REPLY TO COMMENT

'POSITIVELY HOMOGENOUS LATTICE HOMOMORPHISMS BETWEEN RIESZ SPACES NEED NOT BE LINEAR'

MOHAMED ALI TOUMI

(Received 14 September 2015; accepted 13 April 2016; first published online 8 July 2016)

In [6], the principal aim is to generalize, under the same hypotheses, earlier results obtained by Mena and Roth [4], Thanh [5], Lochan and Strauss [3] and Ercan and Wickstead [2]. More precisely, it is shown that the assumption in the earlier papers on the uniform completeness is not necessary. Moreover, we give a response to [1].

Unfortunately, some typographical errors were introduced.
(1) The statement of Theorem 4, page 270, is incorrect as given. So, we replace in the statement of Theorem 4, page 270 the condition ' $T(\lambda e)=\lambda T(e)$ for each $\lambda \in \mathbb{R}_{+}$' by ' $T(\lambda e)=\lambda T(e)$ for each $\lambda \in \mathbb{R}$ '.

No changes need to be made in the proof.
(2) The same thing for the statement of Corollary 6, page 270. So, we replace in the statement of Corollary 6 , page 270 the condition ' $T(\lambda e)=\lambda T(e)$ for each $\lambda \in \mathbb{R}_{+}$' by ' $T(\lambda e)=\lambda T(e)$ for each $\lambda \in \mathbb{R}$ '.

This has no effect on its proof. We only just add in page 271, line 7 the following paragraph:

Since $\beta \in \mathbb{R}_{+}$, it follows that

$$
\begin{aligned}
-T(-\beta g) & =\sup ((-T(-\beta g)) \wedge n T(e)) \\
& =\sup (-[(T(-\beta g)) \vee(-n T(e))]) \\
& =\sup (-[(T((-\beta g) \vee(-n e))]) \\
& =\sup (-[(T(-((\beta g) \wedge(n e)))]) .
\end{aligned}
$$

Since $(\beta g) \wedge(n e) \in A_{e}$ and since T is linear on A_{e}, it follows that

$$
\begin{aligned}
-T(-\beta g) & =\sup (-[(T(-((\beta g) \wedge(n e)))]) \\
& =\sup (--[(T(((\beta g) \wedge(n e)))]) \\
& =\sup ([(T(((\beta g) \wedge(n e)))]) \\
& =T(\beta g) .
\end{aligned}
$$

Consequently, $T(-\beta g)=-T(\beta g)=-\beta T(g)$.

[^0](3) The same thing for the statement of Theorem 8 , page 271. So, we replace in the statement of Theorem 8 , page 271 the condition ' $T\left(\lambda u_{i}\right)=\lambda T\left(u_{i}\right)$ for each $\lambda \in \mathbb{R}_{+}$' by $' T\left(\lambda u_{i}\right)=\lambda T\left(u_{i}\right)$ for each $\lambda \in \mathbb{R}$ '.

This has no effect on its proof. We only just add in page 272, line 10 the following paragraph:

Since $\lambda \in \mathbb{R}_{+}$, it follows that

$$
\begin{aligned}
-T(-\lambda x) & =\sup _{H}\left(\sum_{i \in H}\left(\left(-T\left(-\lambda x_{i}\right)\right) \wedge n T\left(u_{i}\right)\right)\right) \\
& =\sup _{H}\left(\sum_{i \in H}\left(-\left(T\left(-\lambda x_{i}\right)\right) \vee\left(-n T\left(u_{i}\right)\right)\right)\right) \\
& =\sup _{H}\left(\sum_{i \in H}-T\left(\left(-\lambda x_{i}\right) \vee\left(-n u_{i}\right)\right)\right) \\
& =\sup _{H}\left(\sum_{i \in H}-T\left(-\left(\left(\lambda x_{i}\right) \wedge\left(n u_{i}\right)\right)\right)\right) .
\end{aligned}
$$

Since $\left(-\lambda x_{i}\right) \wedge\left(n u_{i}\right) \in B_{u_{i}}$ and since T is linear on $B_{u_{i}}$, it follows that

$$
\begin{aligned}
-T(-\lambda x) & =\sup _{H}\left(\sum_{i \in H}--T\left(\left(\left(\lambda x_{i}\right) \wedge\left(n u_{i}\right)\right)\right)\right) \\
& =\sup _{H}\left(\sum_{i \in H} T\left(\left(\left(\lambda x_{i}\right) \wedge\left(n u_{i}\right)\right)\right)\right) \\
& =T(\lambda x) .
\end{aligned}
$$

Consequently, $T(-\lambda x)=-T(\lambda x)=-\lambda T(x)$.
To end this note, the author apologizes for any inconvenience caused.

References

[1] F. Ben Amor, 'Comment on "Positively homogenous lattice homomorphisms between Riesz spaces need not be linear"", J. Aust. Math. Soc. to appear.
[2] Z. Ercan and A. W. Wickstead, 'When a lattice homomorphism is a Riesz homomorphism', Math. Nachr. 279 (2006), 1024-1027.
[3] R. Lochan and D. Strauss, 'Lattice homomorphisms of spaces of continuous functions', J. Lond. Math. Soc. 25 (1982), 379-384.
[4] R. Mena and B. Roth, 'Homomorphisms of lattices of continuous functions', Proc. Amer. Math. Soc. (2) 71 (1978), 11-12.
[5] D. T. Thanh, 'A generalization of a theorem of R. Mena and R. Roth', Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 34 (1992), 167-171.
[6] M. A. Toumi, 'When lattice homomorphisms of Archimedean vector lattices are Riesz homomorphisms', J. Aust. Math. Soc. 87 (2009), 263-273.

MOHAMED ALI TOUMI, Département de Mathématiques, Faculté des Sciences de Bizerte, 7021, Zarzouna, Bizerte, Tunisia
e-mail: MohamedAli.Toumi@fsb.rnu.tn

[^0]: (C) 2016 Australian Mathematical Publishing Association Inc. 1446-7887/2016 \$16.00

