in the inequalities

L� `c� hc, (2.1)

which are to be used in simplifying the description, as shown below.
The conservation equation in terms of the curvilinear coordinates (x, y, s) can be

written following the general expressions given in Batchelor (2000). In particular,
when the condition (2.1) is accounted for, the continuity equation takes the simplified
form

1
`

∂

∂x
(`u)+

∂v

∂y
+

1
`

∂w
∂s
= 0, (2.2)

where u, v and w are the velocity components in the x, y and s directions, respectively.
A straightforward order-of-magnitude balance of (2.2) provides

uc

L
∼
vc

hc
∼

wc

`c
(2.3)

relating the characteristic values uc, vc and wc of the three velocity components. These
scalings correspond to streamlines aligned in the x direction (i.e. u ∼ (L/`c)w� w)
with an accompanying slow transverse motion occurring predominantly in the
azimuthal direction with w ∼ (`c/hc)v � v, with v being the smallest velocity
component.

In the resulting slender flow, the characteristic values of the spatial pressure
differences needed to establish the motion in the x, y and s directions are given
by δxp = ρωucL, δyp = ρωvchc and δsp = ρωwc`c, respectively, as follows from a
balance between the pressure gradient and the local acceleration. These values are
very different in magnitude, as can be seen by using (2.3), yielding

δxp
L2
∼
δyp
h2

c

∼
δsp
`2

c

. (2.4)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
8.

20
7.

10
2.

38
, o

n 
28

 O
ct

 2
02

0 
at

 1
8:

43
:5

4,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

67

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.67


On the bulk motion of the cerebrospinal fluid in the spinal canal 209

The scalings (2.4) can be taken into account when describing the variations of the
pressure p from the entrance value pc. Neglecting the small contribution to the
pressure fluctuation associated with breathing, the value of pc can be written as

pc(t)= po + (1p)cΠ(ωt), (2.5)

where po is the time-averaged intracranial pressure, (1p)c is the amplitude of the
cranial pressure pulse, and Π(ωt) is a dimensionless periodic function with angular
frequency ω'2p Hz, associated with the cardiac cycle. According to (2.4), with small
errors of order (hc/`c)

2 one may neglect the pressure variations in the y direction when
writing

p− pc(t)= p′(x, t)+ p̃(x, s, t) (2.6)

for the pressure variation along the canal, with p′(x, t) denoting the value of the
pressure difference p − pc(t) along the curve s = y = 0. The term p̃ ∼ (`c/L)2p′ �
p′, measuring the small pressure differences around the canal, must be included to
describe the azimuthal motion.

2.2. Constitutive equation and elastic parameters
The dura membrane deforms in response to the local pressure variations to
accommodate the inflow and outflow of CSF into the canal, so that the canal width
h(x, s, t) is a function of time that must be determined as part of the solution. The
deformations h′=h−ho are to be defined relative to the unperturbed width distribution
ho(x, s) describing the geometry of the canal when the pressure everywhere is uniform
and equal to p= po, with Ao(x)= `(x)

R 1
0 ho(x, s) ds representing the unperturbed value

of the cross-sectional area. Since the tidal volume is small compared with the total
volume of CSF, the associated changes in the shape of the canal must satisfy

(h− ho)/ho ∼1V/V� 1. (2.7)

The description of the coupling between the fluid motion and the deformation of the
dura membrane in general amounts to a very complicated fluid–structure interaction
problem. A simplified solution is pursued below on the basis of the presumed linear
relation h′ ∝ (p− po). The description accounts also for the fact that the pressure at
a given canal section is nearly uniform, with small relative variations, represented
in (2.6) by the term p̃, that are of order (`c/L)2. If these are neglected, then one may
write p− po ' (1p)cΠ(ωt)+ p′(x, t), which, together with the additional assumption
that the elastic properties of the dura membrane are independent of s, yields the
simplified constitutive equation

p− po

Ee
=

h′(x, t)
Ao/`

. (2.8)

In writing (2.8) we have chosen to scale the deformation with the average canal
width Ao/` ∼ hc and include for generality an effective elastic modulus Ee(x), the
latter embodying the overall effect of different microanatomical features such as the
distribution of veins and fatty epidural tissue in the dura membrane. Variations of
the elastic properties of the dura membrane at a given section, not considered in the
present development, could be incorporated in the model by allowing the effective
elastic modulus Ee to be a function of s, resulting in the local deformation h′ being
also a function of s, according to (2.8).

According to (2.7) and (2.8) the value of Ee must be much larger than p− po, so
that the resulting deformations remain small according to (p − po)/Ee ∼ 1V/V � 1.
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The ratio of the characteristic value of the local pressure variation p− po ∼ (1p)c to
the characteristic value Ec of Ee defines the small parameter

ε=
(1p)c

Ec
∼
1V
V
� 1, (2.9)

to be used in the following description as a measure of the compliance.
The effective elastic modulus Ee determines the wave speed (Ee/ρ)

1/2 of the
resulting pulsatile motion along the canal. Noninvasive measurements (Kalata et al.
2009) using MRI have shown this wave speed to be on the order of a few metres per
second, giving associated wavelengths (Ec/ρ)

1/2/ω that are comparable to the canal
length L. Correspondingly, the ratio

k=
L

(Ec/ρ)1/2/ω
∼ 1, (2.10)

defines a dimensionless elastic wavenumber of order unity, another important
parameter in the description below.

2.3. Simplified conservation equations
We give below the equations that determine the velocity, whose x, y and s components,
u(x, y, s, t), v(x, y, s, t) and w(x, y, s, t), must satisfy the non-slip boundary conditions
u= v =w= 0 at y= 0 and u= v − ∂h′/∂t=w= 0 at y= h(x, s, t). The problem also
involves the displacement h′(x, t) = h − ho(x, s), and the pressure field, described in
terms of the functions p′(x, t) and p̃(x, s, t).

The computation of u and w requires consideration of the x and s components of
the momentum equation, which can be written for the curvilinear coordinates defined
above by neglecting terms of order (`c/L)2 or (hc/`c)

2 (or smaller) to give

∂u
∂t
+ u

∂u
∂x
+ v

∂u
∂y
+

w
`

∂u
∂s
=−

1
ρ

∂p′

∂x
+ ν

∂2u
∂y2

, (2.11)

∂w
∂t
+

u
`

∂

∂x
(`w)+ v

∂w
∂y
+

w
`

∂w
∂s
=−

1
ρ`

∂ p̃
∂s
+ ν

∂2w
∂y2

, (2.12)

whereas the y component of the momentum equation, which would be needed to
compute the small spatial pressure differences δyp, can be omitted in the slender-
flow approximation at the order considered here. At the same level of approximation,
the viscous terms have been simplified in (2.11) and (2.12) by discarding the terms
involving ∂2/∂x2 and ∂2/∂s2, which are smaller than the terms that have been retained
by a factor (hc/L)2 and (hc/`c)

2, respectively.
The transverse velocity component v can be evaluated in terms of u and w from

v +
1
`

∂

∂x

�
`

Z y

0
u dỹ

�
+

1
`

∂

∂s

�Z y

0
w dỹ

�
= 0, (2.13)

involving the dummy integration variable ỹ. The above equation is obtained by
integrating the continuity equation (2.2) in the y direction with the condition
u= v =w= 0 at y= 0. Evaluating the above equation at y= h gives

`
∂h′

∂t
+
∂

∂x

�
`

Z h

0
u dy

�
+
∂

∂s

�Z h

0
w dy

�
= 0, (2.14)

which is the corresponding Reynolds lubrication equation for the problem.
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On the bulk motion of the cerebrospinal fluid in the spinal canal 211

Further integrations of the continuity equation also become useful in the development,
which assumes that the spinal canal is symmetric, such that ho(x, s) = ho(x, 1 − s),
resulting in the conditions

R h
0 w dy= 0 at s= 0 and at s= 1/2. Multiplying (2.14) by

ds and integrating between 0 and s provides

`
∂h′

∂t
s+

∂

∂x

�
`

Z s

0

�Z h

0
u dy

�
ds
�
+

Z h

0
w dy= 0 (2.15)

after using the symmetry condition
R h

0 w dy = 0 at s = 0, whereas the conditionR h
0 w dy= 0 at s= 1/2 (or s= 1) yields

`
∂h′

∂t
=−

∂

∂x

�
`

Z 1

0

�Z h

0
u dy

�
ds
�
. (2.16)

The displacement h′ is related to the local pressure p − po ' (1p)cΠ + p′ by the
constitutive equation (2.8), which can be differentiated with respect to time to give

`
∂h′

∂t
=

Ao

Ee

�
(1p)c

dΠ
dt
+
∂p′

∂t

�
. (2.17)

The additional equation

−
∂

∂x

�
`

Z 1

0

�Z h

0
u dy

�
ds
�
=

Ao

Ee

�
(1p)c

dΠ
dt
+
∂p′

∂t

�
(2.18)

obtained by combining (2.16) and (2.17) will be found below to be useful in
computing p′ as a function of the streamwise velocity u.

2.4. Dimensionless formulation
An order-of-magnitude analysis provides the characteristic scales for the problem.
The development begins by using (2.18) with (1p)c/Ee ∼ ε to provide uc = εLω as
an estimate for the characteristic value of u, on the order of a few centimetres per
second, as can be seen by using ε ∼1V/V ∼ 0.02, ω = 2p and L∼ 60–80 cm. The
characteristic values wc = ε`cω and vc = εhcω follow from (2.3). The spatial pressure
changes needed to move the fluid can be estimated from the balance between the
local acceleration and the pressure gradient in (2.11) and (2.12) to give δxp=ρε(ωL)2
and δsp = ρε(ω`c)

2. Additional order-of-magnitude balances in these two equations
reveal that the convective acceleration is smaller than the local acceleration by a
factor ε, whereas the comparison between the local acceleration and the viscous force
yields

O(∂u/∂t)
O(ν∂2u/∂y2)

∼
O(∂w/∂t)

O(ν∂2w/∂y2)
∼ α2
=
ωh2

c

ν
, (2.19)

where
α = hc/(ν/ω)

1/2 (2.20)

is the Womersley number of the flow (the reciprocal of the square root of the relevant
Stokes number ν/(h2

cω)), typically of order unity, as can be seen by using hc∼10−3 m,
ω= 2p s−1 and ν ∼ 10−6 m2 s−1.
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212 A. L. Sánchez and others

The relative scalings discussed above become clear when writing the above problem
in dimensionless form by introduction of the dimensionless variables u∗ = u/uc, v∗ =
v/vc, w∗ = w/wc, p′∗ = p′/δxp, p̃∗ = p̃/δsp, t∗ = ωt, x∗ = x/L, `∗ = `/`c, h∗o = ho/hc,
h∗= h/hc, h′∗= (h− ho)/(εhc), A∗o=Ao/(`chc) and E∗e =Ee/Ec. In addition, to facilitate
the description of the temporal changes of the canal width it is convenient to scale
the distance y with the local width h(x, s, t) through the normalized coordinate η =
y/h(x, s, t). In what follows, the asterisks used to denote dimensionless variables will
be dropped to simplify the notation.

Since we have a total of six unknowns (i.e. u, v, w, p′, p̃ and h′, with h= ho+ εh′)
the description requires in principle six equations, which are given below in
dimensionless form. We begin by writing (2.11) and (2.12) as

∂u
∂t
+ εFx =−

∂p′

∂x
+

1
h2α2

∂2u
∂η2

, (2.21)

∂w
∂t
+ εFs =−

1
`

∂ p̃
∂s
+

1
h2α2

∂2w
∂η2

, (2.22)

where

Fx =
1
`

∂

∂x
(`u2)+

1
h
∂

∂η
(uv)+

1
`

∂

∂s
(uw)−

∂h′

∂t
η

h
∂u
∂η
−
∂h
∂x
η

h
∂

∂η
(u2)−

1
`

∂h
∂s
η

h
∂

∂η
(uw)

(2.23)

and

Fs =
∂

∂x
(uw)+ 2

uw
`

∂`

∂x
+

1
h
∂

∂η
(vw)+

1
`

∂

∂s
(w2)−

∂h′

∂t
η

h
∂w
∂η

−
∂h
∂x
η

h
∂

∂η
(uw)−

1
`

∂h
∂s
η

h
∂

∂η
(w2) (2.24)

represent the convective terms, including the apparent convection associated with
∂h′/∂t. The streamwise pressure variation p′ is related to the volume flux by (2.18),
which can be written as

Ao

Ee

�
dΠ
dt
+ k2 ∂p′

∂t

�
=−

∂

∂x

�
`

Z 1

0
h
�Z 1

0
u dη

�
ds
�
, (2.25)

whereas the deformation h′ satisfies

`
∂h′

∂t
=

Ao

Ee

�
dΠ
dt
+ k2 ∂p′

∂t

�
, (2.26)

as obtained from (2.17). The transverse velocity component v can be evaluated
from (2.13) in terms of u and w to yield

v =−
1
`

∂

∂x

�
`h
Z η

0
u dη

�
−

1
`

∂

∂s

�
h
Z η

0
w dη

�
+
∂h
∂x
ηu+

1
`

∂h
∂s
ηw. (2.27)

Finally, the integral continuity balance

h
Z 1

0
w dη=

∂

∂x

�
s `
Z 1

0
h
�Z 1

0
u dη

�
ds− `

Z s

0
h
�Z 1

0
u dη

�
ds
�
, (2.28)
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On the bulk motion of the cerebrospinal fluid in the spinal canal 213

obtained by combining (2.15) and (2.16), will be useful in computing the azimuthal
variation of the pressure p̃.

The velocity components u and w must satisfy the non-slip boundary conditions
u=w= 0 at η= 0, 1. At the canal entrance the pressure is p= pc(t), resulting in the
condition

p′ = 0 at x= 0. (2.29)

Also, the streamwise volume flux must vanish at the closed end of the canal, so that
Z 1

0
h
�Z 1

0
u dη

�
ds= 0 at x= 1. (2.30)

Besides the Womersley number α defined in (2.20) and the dimensionless elastic
wavenumber k defined in (2.10), both of order unity, the above problem depends on
the elasticity parameter ε� 1, identified earlier in (2.9), with α2ε� 1 representing
the relevant Reynolds number for the flow. As can be seen in (2.21) and (2.22),
at leading order in the limit ε � 1 the flow in the thin canal corresponds to an
oscillatory lubrication problem, where the motion is determined by a balance between
the local acceleration, the pressure gradient, and the viscous forces associated with
the transverse velocity derivatives.

3. Leading-order oscillatory flow
The solution can be obtained using perturbation analysis by introducing expansions

for the different flow variables of the form u = u0 + εu1 + · · · , v = v0 + εv1 +

· · · , w = w0 + εw1 + · · · , p′ = p′0 + εp
′

1 + · · · and p̃ = p̃0 + εp̃1 + · · · , together
with the expansion h′(x, t)= (h− ho)/ε = h′0 + εh

′

1 + · · · for the deformation of the
canal. It will be seen that the leading-order solution is purely oscillatory, whereas the
corrections include a steady component corresponding to the steady bulk-flow motion,
with characteristic velocities of order εuc = ε

2ωL (i.e. a few centimetres per minute,
in agreement with the observed transport rates in the spinal canal).

At leading order, (2.21), (2.22), and (2.25)–(2.28) reduce to the linear equations

∂u0

∂t
=−

∂p′0
∂x
+

1
h2

oα
2

∂2u0

∂η2
, (3.1)

∂w0

∂t
=−

1
`

∂ p̃0

∂s
+

1
h2

oα
2

∂2w0

∂η2
, (3.2)

Ao

Ee

�
dΠ
dt
+ k2 ∂p′0

∂t

�
=−

∂

∂x

�
`

Z 1

0
ho

�Z 1

0
u0 dη

�
ds
�
, (3.3)

`
∂h′0
∂t
=

Ao

Ee

�
dΠ
dt
+ k2 ∂p′0

∂t

�
, (3.4)

v0 =−
1
`

∂

∂x

�
`ho

Z η

0
u0 dη

�
−

1
`

∂

∂s

�
ho

Z η

0
w0 dη

�
+
∂ho

∂x
ηu0 +

1
`

∂ho

∂s
ηw0, (3.5)

ho

Z 1

0
w0 dη=

∂

∂x

�
s `
Z 1

0
ho

�Z 1

0
u0 dη

�
ds− `

Z s

0
ho

�Z 1

0
u0 dη

�
ds
�
. (3.6)

The solution depends on the shape of the canal through the known functions ho(x, s)
and `(x), on its elastic properties through the function Ee(x), and on the temporal
variation of the intracranial pressure, defined by the periodic function Π(t).
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214 A. L. Sánchez and others

An analytic solution can be obtained for the case of a harmonic intracranial pressure
Π(t) = cos t by introducing the complex functions U(x, η, s), V(x, η, s), W(x, η, s),
P′(x), P̃(x, s) and H′(x) defined such that

u0 =Re(ieitU), v0 =Re(ieitV), w0 =Re(ieitW),

p′0 =Re(eitP′), p̃0 =Re(eitP̃), and h′0 =Re(eitH′).

)

(3.7)

The functions

U =
dP′

dx
G and W =

1
`

∂P̃
∂s

G, (3.8a,b)

with

G(x, η, s)= 1−
cosh

�
αho

2
1+ i
√

2
(2η− 1)

�

cosh
�
αho

2
1+ i
√

2

� (3.9)

are determined by integration of

i
h2

oα
2

∂2U
∂η2
+U =

dP′

dx
; U = 0 at η= (0, 1) (3.10)

and
i

h2
oα

2

∂2W
∂η2
+W =

1
`

∂P̃
∂s
; W = 0 at η= (0, 1), (3.11)

derived from (3.1) and (3.2), respectively. On the other hand, the function G can be
integrated to give

Z η

0
G dη= η−

1− i
√

2αho

sinh
�
αho

2
1+ i
√

2
(2η− 1)

�
+ sinh

�
αho

2
1+ i
√

2

�

cosh
�
αho

2
1+ i
√

2

� (3.12)

which can be used in (3.5) to provide

V = −
1
`

∂

∂x

�
`ho

dP′

dx

Z η

0
G dη

�
−

1
`

∂

∂s

 
ho

`

∂P̃
∂s

Z η

0
G dη

!

+
∂ho

∂x
dP′

dx
ηG+

1
`

∂ho

∂s
1
`

∂P̃
∂s
ηG (3.13)

for the velocity component normal to the surface.
The expressions given in (3.8) and (3.13) for the velocity components involve the

pressure gradients dP′/dx and ∂P̃/∂s, to be obtained for given values of ho(x, s) and
`(x) with use made of (3.3) and (3.6). In the computation it is convenient to introduce
the functions

q(x, s)= ho

Z 1

0
G dη= ho −

√
2(1− i)
α

tanh
�
αho

2
1+ i
√

2

�
(3.14)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
8.

20
7.

10
2.

38
, o

n 
28

 O
ct

 2
02

0 
at

 1
8:

43
:5

4,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

67

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.67


On the bulk motion of the cerebrospinal fluid in the spinal canal 215

and

Q(x)= `
Z 1

0
q ds= `

Z 1

0

"

ho −

√
2(1− i)
α

tanh
�
αho

2
1+ i
√

2

�#

ds, (3.15)

which define the volume fluxes

ho

Z 1

0
u0 dη=Re

�
ieit dP′

dx
q
�
, ho

Z 1

0
w0 dη=Re

 
ieit

`

∂P̃
∂s

q

!

, (3.16a,b)

and

`

Z 1

0
ho

�Z 1

0
u0 dη

�
ds=Re

�
ieit dP′

dx
Q
�

(3.17)

appearing in (3.3) and (3.6). In particular, equation (3.3) can be used, together with
the boundary conditions (2.29) and (2.30), to write the boundary-value problem

Ee(x)
Ao(x)

d
dx

�
Q(x)

dP′

dx

�
+ k2P′ + 1= 0; P′ = 0 at x= 0 and

dP′

dx
= 0 at x= 1 (3.18)

for the function P′(x), which can be used in (3.4) to give

H′ =
Ao

`Ee
(k2P′ + 1) (3.19)

for the deformation of the outer surface and in (3.6) to yield

1
`

∂P̃
∂s
=

1
q
∂

∂x

�
dP′

dx

�
sQ− `

Z s

0
q ds
��

(3.20)

for the azimuthal pressure gradient.
In general, numerical integration is needed to solve the boundary-value problem

(3.18). The closed-form solution

P′ =
1
k2

�
cos[k(1− x)/

√
Q]

cos(k/
√

Q)
− 1
�

(3.21)

is obtained for uniform elastic modulus Ee = 1 when the cross-section has constant
shape (i.e. ho = ho(s) and `= Ao = 1), so that Q= const.

For a given canal geometry, defined by ho(x, s), `(x) and Ao(x)= `(x)
R 1

0 ho ds, with
given elastic properties, defined by Ee(x), the determination of the oscillatory motion
begins by employing (3.15) to compute Q(x). The resulting function is to be used
in (3.18) when computing P′(x), which in turn provides through (3.19) the deformation
H′. The associated gradient dP′/dx can be used in (3.8) to compute U and in (3.20) to
evaluate ∂P̃/∂s, which allows us to determine W and V from (3.8) and (3.13). Finally,
the complex functions U, V , W, P′ and H′ can be used in (3.7) to provide u0, v0, w0,
p′0 and h′0.

4. Steady-streaming motion
Because of nonlinear interactions, associated with the convective terms and with

the temporal and spatial variations of the canal width, the first-order corrections
to the flow contain a steady component, additional to the oscillatory component.
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The computation of this steady-streaming flow begins by collecting terms of order ε
in (2.21) and (2.22). Taking the time average 〈·〉 = (1/2p)

R 2p
0 · dt of the resulting

equations yields

Fx = −
∂〈p′1〉
∂x
+

1
h2

oα
2

∂2
〈u1〉

∂η2
, (4.1)

Fs = −
1
`

∂〈p̃1〉

∂s
+

1
h2

oα
2

∂2
〈w1〉

∂η2
, (4.2)

where

Fx =
1
`

∂

∂x
(`〈u2

0〉)+
1
ho

∂

∂η
〈u0v0〉 +

1
`

∂

∂s
〈u0w0〉

−
η

ho

∂

∂η

�
∂h′0
∂t

u0

�
−
∂ho

∂x
η

ho

∂

∂η
〈u2

0〉 −
1
`

∂ho

∂s
η

ho

∂

∂η
〈u0w0〉 +

2
h3

oα
2

∂2

∂η2
〈h′0u0〉 (4.3)

and

Fs =
∂

∂x
〈u0w0〉 + 2

〈u0w0〉

`

∂`

∂x
+

1
ho

∂

∂η
〈v0w0〉 +

1
`

∂

∂s
〈w2

0〉 −
η

ho

∂

∂η

�
∂h′0
∂t

w0

�

−
∂ho

∂x
η

ho

∂

∂η
〈u0w0〉 −

1
`

∂ho

∂s
η

ho

∂

∂η
〈w2

0〉 +
2

h3
oα

2

∂2

∂η2
〈h′0w0〉 (4.4)

can be evaluated in terms of the leading-order solution. The steady–streaming
velocities must satisfy 〈u1〉 = 〈w1〉 = 0 at η= 0, 1.

The functions Fx and Fs drive the steady-streaming motion, in that, if they were
zero, the solution to (4.1) and (4.2) would reduce to 〈u1〉 = 〈w1〉 = 0. Besides the
well-known contributions arising from the time average of the nonlinear convective
acceleration, present in any steady-streaming phenomenon, additional terms appear
in (4.3) and (4.4) due to the deformation of the canal (i.e. the terms involving
h′0 and ∂h′0/∂t). Similar contributions have been identified earlier in studies of
steady-streaming in elastic tubes (Wang & Tarbell 1992). In principle, all terms
in (4.3) and (4.4) can contribute significantly to the motion depending on the flow
conditions and on the specific geometrical features of the canal. For the specific
model problem considered below in § 5 the canal width ho and its perimeter ` are
selected to be independent of x, so that the terms involving ∂ho/∂x and ∂`/∂x are
identically zero. All other terms were found to be significant, with their relative
importance varying along the canal.

Integrating (4.1) and (4.2) subject to 〈u1〉 = 〈w1〉 = 0 at η= 0, 1 yields

〈u1〉

h2
oα

2
=−

d〈p′1〉
dx

(1− η)η
2

+ η

Z η

0
Fx dη̄−

Z η

0
Fxη̄ dη̄− η

Z 1

0
Fx(1− η) dη (4.5)

and

〈w1〉

h2
oα

2
=−

1
`

∂〈p̃1〉

∂s
(1− η)η

2
+ η

Z η

0
Fs dη̄−

Z η

0
Fsη̄ dη̄− η

Z 1

0
Fs(1− η) dη. (4.6)
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The average streamwise pressure gradient d〈p′1〉/dx, which completes the determination
of 〈u1〉, is a function of x that can be computed by imposing the condition

Z 1

0
ho

�Z 1

0
〈u1〉 dη

�
ds+

Z 1

0

Z 1

0
〈h′0u0〉 dη ds= 0 (4.7)

obtained at this order from the time average of (2.25) with use made of (2.30).
Similarly, the azimuthal pressure gradient ∂〈p̃1〉/∂s appearing in (4.6) can be
determined from the condition

∂

∂x

�
`

Z s

0

�Z 1

0
(ho〈u1〉 + 〈h′0u0〉) dη

�
ds
�
+ ho

Z 1

0
〈w1〉 dη+

Z 1

0
〈h′0w0〉 dη= 0 (4.8)

obtained at this order from the time average of (2.28).

5. Selected results for a model problem
A simple geometrical model will be used to illustrate some of the salient features

of the flow. Specifically, we consider the flow in the annular canal bounded between
two cylindrical surfaces of radii R and R+ hc whose axes are separated by a distance
βhc, with hc � R and 0 6 β < 1 (see the schematic view shown in figure 4(a),
to be discussed later). Using hc and `c = 2pR as characteristic scales leads to
the dimensionless geometrical functions ho = 1 − β cos(2ps), ` = 1 and Ao = 1,
resulting in a constant value of the reduced volume flux Q, as can be computed
from (3.15). Furthermore, a uniform elastic modulus Ee = 1 is assumed, so that the
complex function P′(x) for the axial pressure variation reduces to (3.21). Similar
simple models involving coaxial flexible tubes have been considered in analyses of
pressure-wave propagation in the spinal canal (Berkouk, Carpenter & Lucey 2003;
Carpenter, Berkouk & Lucey 2003).

Besides the geometry, which is defined by the eccentricity parameter β for the
simplified problem, the solution depends on the values of k and α, both assumed to be
of order unity, as corresponds to the scales characterizing the flow in the spinal canal.
As can be seen from the definitions given in (2.10) and (2.20), the specific values k=
0.5 and α= 3 employed in the computations used for figures 3 through 5 correspond
to a canal with width hc ∼ 1 mm and elastic wave speed (Ec/ρ)

1/2
∼ 10 m s−1.

The leading-order oscillatory flow is investigated in figures 2 and 3. In particular,
figure 2 represents the variation of

����Q
dP′

dx

����=
����

√
Q

k
sin[k(1− x)/

√
Q]

cos(k/
√

Q)

���� , (5.1)

which is the amplitude of the tidal volume flux across the canal, according to (3.17).
The plot includes the variation of this quantity with x as well as the dependences
of the entrance value |Q dP′/dx|x=0 = |(

√
Q/k) tan(k/

√
Q)| on α and k for β = 0.5.

Additional computations for other values of β (not shown here) revealed that the
eccentricity has a negligible effect on the tidal volume flux, so that the curves obtained
with β 6= 0.5 are almost identical to those plotted in the figure.

As can be seen in figure 2(a), the tidal volume flux decreases along the canal to
vanish at the closed end. As expected, larger values of α, associated with smaller
viscous forces, result in increased flow rates. The dependence of |Q dP′/dx|x=0 on k
is shown in figure 2(b). For small k, i.e. wavelengths that are much larger than the
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0(a) (b)

0.1

0.2
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0.4
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1.0
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1.0

1.5

1 2 3 4 5

FIGURE 2. The value of |Q dP′/dx| evaluated with use made of (3.21) and (5.1) for ho=

1−β cos(2ps), `= 1 and β= 0.5. Panel (a) shows the variation with x, whereas (b) shows
the parametric dependence of the entrance value |Q dP′/dx|x=0.

canal length, the pressure along the canal is almost uniform, and the dura membrane
deforms uniformly in response to the pressure oscillations in the cranial cavity,
following (2.26), resulting in an entrance flow rate that is independent of the flow
conditions, so that the value of |Q dP′/dx|x=0 for k� 1 is identical for all α. In the
opposite limit k� 1 the wavelength is much shorter than the canal length, so that
at a given instant of time we find regions of positive and negative deformation of
the dura membrane along the canal, which tend to have a cancelling effect on the
entrance flow rate, reflected in the decrease of |Q dP′/dx|x=0 for k� 1. An interesting
result from the model is that |Q dP′/dx|x=0 reaches a maximum at an intermediate
value of the wavenumber k (i.e. k' 1 for α= 3), associated with elastic wave speeds
(Ec/ρ)

1/2 on the order of ωL.
Although variations of the eccentricity do not significantly alter the tidal volume

flux, the velocity fields associated with different values of β are very different, as seen
in the comparisons in figure 3, which exhibit the distributions of streamwise velocity
amplitude |u0|= |U| at different cross-sections and for varying eccentricities, including
the concentric case, β = 0. Although the analytical solution given above applies only
to configurations with hc� R, the width of the annular cross-section in the figure is
arbitrarily enlarged to facilitate visualization. As expected, the decelerating effect of
viscous forces becomes more (less) effective in regions of smaller (larger) canal width,
leading to the nonuniform velocity distributions depicted in the figure.

Steady streaming velocities 〈u1〉, evaluated for k = 0.5 and α = 3 from (4.5) with
d〈p′1〉/dx computed using (4.7), are plotted in figures 4 and 5. The circular plot in
figure 4(b) shows the distribution of 〈u1〉 for β = 0.5 and x= 0.25. Transverse profiles
of 〈u1〉 across the narrowest (s = 0) and widest (s = 1/2) sections are plotted below
at different heights for this same eccentricity. As can be seen, the resulting velocities
are negative (upwards) in the narrow part of the canal and predominantly positive
(downwards) in the wider regions. The associated flow pattern is schematically
represented by the arrows in figure 4(a).

The circular plots in figure 5 represent distributions of 〈u1〉 across the canal section
at different heights and eccentricities, as in figure 3. The computations for β 6= 0
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FIGURE 3. The distribution of |u0| = |U| for k = 0.5 and α = 3 as obtained at different
sections x for varying eccentricities.

reveal that the maximum velocity 〈u1〉max always occurs in the symmetry plane at the
centre point of the widest section. By way of contrast, negative (upward) velocities
are found in the narrow part of the canal, in agreement with the transverse profiles
shown in figure 4. The minimum velocity 〈u1〉min occurs at the narrowest section s= 0
for sufficiently small values of β > 0 but moves away from the symmetry plane for
large eccentricities, as can be clearly observed in the results for β = 0.75. Also of
interest is the fact that, as can be inferred from the plots corresponding to β = 0, the
apparent volume flux

R 1
0 ho(

R 1
0 〈u1〉 dη) ds associated with the steady-steaming flow is

nonzero, that being a direct consequence of the deformation of the canal wall, which
enters in the integral continuity balance (4.7).

The distributions of 〈u1〉max and 〈u1〉min along the canal are plotted on figure 4(b)
for different values of β. The bulk motion, characterized by these two bounding
values, is found to be extremely weak for concentric cylinders, but becomes much
more pronounced for eccentric canals, for which we find values of 〈u1〉 of order
unity, corresponding to dimensional steady-streaming velocities of order ε2ωL. It
is also of interest that the configuration with intermediate eccentricity (β = 0.5)
exhibits velocities that are larger than those found with β = 0.25 and β = 0.75.
This non-monotonic dependence, associated with the nonlinear interactions of the
steady-streaming flow, is an indication of the importance of the geometrical effects.
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220 A. L. Sánchez and others

FIGURE 4. Schematic view of the model geometry considered here (a), distribution of
〈u1〉 corresponding to k = 0.5, α = 3 and β = 0.5 (b), and streamwise variation of the
maximum (downward) and minimum (upward) velocities for different values of β (c).

The results suggest that accurate quantifications of CSF flow in the spinal canal
should consider the specific geometric features of the SAS, described in our model
by the functions ho(x, s) and `(x).

For completeness, the distributions of azimuthal velocity 〈w1〉 across the canal
section are shown in figure 6 for the case k = 0.5 and α = 3 corresponding to the
plots in figure 5. As can be seen, the distributions exhibit the expected symmetry, with
the azimuthal velocity vanishing at the symmetry plane, defined by the sections s= 0
and s= 0.5. The circumferential motion, identically zero for concentric configurations,
becomes more pronounced for increasing β, with the configuration with β = 0.5
exhibiting the largest values of 〈w1〉. It is also of interest that the azimuthal motion is
faster near the canal end, as needed to accommodate the more rapid deceleration of
the streamwise motion occurring there, which is apparent in figure 4(c). The location
of the peak values of 〈w1〉, found near s≈ 0.25 at the entrance, progressively move
towards the narrowest section (s= 0) for increasing values of x, an effect that is more
noticeable as β increases.

6. Experiments of steady streaming in slender elastic annular tubes
We have conducted a series of in-vitro experiments in order to qualitatively validate

the predictions of our asymptotic analysis. The experiments involve the simplified
geometry depicted in figure 4(a), that is, a straight, slender, elastic annular canal of
length L = 25 cm bounded between cylindrical tubes of radii R = 7 mm and R +
hc= 10.5 mm. Axisymmetric cases (β = 0) with coaxial tubes were investigated along
with a case with eccentricity β = 0.1. The annular tube is connected at one end to
a rigid container where the pressure pc is varied periodically through a peristaltic
pump with a frequency of 1 Hz to produce an oscillatory flow at the entrance of the
channel of ±2 cm s−1. The values of hc and ω yield α = hc/(ν/ω)

1/2
' 8.7 for the

associated Womersley number. The ratio of the displaced volume to that contained
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On the bulk motion of the cerebrospinal fluid in the spinal canal 221

FIGURE 5. The distribution of 〈u1〉 for k= 0.5 and α= 3 as obtained at different sections
x for varying eccentricities.

in the unperturbed annular tube was selected to be 1V/V = 1/50, consistent with
the values in the clinical observations. The results shown below correspond to an
elastic outer tube, representing the deformable dura membrane, with an inner rigid
rod, representing the spinal cord. Additional experiments using an inner elastic tube
surrounded by a rigid outer cylinder and two elastic tubes were found to give similar
flow features.

The flow velocity was measured in a coaxial plane at various downstream locations
along the tube by particle image velocimetry (PIV) using neutrally buoyant hollow,
spherical, silver-coated micro particles with a diameter of 0.5 mm. Figure 7 shows the
time variation of the oscillatory velocity, averaged over the cross-section of the annular
gap at various downstream locations along the tube for the case of a concentric
annular tube (β = 0). The flow corresponds to a pure harmonic motion of biphasic
periodic tides of ebb-and-flow with frequency ω, with amplitudes monotonically
decreasing as one moves from the open end to the closed end of the annular tube,
consistent with the predictions of the zeroth-order solution of the asymptotic analysis
shown in figures 2 and 3, and as also observed in many clinical MRI measurements.

The PIV measurements were sufficiently accurate to capture the decay in the
amplitude of the leading-order oscillatory flow as shown in figure 7. Unfortunately,
the polymer tubes that are necessary for simulation of the compliance of the canal
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222 A. L. Sánchez and others

FIGURE 6. The distribution of 〈w1〉 for k= 0.5 and α= 3 as obtained at different sections
x for varying eccentricities.

are not optically clean and give rise to undesirable reflections and scattering effects
that affected the accuracy of the PIV velocity measurements near the walls of the
narrow annular gap. Because the resulting measurement error is much greater than
the streaming velocities, integrating these measurements over 20–30 min (1200–1800
cycles) results in very noisy measurements. Thus, to quantify the velocity of the
streaming motion we opted to use the far more reliable method of injecting a bolus
of neutrally buoyant fluorescent dye in the annular gap of the canal at the midpoint
between its entrance and closed end, and accurately measure over 20–30 min the
velocity of the upward and downward propagation of the fronts as shown in the
schematic panels of figure 8. We selected this method not only for its accuracy
compared to the PIV measurements but also because it fully resembles the technique
used in all the radiological measurements done in the clinical setting, where a bolus
of marker is injected in the lumbar region, making our results easier to understand
by the medical community. The tube was oriented horizontally with the inner tube
offset slightly to introduce an eccentricity (β = 0.1), as shown in figure 8(b).

The annular tube was illuminated with an ultraviolet light and imaged using a
CCD camera with a resolution of 2000 × 2000 pixels. Fluorescence images were
recorded at the same oscillation phase every 30 s over 20 min to track the time
evolution of the injected patch. Figure 8 shows the images at 150 s intervals for
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On the bulk motion of the cerebrospinal fluid in the spinal canal 223

FIGURE 7. Time variation of the oscillatory axial velocity averaged along the cross-section
at various downstream locations along the tube for the case of an axisymmetric annular
canal (β = 0) with flexible outer wall and rigid inner surface.

FIGURE 8. (a) Time evolution of the fluorescent marker initially injected in the annular
gap at the midpoint between the entrance and closed end of the tube. The open entrance to
the channel is located on the left-hand side. (b) Schematic representation of the evolution
of the fluorescent marker injected at the midpoint along the tube. (c) Propagation velocity
of the dye front towards the open entrance of the tube. Note the monotonic increase of
the streaming velocity 〈u1〉 approaching the open entrance. The measurements correspond
to an eccentric case with β = 0.1

the first 15 min. These measurements clearly demonstrate that, in addition to the
periodic harmonic oscillatory motion described in figure 7, there is a bulk motion
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that gradually transports the dye upwards (to the left in this experiment) into the tank
and downwards (right) towards the closed end. Measurements of the speed at which
these two fronts propagate allowed us to obtain order-of-magnitude estimates for the
local velocity of the mean streaming motion (as an example, figure 8(c) represents
the upward velocity of the front recorded in one of the experiments). Consistent with
the analysis in § 5, we found that the speed of the dye front propagating towards the
tank gradually increases as the open end is approached, while at the same time the
speed of the opposite front moving to the right decreases on approaching the closed
end of the tube, in agreement with the results in figures 4 and 5. It is important to
emphasize that, as predicted by the analysis, these streaming velocities are a factor
ε smaller (i.e. about two orders of magnitude) than the amplitude of the velocity
fluctuations measured for the harmonic base flow described above. Our results are
consistent with many radiological measurements; see, for example, the measurements
of Greitz & Hannerz (1996), who showed in their radionuclide cisternography (figure
4 in that paper) that tracers injected in the lumbar region reached the thoracic area
much faster than they moved downwards into the sacral end.

We have further corroborated that the observed bulk transport is not due to any
gravitational or thermal effects by repeating the above experiments without the
imposed pressure pulsations in the tank. For this case, the dye diffused only several
millimetres left and right over 10 h.

7. Conclusions

We have investigated the physical mechanism responsible for recirculation of CSF
in the spinal canal by formulating an asymptotic analysis of a physiologically relevant
geometry accounting for the small compliance of the dura membrane through a small
parameter ε, on the order of the ratio of the tidal volume to the total CSF volume
in the spinal canal. We have shown that the flow at leading order, in the limit ε� 1,
reduces to an oscillatory linear lubrication problem, while the first-order corrections
provide the description for the steady-streaming flow, responsible for the bulk motion
along the canal.

The general asymptotic formulation has been applied to the simplified case
of a closed-end, compliant, constant diameter tube (spinal canal) containing an
eccentric coaxial cylindrical insert (spinal cord). We have shown that, consistent with
radiological observations in human adults, the small pressure pulsation imposed at
the entrance results in an oscillatory motion whose amplitude decreases along the
length of the compliant canal. We have also demonstrated that this oscillatory motion
induces a slow streaming motion with velocities two orders of magnitude smaller,
and establishes a slow recirculating bulk motion bringing fluid downwards along the
canal and returning it upwards to its entrance. The amplitude of the oscillatory flow
measured by MRI in human subjects in the cervical region is 1–2 cm s−1 decreasing
as one moves downwards along the spinal canal, and one can then estimate from our
analysis the magnitude of the mean steady streaming velocity (bulk recirculating flow)
of the CSF in the human spinal canal in physiologically relevant conditions to be
on the order of 1–2 cm min−1, which is also consistent with radiological observations.
Based on the values of the variation of the streaming velocity experimentally measured
along the length of the canal, one can estimate the time for the bulk recirculating flow
to refresh the whole CSF in and out of the canal to be on the order of a few hours.

In summary, our analysis of an idealized geometry of the spinal canal has provided
a mechanistic physical explanation of a known physiological process that has
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remained unexplained for the past 50 years. Although the anatomy of the SAS
in the spinal canal is far more complex than the specific geometry used in the
exploratory quantification presented above, the order of magnitude of the results
is fully consistent with current radiological observations. The formulation developed
here, combined with and accurate anatomical descriptions of the SAS geometry, given
by the functions ho(x, s) and `(x), and of the elastic properties of the dura membrane,
embodied in the distribution of Ee(x), could be employed in future work to develop
more accurate quantitative predictions. Our formulation could also be extended to
account for additional effects, including a more detailed description of the elastic
properties of the dura membrane as well as the possible axial oscillatory motion
of the spinal cord. The contribution to the Lagrangian motion arising from Stokes
drift could be evaluated on the basis of the leading-order velocity description. Also,
corrections associated with shear-enhanced diffusion, anticipated to be small in our
previous estimates, could be incorporated in the model by introducing a passive scalar
governed by an unsteady convection–diffusion equation. The improved understanding
of the mechanism regulating the bulk motion of the CSF in the spinal canal resulting
from this analysis may have potential implications in optimizing intrathecal targeted
drug delivery systems (injecting the drug directly in the CSF around the spinal
cord) and in improving the current understanding of the etiology of a large class of
neurological conditions.
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