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In [6], the principal aim is to generalize, under the same hypotheses, earlier results
obtained by Mena and Roth [4], Thanh [5], Lochan and Strauss [3] and Ercan and
Wickstead [2]. More precisely, it is shown that the assumption in the earlier papers on
the uniform completeness is not necessary. Moreover, we give a response to [1].

Unfortunately, some typographical errors were introduced.
(1) The statement of Theorem 4, page 270, is incorrect as given. So, we replace in

the statement of Theorem 4, page 270 the condition ‘T (λe) = λT (e) for each λ ∈ R+’
by ‘T (λe) = λT (e) for each λ ∈ R’.

No changes need to be made in the proof.
(2) The same thing for the statement of Corollary 6, page 270. So, we replace in

the statement of Corollary 6, page 270 the condition ‘T (λe) = λT (e) for each λ ∈ R+’
by ‘T (λe) = λT (e) for each λ ∈ R’.

This has no effect on its proof. We only just add in page 271, line 7 the following
paragraph:

Since β ∈ R+, it follows that
−T (−βg) = sup((−T (−βg)) ∧ nT (e))

= sup(−
[
(T (−βg)) ∨ (−nT (e))

]
)

= sup(−
[
(T ((−βg) ∨ (−ne))

]
)

= sup(−
[
(T (−((βg) ∧ (ne)))

]
).

Since (βg) ∧ (ne) ∈ Ae and since T is linear on Ae, it follows that
−T (−βg) = sup(−

[
(T (−((βg) ∧ (ne)))

]
)

= sup(− −
[
(T (((βg) ∧ (ne)))

]
)

= sup(
[
(T (((βg) ∧ (ne)))

]
)

= T (βg).
Consequently, T (−βg) = −T (βg) = −βT (g).
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(3) The same thing for the statement of Theorem 8, page 271. So, we replace in the
statement of Theorem 8, page 271 the condition ‘T (λui) = λT (ui) for each λ ∈ R+’ by
‘T (λui) = λT (ui) for each λ ∈ R’.

This has no effect on its proof. We only just add in page 272, line 10 the following
paragraph:

Since λ ∈ R+, it follows that

−T (−λx) = sup
H

(∑
i∈H

((−T (−λxi)) ∧ nT (ui))
)

= sup
H

(∑
i∈H

(−(T (−λxi)) ∨ (−nT (ui)))
)

= sup
H

(∑
i∈H

−T ((−λxi) ∨ (−nui))
)

= sup
H

(∑
i∈H

−T (−((λxi) ∧ (nui)))
)
.

Since (−λxi) ∧ (nui) ∈ Bui and since T is linear on Bui , it follows that

−T (−λx) = sup
H

(∑
i∈H

− − T (((λxi) ∧ (nui)))
)

= sup
H

(∑
i∈H

T (((λxi) ∧ (nui)))
)

= T (λx).

Consequently, T (−λx) = −T (λx) = −λT (x).
To end this note, the author apologizes for any inconvenience caused.
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Eötvös Sect. Math. 34 (1992), 167–171.
[6] M. A. Toumi, ‘When lattice homomorphisms of Archimedean vector lattices are Riesz

homomorphisms’, J. Aust. Math. Soc. 87 (2009), 263–273.
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