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APPLICATIONS OF CONVERGENCE SPACES

GARY D. RICHARDSON

Convergence notions are used extensively in the areas of

probability and statistics. Many times proofs can be simplified

by considering an appropriate convergence structure on the space

and using well-known results from the theory of convergence

spaces; for example, compactness arguments are sometimes

simplified by using a generalized Ascoli theorem in the

convergence space setting. The theory of convergence spaces is

also used to generalize some results in probability and

statistics.

0. Preliminaries

Many of the convergence notions studied in probability and statistics

are sequential and are sometimes not determined by a topology. Even if

they are described by a topology, it is sometimes more convenient to study

these notions in the setting of a convergence space. Convergence spaces

given here are defined sequentially. Several authors have recently studied

convergence spaces from a filter point of view. The necessary definitions

and terminology are given below; however, the reader is referred to Novak

[77] for further details concerning sequential convergence spaces and Kent

[S] for results in the filter setting.

A convergence structure on a set X satisfies the following axioms:

(1) x -*• x whenever x = x , w > 1 ;

(2) x -*• x whenever x •+ x ;
nk n
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108 Gary D. Richardson

(3) x •* x , x -*• y implies that x = y .

The arrow denotes convergence. A convergence structure merely specifies

the convergent sequences and limits. The set X along with the

convergence structure is called a convergence space. These ideas date back

to Frechet [6].

A point X belongs to the closure of a subset A of X provided

there is a sequence in A which converges to x . The set of all points

of closure of A is denoted by cl A . The closure operator in7a

convergence space is in general not idempotent. A subset A of X is

called closed whenever cl A = A . The set of all closed subsets of a

convergence space form the closed subsets for a topology on X . This

associated topological space is denoted by XX . A function f : X -*• Y

between two convergence spaces is said to be continuous if f[x ) ->• fix)

in 7 whenever x •*• x in X . It is not difficult to show in this case

that / : \X •*• \Y is also continuous.

A convergence space is called separable whenever it contains a

countable subset A such that cl A = X . A subset A is called

relatively compact whenever each sequence in A has a convergent

subsequence and compact whenever A is closed and relatively compact.

Let C(X) [C*(X)) denote the set of all continuous (bounded

continuous) real-valued functions from the convergence space X into the

real line R . Consider the following convergence structure on

C{X) : fn + f iff f (*„) -* /(*) in # whenever x * x in X . For

reasons given later, a different convergence structure is defined on

C*W : fn- f iff /„(*„) ->• /(*) in R whenever a^ -• x in X and

also (/ J is uniformly bounded on X . These two convergence spaces are

denoted by C (X) and C*(X) . This type of convergence is sometimes

called continuous convergence. It seems to have been first studied by Hahn

[7] and later by Cook and Fischer [4] in the filter setting. A subset H

of C (X) is called equicontinuous whenever f[x ) -»• fix) uniformly in

f € H , provided x ->• x in X .
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Appl ica t ions of convergence spaces 109

1. The space of probability measures

The following generalizes the Ascoli theorem to the convergence space

setting. The proof is omitted since it resembles the usual one for the

separable metric space case.

PROPOSITION 1.1. Let X be a separable convergence space and let H

be a subset of C {X) . Then H is relatively compact in C (X) iff

(1) H{x) is a bounded subset of R for each x € X 3

(2) H is equicontinuous.

Let X be a metric space and let B denote the Borel a-field; that

is, the smallest a-field containing the open subsets of X . The metric

space X is considered to be a convergence space, where the convergent

sequences coincide with those determined by the metric. It would be more

accurate to say that X is a metrizable convergence space. Let M(X)

denote the set of all probability measures defined on (X, B) . The

convergence structure on M(Z) is defined as follows: P -*• P iff

\ f dP •* \ fdP whenever f •+• f in C*(X) . I t can be shown that th is
) Jn n \ J Jn o

satisfies the axioms for a convergence structure, which is the reason for

requiring convergent sequences in C*(X) to be uniformly bounded. Let the

set M(X) with this convergence structure be denoted by M {X) . Note

c

that the map 0) : MflU) * <?*(*) * R » defined by w(P, /) = fdP , is

jointly continuous. Another desirable property is the following.

PROPOSITION 1.2. Let X be a metric space. Then the map

(j) : MJX) -* C(C*(X)) , defined by <j>(P)(f) = I fdP , is a closed
C C C J

embedding.

Proof. I f P € M{X) , then by the dominated convergence theorem,

4>(P) : C*(X) •* R i s cont inuous, and so <J>(P) € c[c*(X)) . Let

<f>(P) = 4>(e) ; then j fdP = j fdQ for each f i. C*{X) and i t follows

(for example, see B i l l i ngs l ey [ 2 ] , Theorem 1.3) t h a t P = Q . Hence (j> i s

one- to-one. The con t inu i ty of <)> and <{>" follows ea s i l y from the

d e f i n i t i o n s and so <f> i s an embedding.
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110 G a r y D. R i c h a r d s o n

Suppose that <$>[?„) + h in Ca[C*(X)) . Let [fn) be a sequence in

C*(X) such that f + 0 ; then by a theorem of Dini, / -»• 0 in C*[X) ,

and since h i s continuous, h(f) -*• h(0) = 0 in R . Hence by the

Daniell representation theorem (for example, see Ash [ / ] , 4.2.9, P- 175)

there i s a P € M(X) such that <j>(P) = h and so the range of <j> is a

closed subspace of cicHX)) . II
G G

A study of continuous convergence in C{X) in the filter setting is

given by Feldman [5], for X a convergence space in the filter sense;

however, one must be careful in translating these results to the sequential

setting. The following can be deduced from Feldman [5, Theorem 33. Let X

be a separable metric space; then C (X) is a separable convergence

space. It can be shown from this that C*{X) is also a separable
G

convergence space.

Recall that a subset H of M(X) is called tight if for each e > 0

there is a compact subset K of X such that P(K) > 1 - e whenever

P € H . Proposition 1.1 provides a straightforward method for proving

compactness for many spaces in probability and statistics.

PROPOSITION 1.3 (Prohorov). Let X be a separable metric space and

let H be a tight subset of M(x) . Then H is a relatively compact

subset of M (X) .
G

Proof. From Proposition 1.2, it suffices to show that §{H) is a

relatively compact subset of Ca(C*(,X)) . Let / £ C*(X) ; then *(#)(/)

is a bounded subset of R . Suppose that f •* f in C*(X) and
Yt G

\f | S M , n i l . Given e > 0 , choose a compact subset K of X such

that P{X-K) < z/hM for each P i H . Since f •*• f uniformly on K ,

then l e t nQ be such that \fn(x)-f(x) \ < e/2 for each x € K , n > n .

Then

If fdP - f fdP < f \f-f\dP + f \f-f\dP
u ] >K n >X-K n < e

for each P € H , n 2 nQ . I t follows that <)>(#) i s an equicontinuous

subset of Co(C*(X)) . From the previously mentioned resul t that C*(X)
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is a separable convergence space, it follows by Proposition 1.1 that

is relatively compact. //

Let M X denote the usual weak convergence on M(X) ; that is,
U)

n + P iff | fdPn * [ fdP for each / € C*(X) .

or

PROPOSITION 1.4. Let X be a metric space; then M X = M X .

Proof. Cer ta in ly continuous convergence implies weak convergence.

Conversely, l e t P •*• P in MX and l e t / * / in C*(X) with

| / | 5 M . Let Q = P f"1 and 6 = P/~ be the induced p r o b a b i l i t y

measures on (R, 8) . Then from B i l l i n g s l e y [2, Theorem 5 .5 , p . 2k ] ,

6 -»• <2 in M i ? . Since ( / ) i s uniformly bounded, then the i d e n t i t y

function on R i s uniformly in teg rab le re [Q ) , so xdQ •*• sdQ (f

example, see Loeve [10, p . 183] ) . Hence f^n "* •fdP ' s o p "*" p i n

UJX) . II

2. The space of test functions

The domain for a test in s tat is t ics is generally taken to be a

Euclidean subspace; however, our discussion is relative to the metric

space setting. Let X denote a metric space and 8 the a-field

generated by a l l the open subsets of X . Let T denote the set of a l l

tests on (X, 8) ; that i s , $ Z T provided <J> : X •* [0, l ] is a

measurable function on (X, 8) .

Let y be a a-finite measure on (X, 8) and let Y denote the set

of a l l p-integrable functions on (X, 8) . Define convergence in 7 to

be L '-convergence; that i s , f •*• f iff \f -f\d\i •* 0 . More

precisely, points in Y are equivalence classes and Y is a metric space.

Define the following convergence structure in T : <J> -»•<)> iff

for each / in Y . Let T with this convergence

ed by T . The space T is compact whenever X is

separable (for example, see Lehmann [9, Theorem 3, p. 35^]) and forms the
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112 G a r y 0 . R i c h a r d s o n

basis for proving the existance of certain optimal test in statist ics.

Proposition 1.1 provides a straightforward alternative method for showing

that T is compact. As in the case for Y , points in T are actually

equivalence classes; that i s , (ji ~ ip iff <J> = t|/ almost everywhere [y] ,

or equivalently, <Pfd]i = tyfdv for each f i Y .

PROPOSITION 2.1. Let X be a metric space and y a a-finite

measure on (X, 8) . The map a : T •* C (Y) , defined by

a((f')(/) = I f$dv , is a closed embedding.

Proof. The fact that a is an embedding is routine to check.

Suppose that a(<}> ) •+ h in C (Y) ; then h(f) = lim ftp d\i for each

f i Y . Hence h is a bounded linear functional on Y and from the Riesz

representation theorem there is a g £ L such that h(f) = fgdu for

each / € Y . I t is easy to show that 0 S g 5 1 almost everywhere [y] ,
so g f T and hence h = a(g) . Thus afl" ) is a closed subspace of

Ca(Y) . II

A straightforward application of Propositions 1.1 and 2.1 gives an

alternative proof of the following result.

PROPOSITION 2.2. Let X be a separable metric space and y a

o-finite measure on {X, B) . Then the space T is compact.

Let us consider an appropriate test space whenever P c M(X) . Again
let T denote the set of a l l tests on (X, B) and define <p ~ \p iff

<pdP = tydP for each P 6 P . This is an equivalence relation in T

and two tests are equivalent whenever they have the same power functions on
' . The set of equivalence classes with the following convergence
structure is denoted by T : <p •+ <p iff for each P d P ,

If y is a a-finite measure on (X, B) and
p = {P € M(x) | P « y} , then it is not difficult to show that T = T .

Hence JU seems to be a proper generalization of T . The following fact
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about T is useful in investigating properties of T .

PROPOSITION 2.3. Let X be a separable metric space and u a

a-finite measure on {X, B) . Then the convergence space T is

metrizable.

Proof. Since X i s a separable metric space, then T , defined

above, is also separable. Let A = \g., <?„, . . . } be a countable dense
oo

subset of Y and let R denote a countably infinite product of R with

convergence structure of pointwise convergence of sequences. Define

a : T •* R°° by a((j>) (n) = \ §g d\i , n > 1 . Then it is easy to show that

a is an embedding and hence T is metrizable. //

The notation P « \i denotes the fact that P is dominated by the

0-finite measure U . Suppose that (()> J fails to converge to <J> in

T . Then there is a P I V such that <(> dP •** \ $dP . Let h : T •* R

be defined by h(.\\>) = \\)dP . Then h is continuous and 7i(<f> ) -*

in R . This implies that the convergent sequences of the completely

regular topology on T generated by the continuous functions coincide

with the convergent sequences in T . In the language of Novak [ H ] , T

is a sequentially regular convergence space. In particular, T and XT

have the same convergent sequences, where XT is the topological space

whose closed sets are precisely those closed in T ; that is,

cl™ A = A .

P

PROPOSITION 2.4. Let X be a separable metric space. If

and V « \\ , then T is compact and metrizable.

Proof. Since each equivalence class re \\ is contained in the

corresponding equivalence class re P , then let j : T •* T denote the

natural map. Since j is continuous, then by Proposition 2.2, T is

compact. Also j : XT •*• XT is continuous and moreover since T is

compact and metrizable it follows easily that j : XT •* XT is a
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114 Gary 0. R i c h a r d s o n

topological quotient map. It is known that a Hausdorff quotient of a

compact metrizable space is metrizable (for example, see Bourbaki [3,

Proposition 17, p. 159]) and since T and A7 agree on convergent

sequences, T is metrizable. / /

Le't X, Y be metric spaces with corresponding Borel a-fields and let

T : X -*• Y be a measurable function. If P <z M(X) , then let T denote

the test space re P and let 2\, be the test space re Px~

PROPOSITION 2.5. Let x : X -*• Y be a measurable function, where X

and Y are metric spaces. Let V c U{X) and let a : Tv •*• T be defined
1 A

by a(ij)) = if) o T . Then a is an embedding and moreover, if r is a

sufficient statistic for V , then a is an onto embedding.

Proof. Suppose that aty.J = a(ij;2) in T^ ; that i s

ip o \dP = N ) o tdP for P i ? . Then \p dQ = ty dQ for each

Q = P T " , SO ^ = A>2 in T ; tha t i s , ty and \p belong to the same

equivalence c l a s s . Hence a i s one-to-one. The continuity of a and

ot a re easy to show and so a i s an embedding. Suppose that T i s a

suff ic ient s t a t i s t i c for P and l e t <J> € T . Let \p = #(<(>|T) ; then

^ € Ty . Furthermore, for Q = Pi'1 , P € P ,

J (i/> o i)dP = J ipdQ = j

and hence it follows that i|> o x = <j> in ?„ . Thus a(t(') = <(> and so a

is an onto embedding. //

Let us consider a convergence structure for P c M(X) which has

properties desirable for hypothesis testing. It seems desirable to have

joint continuity of the map w : T x P •*• [0, l] defined by

, P) = §dP . This, in particular, implies that the power function for

each test is continuous on P . This leads us to define the following

convergence structure on V : P •*• P iff for each <}>-»• <{> in T ,
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The set P equipped with this convergence structure is

denoted by P . In fact, this is the coarsest convergence structure on P

such that the map w is jointly continuous.

Let T : X -*• Y be a measurable function between two metric spaces and

let P c M U ) . Since P T " 1 C M(Y) , then convergence in P T " 1 is defined

in a similar manner as is given for P c M(X) . Let P T " with this

convergence structure be denoted by P* . If a : P + P' denotes the map
G G G

a(P) = P T " , then it follows easily that a is continuous.

PROPOSITION 2.6. Let T : X •+ Y be a sufficient statistic for

P c M(X) j where X and Y are metric spaces. Then a : V •+ P* ,
G O

defined above, is an onto embedding.

Proof. Let P , P (. P such that Q = a(p ) = CX(PJ = Q2 . If

A € 8 , then <f> = 1 € TY and so i/i = E($ |T) € T . Hence
HA I

PX(A) = <t>dP1 = tydQx = tydQ2 = <\>dP2 = P2(A) ,

so P = P' and ot i s one-to-one. The continuity of a holds as

mentioned above. Suppose that Q = P T~ •+ P T " = Q in P* and l e t
n n c<S> -*• <(> i n T . I f ^ = £•(<}> | T ) and ^ = 5(<{> |T) , t h e n i t f o l l o w s

Tt A Yt Yl

easily that i|/ + I|I in ?„ and hence î  dQ •*• \ tydQ , or

<(> dP •* (j>dP . Hence P •* P in P and so a i s an embedding. / /

Let T : X •+ Y be a measurable function and a : P •* V* defined as
c c

above. If ij/ € Ty and i s 6-similar on the boundary for tes t ing

PQT~ VS P T " , where P u P = P and ^0
 n P-, = <t> . then 0 = \p o- T i s

also 6-similar on the boundary for t es t ing P vs P . The boundary for

tes t ing P vs P is defined to be the set c l P n cl P in the

convergence space P . The above follows from the continuity of the map
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a : P -*• P* . Moreover, since each power function $, : P •*• [0, l ] isc c <j> c

continuous, then from Lehmann [9, Lemma 1, p. 126] a UMP 6-similar on the

boundary test of size 6 is UMP unibased of size 6 .

The next result follows from Proposition 2.6.

COROLLARY 2.7. Let T : X->• Y be a sufficient statistic for

P c M(Af) j where X and Y are metric spaces. Let ty be a UMP

S-similar on the boundary test of size 6 for testing POT~ VS P,T~ .

Then I(I o T is a UMP ̂ -similar on the boundary test of size 6 for

testing PQ vs P .

3. The space P

Let X be a metric space, 8 the corresponding Borel a-field, and

Pc M(X) . Then for P, Q € P , d(P, §) = sup \P(A)-Q(A)\ defines a

a r e

metric on P . Let P equipped with the convergence structure determined

by the metric be denoted by P, . Note that P -*• P in P, iff

P (4) •+ P(/l) uniformly in H B . Lehmann [9, p. 352] shows that

whenever P « u , P •+ P in P, iff |p -p|dy •+ 0 , where p , p

the probability densities re y . Let P denote the subspace inherited

from MX, where a) denotes weak convergence of probability measures.

PROPOSITION 3 .1 . Let X be a metric space and V c M{X) . Then

Pj>P > P and when T compact, V-, = P ; in particular, Pj = ?

whenever P « \i and X is separable.

Proof. Suppose that P -»• P in P, and <f> -*•<() in 7 . Let y

be a o-finite measure which dominates P , P , a l l n 2 1 . If p , p

are densities re y , then by the above remark \p -p|dy -»• 0 . I t

follows easily by using the triangle inequality that I (j) dP -»• I <j>dP , so

P •* P in P and P, > P .n c d c

Let P^ •* P in Pfl and / i C*(X) , \f\ 5 M . Then [ fdP •*• [
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follows by decomposing / into / and f , so P -*• P in P and

? ± V
C 0)

Suppose that T is compact and P -*• P in P . If there exists an

E > 0 and a sequence [A ) in B such that \P [A )-P[A ) | > e for each

n > 1 , t h e n l e t <f> = 1 . , s o <j> •+ <j> i n T . Hence
n w nk P

3 (A ) - <t>dp\ < e /2 and P[A ) - < e/2 for fe suff ic ient ly

large. Thus, for k sufficiently large, \P [A )-P[A ) \ < e , which
nk nk nk

contradicts the above. This argument shows that P •* P in P, and so

?, = ? . The last part of the proposition follows from Proposition 2.\.lI

PROPOSITION 3.2. Let X be a separable metric space and let

P (= M{X) . Then the following are equivalent:

(1) T is separable and metrizable;

(2) P is separable;

(3) P « u ;

(h) T is compact and metrizable;

(5) \T is a second countable topological space;

(6) P is separable and metrizable.

c

Proof, (l) °* (2). It is straightforward to verify that the map

a : P •*• C (T) , defined by a(P)((J>) = <t>dP , is an embedding. Hence

from Feldman [5, Theorems 3 and 53, it follows that P is separable.

c

(2) =* (3) . The argument given in Lehmann [9 , p . 353] applies here.

(3) "* (U). This follows from Proposition 2.U.

CO °* (5) . I t follows since XT i s compact, metrizable and hence

second countable.
(5) °* (6) . Since the map a above i s an embedding, then from Feldman
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118 Gary D. Richardson

[5, Theorems 3 and 5] , P is separable. This implies from the above that

P « M and so by Proposition 3.1, P = P\ is metrizable.

(6) "* (1). Since P « ]i , then from Proposition 2.U, 21 is

compact, metrizable and hence separable. / /

Let X be a metric space, P c M(X) and consider the problem of

teating PQ vs P., at level a , where P u P = P and P n P = <J> .

Lehmann [9, p. 3l*0] defines the envelope power function, 3* , on P by

= sup <J>dP , where T = {ij> € 2" | <Ji is a level a test} . Note that
ACT J a P

2" is a closed subspace of T and hence is compact whenever the latter

is. The existence of many optimal tests in the dominated case is based on

the fact that T is compact, where P « y . Similar results may be

expected to hold in the general case whenever T is assumed to be

compact.

Let y : T •+• CJ?') be defined by y($)(P) = \ $dV . Then it

follows easily that y is an embedding. Hence T equicontinuous means

that Y ( T ) is an equicontinuous subset of C (P ) . Similarly, P

equicontinuous means that ct(P.) is an equicontinuous subset of C \T 1 .

PROPOSITION 3.3. Let X be a metrie space and Pcllffl . If T

•is equicontinuous, then 8* is a continuous function on V .
c

Proof. Let P -*• P in P . Sincen c

sup <f>dP £ sup <fx2P - <$>dP + sup <(>dP ,

then by symmetry, it follows that

\&*[P ) -g*(P) | £ sup [ $dP - f
n

 A €2" Ij " J

S ince T i s equ icon t inuous , then i t fol lows t h a t &*[P ) •*• g*(P) . / /
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Define the function 6 : T •*• [0, l ] for the above tes t ing problem by

6(({>) = sup B*(P) - <J>dPj . A t e s t making 6 a minimum i s called most

stringent of level a (for example, see Lehmann [9 , p. 3^0]).

PROPOSITION 3.4. Let X be a metric space and V c M{X) . If P

is equicontinuous, then 6 is a continuous function on T .

Proof. Let <J> •+ d> i n T . S ince
n ot

sup ]B*(P) - I <MP] £ sup |B*(P) - f * dp) + sup f (j) dP - I
p£P I 1 J p£P (. I n ) p£P IJ n J

1 1 1

then by symmetry,

If f
|S((f>)-6((j> J I £ s u p <ji dP - <i>dP

n PZP± U n >

Since P is equicontinuous, then it follows that 6 (<)> J •+ 6(())) . //

COROLLARY 3.5. Let X be a metric space and P c U{X) . If T is

compact and P. is equicontinuous, then there exists a most stringent test

of level a .

Moreover, it is not difficult to prove the following more general

result.

PROPOSITION 3.6. Let X be a metric space and P c M{X) . Suppose

OO

that P = cl P* , where V* = U P" , P"c p"+1 awd f1 is equi-
1 n=l

continuous, all n t 1 . If T is compact, then there exists a most

stringent test of level a .

If P « y and X is a separable metric space, then T is compact

and PQ is separable and so Proposition 3.6 implies that a most stringent

test of level a exists for this case.
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4. Weakly uniformly integrable functions

The key to the proof of Proposition l.k is the fact that if P •* P in

M X and g i s a continuous real-valued function on X which is uniformly

integrable re (P ) , then gdP •*• gdP . This section is devoted to

giving a converse of this result, which is sometimes useful in showing that

a particular convergence structure on M(X) coincides with weak

convergence.

PROPOSITION 4 . 1 . Let X be a metric space and suppose that P •* P

in M X and g is a continuous real-valued function on X which is
CO

P , P integrable for each n 2 1 . Then gdP -*• gdP iff

= 0 .

Proof. Suppose that gdP •* gdP . Since g is P-integrable,

for e > 0 , choose a > 0 such that \g\dP < e . Let a > cQ

and J = [-c, c) , J = (-c, c] .

Since g'X is lower semicontinuous on X , then by Ash [7,

Theorem U.5.1, p. 196],

l im l im gdP

l im gdP > gdP .

» lg-\D U }g-\D

Hence

lim,±m gdP + lim gdP < lim gdP = gdP
n ]g-\l) « \-g-Hl) n } j

gdP + gdP 5 lim gdPn + I

g'Hl) Xg'hl) n g-\l) Xg^

gdP

g-\l) X-g^U)

and so it follows that

lim gdP < I gdP < e .im gdP 5
n X-g-hl) n \-g-
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Since

g-\-o)

then it follows that

lim gdP < e .
n }[\g\>c) n

A similar argument using J shows that

^rlr
hence

< elim
n

for each c - c. and so

lim lim gdP
n 'J[|ff|>e] n

= 0

The converse follows easily by using the transformation theorem in

conjunction with the Helley-Bray lemma. //

Let us call a sequence (/ J of continuous real-valued functions on a

metric space X weakly uniformly integrable re a sequence of

probability measures (p ) on M(X) if each / is P integrable,

n > 1 , and

lim lim
' n n

= 0

From Proposition U.I, along with the transformation theorem, the

following result is obtained.

COROLLARY 4.2. Let X be a metric space and let [f ) be a

sequence of continuous real-valued functions on X . Suppose that P -*• P

in M X and each f is P -integrable for each n * 1 . If f -*• f in

Co(X) , then j fydPn * fdP iff {fn) is weakly uniformly integrable
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re (p ) .

Proposition l.k could have been proved by using Corollary h.2 since if

/ •* f in C*(X) , then [f ) is uniformly bounded and hence uniformly

integrable re [P ) • One can easily give examples of weakly uniformly

integrable sequences which are not uniformly integrable with respect to a

sequence of probability measures.
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