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We consider in this paper only commutative rings with identity.
When R is considered as a subring of S it will always be assumed that R
and 5 have the same identity. If R is a subring of 5 an element s of 5
is said to be integral over R if s is the root of a monic polynomial with
coefficients in R. Following Krull [8], p. 102, we say s is almost integral
over R provided all powers of s belong to a finite i?-submodule of S. *
If Rx is the set of elements of S almost integral over R we say R1 is the
complete integral closure of R in S. If R = i?2 we say R is completely in-
tegrally closed in S. If Rx = S we say S is almost integral over R. If S is the
total quotient ring of R, we call R± the complete integral closure of R, and
in this case if R = Rx we say simply R is completely integrally closed. The
terms integral closure of R in S, R is integrally closed in S, S is integral
over Ri the integral closure of R, and R is integrally closed are similarly
defined. For elementary results on these properties, see [14], Ch. 14, and
[15], Ch. 5.

This paper is principally concerned with the complete integral
closure D* of an integral domain D and a determination of when D* is
completely integrally closed, though some results in more general cases
are obtained.

Section 1 contains some results on the integral closure R* of R in S
as related to the integral closure of R[X] in 5[X], X an indeterminate
over S. Section 2 considers analogues of these results for the complete
integral closure of R in S. Corollary 5 of section 2 implies that if the complete
integral closure D* of the domain D is completely integrally closed, then
the complete integral closure of D in any extension of the quotient field
of D is again completely integrally closed. Domains D for which D* is
completely integrally closed are investigated in section 3.

• Acknowledgment. The first author gratefully acknowledges support from National
Science Foundation Grant GP-4127 while working on this paper.

1 Krull actually considers the property of s being almost integral over R only in the case
when R is an integral domain with identity and s belongs to the quotient field of R. In this
case it is easily shown that s is almost integral over R if and only if there is a nonzero element
r of R such that rsk e R for each positive integer k ([14], p. 77). The natural generalization
to the case when s is an element of the total quotient ring of the ring R is also valid.
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We begin with a lemma which is a standard result in elementary
algebra texts for the case of an integral domain, but which seems not to be
used extensively for commutative rings.

LEMMA 1. Let X be an indeterminate over the ring R and suppose f(X)
is a nonconstant polynomial such that the leading coefficient of f(X) is not
a zero divisor in R. Then [f(X)) n R= (0), so R[X]l(f(X)) = S is a ring
containing R (to within isomorphism) and f(X) has a root in S. If the leading
coefficient of f(X) is a unit of R it follows that there exists a ring T containing
R as a subring such that in T[X], f[X] splits into linear factors.

PROOF. All assertions follow immediately from the fact that if g(X)
is a nonzero element of R[X] then deg (fg) = deg /+degg since the leading
coefficient of f(X) is not a zero divisor in R.

THEOREM 1. Suppose R is a subring of S and X is an indeterminate
over S. If f(X) e R[X] and if in S[X], f(X) = g(X)h(X) where h(X) is
monic, then the coefficients of g(X) are integral over R.

PROOF. We suppose f(X) has degree n; f(X) = J ^ ^ ^ ' - F ° r h(X)
of degree 0, g(X) = f(X) e R[X] and our conclusion follows. Suppose now
h(X) = X—s has degree one. We prove the coefficients of g(X) are integral
over R by induction on n. Thus if g(X) = ^"IQ btX*, then for n = 1 we
have b0 = bn_^ = ane R so the 6/s are integral over R. We assume the
theorem is valid for n ^ k. Then if f(X) = (X-s)(2k

i=0biX
i) we have:

bk_1—sbk = ak

(*) ;
b0—sb± = a1

—sb0 = a0.

It follows that
k+1 k+l

/(s) = o = 2flis' = fll+1(2¥()
i=0 i=0

= ( « w s ) w + « t ( « w s ) J + • • • +«i<i(«*+is)+4+i«o = o.

Hence afc+1s == bks is integral with respect to R. Thus i , ^ = ak-\-sbk

is integral over R. The last & equations in the system (*) then show that
(X—s)(bk_1X

k~1J
r • • • J

rb1X-\-b0) is a factorization of the polynomial
6i_1X*+afc_1X*-1+ • • • +aoeR[bk_1][X] in S[X]. The induction hypo-
thesis implies {bk_lt bk_2, • • -, b0} is a set of elements integral over i? [&*_!],
and hence integral over R. By the principle of mathematical induction,
the coefficients of g(X) are integral over R when h(X) has degree 1.
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We suppose the theorem holds for h (X) of degree k and we consider
the case f(X) = g^X^X), h^X) of degree k+1. By Lemma 1, there
exists a ring T containing S such that hx(X) has a root t in T. Hence in
T\X], hx{X) = (X-t)h2{X) where h2{X) is monic of degree k, so that
f(X) = {g1{X)(X-t)]h2(X) in T[X]. By the induction hypothesis the
coefficients of g1(X)(X^t) are integral over R. Let Ro be the ring obtained
by adjoining to R the coefficients of g1(X)(X—t). By assumption Ro is
integral over R. And by the case already proved when the monic factor is
linear, the coefficients of g^X) are integral over Ro, and hence integral
over R. This completes the proof.

From Theorem 1 we obtain two corollaries which relate the integral
closure of R in S with the integral closure of R[X] in 5[X], X an indeter-
minate. Between the time we obtained these results and the time we
received a referee's report, Corollaries 1 — 2 appeared in Bourbaki [1]
pp. 18 —19. Our proof, based on Theorem 1, is different from that presented
in Bourbaki.

COROLLARY 1. Let R be a subring of the ring S and let X be an indeter-
minate over S. R is integrally closed in S if and only if R[X] is integrally
closed in S\_X~\.

PROOF. It is immediate that if R[X] is integrally closed in S[X] then
R is integrally closed in S.

We suppose, conversely, that R is integrally closed in S. If
f(X) =Z$=oaiX

ieS[X] is integral over R[X], then Xk+1+f{X) is also
integral over R[X]. Hence in showing that the coefficients of f(X)
are integral over R, there is no loss of generality in assuming f(X) is
monic.

Let f(X) satisfy a monic polynomial t(Y) in i?[X][Y] of degree k ^ 1.
To show f(X) e R[X] we use induction on k. For k = 1 it is clear that
f(X) e R[X]. Assuming the theorem true for k <L n we then assume
22o dtWiX) = ° where dt{X) e R[X] and dn+1(X) = 1. Then in S[X]
we have do{X) = f(X)l~2to^i+i{X)fi(X)] where f(X) is monic. By
Theorem 1 the coefficients of —^=odi+1(X)f'(X) = qo(X) are integral
over R and qo(X) e S[X]. Hence qo{X) e R[X] and we have

f»(X)+ • • • +d2(X)f(X)+d1(X) + q0(X) = 0.

The induction hypothesis then yields the desired conclusion that f(X) e R[X].
Hence R[X] is integrally closed in S[X].

COROLLARY 2. Let R be a subring of S, let X be an indeterminate over S,
and let R* be the integral closure of R in S. Then R*[X] is the integral closure
of R[X] in S[X].

https://doi.org/10.1017/S1446788700004304 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004304


354 Robert W. Gilmer, Jr. and William J. Heinzer [4]

We now turn our attention to the concept of almost integrity. Let R
be a subring of S and let S be a subring of T. The differences between the
results obtained for integrity and almost integrity are due mainly to the
following two facts.

1. Almost integrity is not transitive; T almost integral over S and S
almost integral over R do not imply T is almost integral over R.

2. li s e S then s is almost integral over R may depend upon whether
we consider s as an element of S or as an element of T; s may be almost
integral over R in the latter consideration but not in the former. This is
illustrated for integral domains by Example 2. Concerning 1, it is in fact
true that the complete integral closure of R in S need not be completely
integrally closed in S, a point we illustrate in Example 1 for the case when
R is an integral domain and 5 is its quotient field. However, the complete
integral closure of R in S is integrally closed in S ([14], p. 76).

Observations 1, 2 mean that many of the classical results on integrity
for integral domains will not carry over for integrity replaced by almost
integrity. For instance, a valuation ring is completely integrally closed if
and only if it has rank sS 1. ([9], p. 170, thm. 8). This led Krull to conjecture
in [9] that a completely integrally closed domain is an intersection of
valuation rings of rank 5S 1. However, in [12], Nakayama gave an example
of a completely integrally closed domain D which is contained in no rank
one valuation ring having the same quotient field as that of D, thereby
proving Krull's conjecture false. Also, it is easily seen that the "lying over"
theorem for prime ideals of Cohen and Seidenberg ([3], p. 253, thm. 2) is
no longer valid for S almost integral over R. And, as noted already, the
complete integral closure of R in S need not be completely integrally
closed in S.

We begin by giving an example of an integral domain D such that the
complete integral closure of D is not completely integrally closed.

EXAMPLE 1. Suppose K is a field and X and Y are indeterminates
over K. We let D = K[{X2n+1Yn<2n+u}™=0]. The quotient field of D is
K(X, Y). Further D' = K[{XYn)™=0] is integral over D so that
D CD' QD* QK[X, Y] where D* is the complete integral closure of D;
D*QK[X,Y] since K[X,Y] is a unique factorization domain and is
therefore completely integrally closed. ([14], p. 77). Now Y is almost
integral over D', hence almost integral over D*. We show, however, that
Y $ D* — that is, Y is not almost integral over D. For this purpose we
observe that if £ aaX^{XzY3)^ • • • (X2r+1Yr(2r+1))*' is in D, then the ex-
ponent 3z'2+ • • • -\-r(2r-\-l)ir of Y in any monomial in this sum is
^ (h+ • • • +(2>'+l)*r)

2, the square of the exponent of X in the same
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monomial. This shows that no nonzero element d of D is such that dYh e D
for all positive integers h.

REMARK 1. While the complete integral closure R* of R in 5 need not
be completely integrally closed in S, this does not occur if R* is contained
in a finite i?-module contained in S. That this is true follows from Lemma 2.

LEMMA 2. / / R, Rt, and S are rings with RQ RtQS and if R^ is
contained in a finite R-module contained in S, then R and R1 have the same
complete integral closure in S.

PROOF. Suppose Rt is contained in the i?-submodule of S generated
by {s.KU. To prove the lemma it suffices to show that an element s of
5 almost integral over Rt is almost integral over R. Thus if all powers of
s belong to the i?rsubmodule of 5 generated by {us}™=1, it is patent that all
powers of s belong to the i?-submodule of S generated by all products
SfUj so that s is almost integral over R.

We now establish some elementary properties of almost integrity.
In particular we show that the analogues of Corollaries 1, 2 hold for "in-
tegral" replaced by "complete integral" throughout.

PROPOSITION 1. Suppose R is a subring of S, X is an indeterminate
over S and R* is the complete integral closure of R in S. Then R*[X] is the
complete integral closure of R[X] in S[X].

PROOF. Evidently R*[X] is almost integral over R[X]. Let
f(X) = anX

n-\ \-aoeS[X], f(X) almost integral over R[X] - say
all powers of f(X) belong to the finite i?[X]-module generated by {di(X)}™=1.
Then for k a positive integer fk(X) = ah

nX
nk-\ \-al = ^L1ski{X)d-(X)

for some ski(X) e R[X]. By equating coefficients of Xnk over all k we see
that all powers of an belong to the finite i?-submodule of S generated by
the coefficients of the dt(X)'s. Hence an e R*. It follows that f{X)—anX

n

is also almost integral over R[X}. By an inductive argument we conclude
that f(X)-anX

neR*[X], whence f(X) e R*[X] as we wished to show.

COROLLARY 3. If R is a subring of S and if X is an indeterminate over
S, then R is completely integrally closed in S if and only if R[X] is com-
pletely integrally closed in S[X].

PROOF. This follows immediately from Proposition 1.
We now investigate some problems inherent with our second obser-

vation at the beginning of this section.

PROPOSITION 2. Suppose R is a subring of St and St is a subring of 52 .
/ / Ri is the complete integral closure of R in Su then R-^QR^n S± and if
either

(a) S2 is a submodule of some S^module S3 such that Sx is a direct
summand of Ss,
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or (b) each finite Sx-module contained in S2 and containing Sx is a sub-
module of an Sx-module of which Sx is a direct summand, then Rx = R2 n Sx.

PROOF. That Rx Q R2 n Sx is clear. Let u e R2n Sx. Then all powers
of u belong to a finite i?-module M contained in S2; say {w,}"=1 generates
M. Under (a) or (b) above, the S1-module generated by the w/s and the
identity of S1 is contained in an Si-module of the form Sx © T. For
1 5S i 5g n we let mi = si-\-ti where st e Sx and tt e T. If k is a positive
integer, there exist {rf}"=1 Q R such that

Because the sum Sx-{-T is direct, it follows that «* = 2r=iy»s*- Hence
all powers of w belong to the finitely generated i?-submodule of Sx generated
by {s;}"=1, showing u e Rx and therefore that our conclusion holds.

REMARK 2. If Sx is a principal ideal domain, (b) holds for Sv for in
this case every finite Si-module containing Sx has a linearly independent
module basis containing the identity of S2. In particular Rx= R2n St

if Sx is a field. We shall use this particular case of Proposition 2 later. We
first consider an example in which Rx C R2 n Sx.

EXAMPLE 2. Let F be a field and let X and Y be indeterminates over
F. We set R = F[XY, XY*, XY3, • • •], Sx = R[Y], and S2 = S^l/X].
A straightforward computation shows Y e (R2 n Si) — Rx. In this particular
case, R, Slt and S2 are even domains with a common quotient field F(X, Y).

In [10], p. 677, Krull establishes the following result:
If J is a completely integrally closed domain with quotient field K, if

L is an algebraic extension field of K, and if J is the integral closure of J in
L, then J is completely integrally closed.

From this it follows that J is equal to the complete integral closure
J* of J in L. That J Q J* is clear. And if y e J*, y is almost integral over
J, hence almost integral over J, and therefore is in J by Krull's theorem.
We next note that if L is any extension field of the quotient field K of a
completely integrally closed domain J, if Lo is the subfield of L consisting
of all elements of L which are algebraic over K, and if J* and J*,
respectively, denote the complete integral closure of / in L and Lo,
respectively, then J* = J*. To prove this we observe that any element
t of J* is such that all powers of t belong to a finite J-submodule of L,
hence to a finite K-submodule of L, and hence any such t is algebraic over
the fieldK. Thus J*QL0. Then by Remark 2, J* = J* n Lo = J*. Because
Lo is algebraically closed in L, it then follows that / * is completely integrally
closed in L. In summary we state
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THEOREM 2. / / J is a completely integrally closed domain with quotient
field K, if L is an extension field of K, and if J* is the complete integral closure
of J in L, J* is a completely integrally closed domain, J* is the integral closure
of J in L, and J* is completely integrally closed in L.

We can obtain a slightly more general result than Theorem 2.

COROLLARY 4. / / the complete integral closure Dx of the domain D is
completely integrally closed, then the complete integral closure D* of D in any
domain Lx containing the quotient field of D is again completely integrally
closed in Lx.

PROOF. Let D* denote the complete integral closure of D1 in Llt let
L be the quotient field of Lx, and let D** be the complete integral closure
of Dxm L. By Theorem 2, D** is the integral closure of Dt in L and is
completely integrally closed in L. Now D1QD* so that the integral closure
of D1in Lx is contained in the integral closure of D* in Lx. But D* Q D**
so that D* is the integral closure of Dx in Lx. And D* is integrally closed
in Lx ([14], p. 76). Hence D*QD* and therefore D* = D*. To complete
the proof it suffices to show that D* is completely integrally closed in Lx.
Thus iiteL and t is almost integral over D*, t e D** by Theorem 2. Hence
t is integral over Dx and therefore t e D*.

Corollary 4 gives rise to the following interesting question: What
domains D have the property that the complete integral closure D* of D
is completely integrally closed? Our results on this question are fragmentary.
For D Noetherian, D* is a Krull domain and hence is completely integrally
closed ([11], thm. 33.10 and [16]). D* is also completely integrally closed
if D is a Priifer domain in which each principal ideal has only finitely
many minimal prime ideals. But for Priifer domains in general or for more
general D's which are not completely integrally closed, we are not able to
answer the question referred to. This section presents some results which
should be helpful in further consideration of this problem, however.

LEMMA 3. Let D be an integral domain with quotient field K. If d is a
nonzero element of D, \\d is almost integral over D if and only if f)~i (^') ^ (°) •

PROOF. If x e D and k is a positive integer, x{\jd]k e D if and only if
x e {dk).

COROLLARY 5. / / the domain D is completely integrally closed, then for
each nonunit d of D, f\^=1 (dk) = (0).

The conditions of Corollary 5 are not sufficient in order that D be
completely integrally closed; D could be any Noetherian domain which
is not integrally closed. But for a class of domains considered by Gilmer

https://doi.org/10.1017/S1446788700004304 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004304


358 Robert W. Gilmer, Jr. and William J. Heinzer [8]

and Ohm in [6] they are equivalent as Proposition 3 shows. We say, fol-
lowing [6], that a domain D has the QR-property if each domain between
D and its quotient field is of the form DN for some multiplicative system N.

PROPOSITION 3. In D, a domain satisfying the QR-property, these state-
ments are equivalent:

(a) D is completely integrally closed.
(b) if d is a nonunit of D, f |£ i (^) = (0)-
(c) if A is a finitely generated proper ideal of D, f]^=lA

k = (0)-

PROOF. (a)<->(b): (b) follows from (a) by Corollary 5. If (b) holds
and if D* is the complete integral closure of D, then D* = DN where N
is the set of elements of D which are units of D* ([6], p. 97, prop. 1.1).
If n eN, ljneD* so by Lemma 3, H~i (n*) ^ (°)- S i n c e (b) holds, n is
a unit of D. Thus D* = DN Q D and (a) is valid.

(b) <-» (c): Obviously (c) implies (b). If (b) holds and A is finitely
generated, then for some integer k and for some nonunit x of D, A" Q (x)
by ([6], p. 99, thm. 2.5). Hence f\ZiAi = f\ZiAlci Q D,~i (»') = (°) and
(c) is valid.

Our next results relate the complete integral closure of a domain to
the concept of the conductor, where for R a subring of the ring S, the
conductor of R in S is the set C of elements x of R such that xS Q R. C is
characterized as the largest ideal of R which is also an ideal of S. For R
a domain it is easily seen that necessary and sufficient conditions in order
that the conductor of R in S be nonzero is that S be contained in a finite
i?-submodule of the quotient field of R. In view of these observations
and Lemma 2, the proofs of Lemmas 4, 5 are immediate and will be omitted.

LEMMA 4. / / D is a domain with quotient field K and if | is in K, £ is
almost integral over D if and only if the conductor of D in D[f] is nonzero.

LEMMA 5. / / D± and D2 are domains having a common quotient field,
if D1Q D2, and if the conductor of Dx in D2 is nonzero, then D1 and D2 have
the same complete integral closure.

COROLLARY 6. / / D*, the complete integral closure of D, is such that the
conductor of D in D* is nonzero, then D* is completely integrally closed. In
particular if D* = Z )^ , • • •, tn] is a finite ring extension of D, then D* is
completely integrally closed.

PROOF. By Lemma 5, D and D* have the same complete integral
closure. Hence D* is the complete integral closure of D*.

If D* = D[tlt • • •, tn] and if dt e D—{0} is such that drf e D for each
positive integer k, then d = dxd2 • • • dk is a nonzero element of the conductor
of D in D*. Thus D* is completely integrally closed by the first part of
Corollary 6.
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Following [5], we define the pseudo-radical of a domain D to be the
intersection of all nonzero prime ideals of D. We shall use the fact that
if D has nonzero pseudo-radical, then each proper prime ideal of D contains
a proper minimal prime of D ([5], rmk. 1). Our next result concerns the
complete integral closure of a domain with nonzero pseudo-radical.

PROPOSITION 4. Let D be an integrally closed domain with quotient
field K and nonzero pseudo-radical Q. Then D*, the complete integral closure
of D, is the intersection of the rank one valuation rings which contain D, and
hence is completely integrally closed.

PROOF. Let {Va} be the collection of all nontrivial valuation rings
between D and K. For any a, Va has nonzero pseudo-radical since D does.
Hence Va contains a minimal prime ideal Pa and Va is contained in the rank
one valuation ring Wa = (Va)p^ with maximal ideal Pa ([16], p. 8, thm. 3).
Pa n D is a proper prime ideal of D so that Q Q Pa n D. That D* Q n Wa

is clear; to see the converse let f e n Wa and let q be a nonzero element of
Q. Then if k is a positive integer, q£k eQWaQ PaWa = Pa. Therefore
qgk e n Pa Q n Va = D so f is almost integral over D — that is, f e D*.

Except for Proposition 5 the remaining results of this paper concern
Priifer domains. They show that by imposing certain finiteness conditions
on a Priifer domain, we can conclude that its complete integral closure is an
intersection of valuation rings of rank ^ 1, and hence is completely in-
tegrally closed.

PROPOSITION 5.2 Let K be a field, let {Vx} be a family of valuation rings
withK as quotient field, and letV = r\Vx. Suppose for each X, vx is a valuation
associated with the valuation ring Vx. If V has quotient field K and if the
family {vx} has finite character in the sense that for any nonzero element x
of K, vx(x) ^ 0 for only finitely many X's, then the complete integral closure
of V is n V'x where for any X, V'x is K if there is no rank one valuation ring
between Vx and K and V'x is the unique rank one valuation ring between Vx

and K otherwise.

PROOF. It is sufficient to show that under the given hypothesis,
n V'x is almost integral over V. Thus let | e n V'x and let vlt' ' •, vn be the
finite number of valuations in the family {vx} which have negative value
on f. Then for any i, £~l is a nonunit of V{ so that n^ i t f " 1 ) 3 ^ . = Pi
is a prime ideal of Vt ([7], p. 240, Lemma 2.10). If Pt= (0), then Vt has a
minimal prime ideal Qit and f ^ e ^ . But then I"1 is a nonunit of
(Vi)Qi = V'o contrary to hypothesis. Hence no Pt — (0) so that
A = P1 n • • • n Pn n V is nonzero. If a is a nonzero element of A, we
have, for any positive integer k, a e (|~1)*FJ so a|fc e Vt and hence

1 A result equivalent to Proposition 5 has been proved independently by Butts and
Smith and appears as Theorem 5 in the paper [2] which they have submitted for publication.
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a£k e HLi Vi- But f°r vx $ {vi> ' ' '> vn}, f e VA so a£k e Vx also. Consequently,
a£k e n Vx = V for any positive integer k and our proof is complete.

If D is a Priifer domain with quotient field K, it is known that every
valuation ring between D and K is of the form DP for some prime ideal
P of D. This allows us to restate Proposition 5 in terms of the ideal theory
of V in case V is Priifer.

COROLLARY 7. Suppose D is a Priifer domain containing a family
{PA} of prime ideals such that D = n DPA and such that each nonzero element
of D belongs to only finitely many PA's. Then the complete integral closure of
D is the intersection of all valuation rings of rank fS 1 lying between D and
its quotient field, and is therefore completely integrally closed.

We note that any Priifer domain in which each nonzero element
belongs to only finitely many maximal ideals is a domain satisfying the
hypothesis of Corollary 7. The converse also holds, but we shall not establish
it here. The complete integral closure of a Priifer domain satisfying the
hypothesis of Corollary 7 must have dimension ^ 1. This will follow from
Corollary 9.

PROPOSITION 6. Let P be a nonminimal prime ideal of the Priifer domain
D satisfying this condition: there exists a nonzero prime ideal Q contained in
P and an element x of P—Q such that (x) has only finitely many minimal
prime ideals. Then DP does not contain the complete integral closure of D.

PROOF. Let M be the minimal prime of (x) contained in P and let
Qi> Qz> •••.•?« be the minimal primes of (a;) distinct from M. We let v
be a valuation associated with DM and vt be a valuation associated with
DQ, for each i. If y e (Qx n • • • n Qn) —M, then because VxDQ, is QiDQ(

for each i, there exists a fixed power u = ym of y such that vt(u) > vf(x)
for each i. If then | = ujx, vt(£) > 0 for each i and w(|) < 0. We show
that £ is almost integral over D. For this purpose, choose q e Q, q ^ 0.
We show that if k is a positive integer and if N is a maximal ideal of D,
then qik e DN. It will then follow that q£k e D, | is almost integral over
D,gtDP.

If x $N, clearly q£k e DN. If x e N, N contains some minimal prime
of (x). If QtQN for some i, then q£k e QiDQ.gNDN Q DN. And if M Q N
then we have qDM Q QDM CxkDM, implying that q\xk eMDM. Hence
qik = uk(qjxk) e MDM Q NDN Q DN. In any case our proof is then complete.

COROLLARY 8. Let D be a Priifer domain such that each principal ideal
of D has only finitely many minimal prime ideals. Then the complete integral
closure D* of D has dimension ^, 1 and is completely integrally closed.

PROOF. D* is Priifer and if M* is a maximal ideal of D*, D^, = DP

where P — M* n D ([4], thm. 1). By Proposition 6, P properly contains
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no nonzero prime ideal. Hence DP has rank <S 1, M* properly contains
no nonzero prime of D*, and D* has dimension ^ 1. Since D* is an
intersection of valuation rings of rank ;S 1, D* is completely integrally
closed.

COROLLARY 9. If D is a Priifer domain in which each nonzero element
belongs to only finitely many maximal ideals, the complete integral closure
of D has dimension ^ 1 and is completely integrally closed.

In view of the preceding results we might hope to prove for a Priifer
domain D that the complete integral closure of D is an intersection of
valuation rings of rank rgj 1. That this is not the case is shown by Nakayama's
example. The question remains open as to whetcher the complete integral
closure of an arbitrary Priifer domain is completely integrally closed. We
are, in fact, unable to answer this question in more restrictive cases — for
example, in the case when D has the @i?-property.

Finally, we remark that J. Ohm has transmitted to us a copy of his
paper [13], which concerns some interesting results related to the com-
plete integral closure of a domain.
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