ON T-SYSTEMS OF GROUPS

M. J. DUNWOODY

(received 5 June 1962)

1. Introduction

Let G be an n-generator group and let $g=\left(g_{1}, g_{2}, \cdots, g_{n}\right)$ be an ordered set of n elements which generate G, then g is called a generating n-vector of G. Let Γ_{G}^{n} denote the set of all generating n-vectors of G.

If $x_{1}, x_{2}, \cdots, x_{n}$ is a set of generators of the free group F_{n} of rank n and if α is an automorphism of F_{n} such that

$$
x_{i} \alpha=w_{i}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \quad \text { for } \quad i=1,2, \cdots, n,
$$

then the elements

$$
g_{i}^{\prime}=w_{i}\left(g_{1}, g_{2}, \cdots, g_{n}\right) \quad \text { for } \quad i=1,2, \cdots, n
$$

define a generating n-vector

$$
\mathbf{g}^{\prime}=\left(g_{1}^{\prime}, g_{2}^{\prime}, \cdots, g_{n}^{\prime}\right)
$$

In this way there is assigned to every automorphism α of F_{n} a permutation α_{G} of Γ_{G}^{n}. If β is an automorphism of G, then a permutation β_{G} of Γ_{G}^{n} is defined by

$$
g \beta_{G}=\left(g_{1} \beta, g_{2} \beta, \cdots, g_{n} \beta\right) .
$$

Let P be the group generated by all the permutations of Γ_{G}^{n} arising in this way from automorphisms of F_{n} and automorphisms of G. The transitivity sets of Γ_{G}^{n} under P are the T-systems of G. The number of T-systems of generating n-vectors of a group G will be denoted by $t_{n}(G)$. A full discussion of the significance of T-systems can be found in [1].
An abelian group which can be generated by n elements has one T system of generating n-vectors. In answer to the question - raised by Gaschütz - of whether finite nilpotent groups also have one T-system, B. H. Neumann [2] constructed a finite 2 -group which is nilpotent of class 10 and soluble of length 3 and has at least two T-systems of generating 2 vectors. This example led Neumann to ask: "What is the least possible class of a nilpotent group, or the least possible derived length of a soluble group, with more than one T-system?". In this note the following theorem will be proved which completely answers the above question.

Theorem 1. To every pair of integers $n>1$ and $N>0$ and every prime p, there exists a p-group which is nilpotent of class 2 and has at least $N T$-systems of generating n-vectors.

The method devised for proving this theorem does not in general give the exact number of T-systems of a group. In particular the method does not distinguish between the T-systems of some groups for which the Higman criterion does (e.g. Neumann's example in [2]).

In § 2 a lower bound for the number of T-systems of a certain type of group is established by showing that each T-system of such a group can be mapped into a set of transitivity of a certain abelian group under a subgroup of its right regular representation. In § 3, Theorem 1 is proved by calculating this lower bound for some class 2 groups.

The work for this note was carried out while I was receiving generous financial help from the Australian National University in the form of a Research Scholarship.

I thank Professor B. H. Neumann F. R. S. for suggesting this topic. I am greatly indebted to Dr. M. F. Newman who supervised my researches.

2. $\boldsymbol{T}_{\boldsymbol{k}}$-systems

The verbal subgroup of a group G generated by all the commutators and all the k-th powers (k a positive integer) of elements of G will be written $V_{k}(G)$ or, where there is little likelihood of confusion, simply V_{k} or even V.

For positive integers k, n a group G is said to be a (k, n)-group if
(a) G can be generated by n elements
and
(b) G / V_{k} is the direct product of n cyclic subgroups of order k.

The integers $0,1, \cdots, k-1$ with operations addition modulo k and multiplication modulo k form a ring which will be denoted R_{k}. The set of $n \times n$ matrices with elements in R_{k} also form a ring which will be denoted R_{k}^{n}. The determinant of an element A of R_{k}^{n} which is an element of R_{k} will be denoted $\operatorname{det} A$. The elements of R_{k} which are coprime to k form a group Λ_{k} under multiplication modulo k. The set of $n \times n$ matrices of R_{k}^{n} with determinants in Λ_{k} also form a group (see, for example, [3], Theorem 37, p. 185) which will be denoted Λ_{k}^{n}.

In the remainder of this section G will denote a finite (k, n)-group, $h_{1}, h_{2}, \cdots, h_{n}$ will denote a fixed basis of G / V_{k} and θ will denote the mapping of the automorphism group of G / V_{k} into R_{k}^{n} defined as follows:

If τ is an automorphism of G / V_{k} and

$$
h_{i} \tau=h_{1}^{\tau_{i 1}} h_{2}^{\tau_{i 2}} \cdots h_{n}^{\tau_{i n}} \quad(i=1,2, \cdots, n)
$$

where $0 \leqq \tau_{i j}<k(i, j=1,2, \cdots, n)$, then

$$
\tau \theta=\left(\tau_{i j}\right)
$$

If $\mathfrak{g}=\left(g_{1}, g_{2}, \cdots, g_{n}\right)$ is a generating n-vector of G, then $g V=\left(g_{1} V\right.$, $g_{2} V, \cdots, g_{n} V$) is a generating n-vector of G / V. Thus there is a unique automorphism γ of G / V such that

$$
\begin{equation*}
h_{i} \gamma=g_{i} V \quad(i=1,2, \cdots, n) \tag{1}
\end{equation*}
$$

hence a mapping D of Γ_{G}^{n} into R_{k} is defined by

$$
D(\mathrm{~g})=\operatorname{det}(\gamma \theta)
$$

Lemma 1. The image of Γ_{G}^{n} under D is Λ_{k}.
Proof. It is easy to see that if τ, σ are automorphisms of G / V, then

$$
\begin{equation*}
(\tau \sigma) \theta=(\tau \theta)(\sigma \theta) \tag{2}
\end{equation*}
$$

Since the identity automorphism of G / V maps onto the identity matrix of R_{k}^{n} under θ, it follows that every matrix belonging to the image set of θ has an inverse in R_{k}^{n}. Therefore (see [3], Theorem 37, p. 185) the image set of θ is contained in Λ_{k}^{n} and consequently the image set of D is contained in Λ_{k}. Since ([4], Satz 1) there is, for each λ in Λ_{k}, a generating n-vector g of G such that $\mathrm{g} V=\left(h_{1}, h_{2}, \cdots, h_{n-1}, h_{n}^{\lambda}\right)$, the image set of D is Λ_{k} itself.

Lemma 2. There is a mapping D_{F} of the automorphism group $A\left(F_{n}\right)$ of the free group of rank n into the right regular representation $R\left(\Lambda_{k}\right)$ of Λ_{k} such that $D(\mathfrak{g}) D_{F}(\alpha)=D\left(g \alpha_{G}\right)$ for all $\mathfrak{g} \in \Gamma_{G}^{n}$ and all $\alpha \in A\left(F_{n}\right)$, where α_{G} is the induced permutation of Γ_{G}^{n} defined in § 1 . The range of D_{F} consists of two elements: the identity and the element which maps every element to its negative.

Proof. Let $x_{1}, x_{2}, \cdots, x_{n}$ be a set of generators of F_{n} and let α be an arbitrary automorphism of F_{n} such that

$$
x_{i} \alpha=w_{i}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \quad \text { for } \quad i=1,2, \cdots, n
$$

then there is a unique automorphism α^{∇} of G / V such that

$$
h_{i} \alpha^{V}=w_{i}\left(h_{1}, h_{2}, \cdots, h_{n}\right) \quad \text { for } \quad i=1,2, \cdots, n
$$

Moreover

$$
h_{i} \alpha^{\nabla} \gamma=w_{i}\left(g_{1} V, g_{2} V, \cdots, g_{n} V\right) \text { for } \quad i=1,2, \cdots, n
$$

where γ is the automorphism of G / V as defined in (1). Now,

$$
g \alpha_{G} V=\left(g_{1}^{\prime} V, g_{2}^{\prime} V, \cdots, g_{n}^{\prime} V\right)
$$

where

$$
\begin{aligned}
g_{i}^{\prime} V & =w_{i}\left(g_{1}, g_{2}, \cdots, g_{n}\right) V \quad \text { for } \quad i=1,2, \cdots, n \\
& =w_{i}\left(g_{1} V, g_{2} V, \cdots, g_{n} V\right)
\end{aligned}
$$

Therefore

$$
g \alpha_{G} V=\left(h_{1} \alpha^{V} \gamma, h_{2} \alpha^{V} \gamma, \cdots, h_{n} \alpha^{\nabla} \gamma\right)
$$

and

$$
D\left(\mathfrak{g} \alpha_{G}\right)=\operatorname{det}\left(\left(\alpha^{V} \gamma\right) \theta\right)
$$

So, by (2),

$$
D\left(g \alpha_{G}\right)=D(g) \operatorname{det}\left(\alpha^{V} \theta\right)
$$

Let $D_{F}(\alpha)$ be the element of $R\left(\Lambda_{k}\right)$ corresponding to $\operatorname{det}\left(\alpha^{V} \theta\right)$; the first part of the lemma follows.

It is easy to see that D_{F} is a homomorphism. In order to prove the second part of the lemma it is only necessary, therefore, to consider a set of generators of $A\left(F_{n}\right)$. The four automorphisms μ, ν, π, ρ defined by:

$$
\begin{array}{llll}
x_{1} \mu=x_{2}, & x_{2} \mu=x_{1}, & x_{i} \mu=x_{i} & (i=3, \cdots, n) ; \\
x_{1} \nu=x_{1}, \quad x_{n} \nu=x_{2}, & x_{i-1} \nu=x_{i} & (i=3, \cdots, n) ; \\
x_{1} \pi=x_{1}, \quad x_{2} \pi=x_{2}^{-1}, & x_{i} \pi=x_{i} & (i=3, \cdots, n) ; \\
x_{1} \rho=x_{1}, \quad x_{2} \rho=x_{1} x_{2}, \quad x_{i} \rho=x_{i} & (i=3, \cdots, n),
\end{array}
$$

form a generating set of $A\left(F_{n}\right)$ (see [1], § 6).
Hence

$$
\begin{aligned}
& \mu^{V} \theta=\left(\begin{array}{cc|c}
0 & 1 & 0 \\
1 & 0 & \\
\hline & 0 & I_{n-2}
\end{array}\right) ; \\
& \nu^{V} \theta=\left(\begin{array}{cc|c}
1 & 0 & 0 \\
\hline 0 & I_{n-2} \\
\hline 0 & 1 & 0
\end{array}\right) ; \\
& \pi^{V} \theta=\left(\begin{array}{cc|c}
1 & 0 & 0 \\
0 & -1 & \\
\hline & 0 & I_{n-2}
\end{array}\right) ; \\
& \rho^{V} \theta=\left(\begin{array}{ll|l}
1 & 0 & 0 \\
1 & 1 & \\
\hline 0 & I_{n-2}
\end{array}\right) .
\end{aligned}
$$

(Here - 1 represents the negative of 1 in the ring R_{k}, and I_{n-2} the identity matrix of R_{k}^{n-2}).

Hence

$$
\begin{aligned}
\operatorname{det}\left(\mu^{V} \theta\right) & =-1 \\
\operatorname{det}\left(v^{V} \theta\right) & =1 \quad \text { if } n \text { is even } \\
& =-1 \text { if } n \text { is odd; } \\
\operatorname{det}\left(\pi^{V} \theta\right) & =-1 \\
\operatorname{det}\left(\rho^{V} \theta\right) & =1
\end{aligned}
$$

The result follows immediately.
Lemma 3. There is a mapping D_{G} of the automorphism group $A(G)$ of G into $R\left(\Lambda_{k}\right)$ such that

$$
D(\mathrm{~g}) D_{G}(\beta)=D\left(\mathfrak{g} \beta_{G}\right)
$$

for all $\mathfrak{g} \in \Gamma_{G}^{n}$ and all $\beta \in A(G)$, where β_{G} is the induced permutation of Γ_{G}^{n} defined in § 1 .

Proof. Since V is a characteristic subgroup of G an automorphism β of G induces an automorphism β^{V} of G / V given by

$$
g V \beta^{V}=g \beta V
$$

for all $g \in G$. Now,

$$
\begin{aligned}
\mathfrak{g} \beta_{G} V & =\left(g_{1} \beta V, g_{2} \beta V, \cdots, g_{n} \beta V\right) \\
& =\left(g_{1} V \beta^{V}, g_{2} V \beta^{V}, \cdots, g_{n} V \beta^{V}\right) \\
& =\left(h_{1} \gamma \beta^{V}, h_{2} \gamma \beta^{V}, \cdots, h_{n} \gamma \beta^{V}\right)
\end{aligned}
$$

where γ is the automorphism of G / V as defined in (1). So

$$
\begin{aligned}
D\left(\mathfrak{g} \beta_{G}\right) & =\operatorname{det}\left(\left(\gamma \beta^{\nabla}\right) \theta\right) \\
& =D(\mathfrak{g}) \operatorname{det}\left(\beta^{\nabla} \theta\right)
\end{aligned}
$$

Let $D_{G}(\beta)$ be the element of $R\left(\Lambda_{k}\right)$ corresponding to $\operatorname{det}\left(\beta^{V} \theta\right)$; the lemma follows.

Let P_{k} denote the subgroup of $R\left(\Lambda_{k}\right)$ generated by all the $D_{F}(\alpha)$ and $D_{G}(\beta)$ arising in the above manner from automorphisms of F_{n} and G respectively. The transitivity sets of Λ_{k} under P_{k} will be called the $T_{k^{-}}$ systems of G, and $t_{n, k}(G)$ will denote the number of T_{k}-systems of G.

Clearly T-systems map into T_{k}-systems under D and so a lower bound is obtained for the number $t_{n}(G)$ of T-systems of generating n-vectors of G.

Theorem 2. If G is a finite (k, n)-group, then

$$
t_{n}(G) \geqq t_{n, k}(G)
$$

Inequality can hold here, as has been indicated in the introduction.

3. Examples

In this section p denotes a prime and n, r are integers such that $n>1$, $r>0$; let $q=p^{r}$.

Let $A_{q, n}$ be the abelian group generated by a_{2}, \cdots, a_{n} with the relations $a_{i}^{q^{2(i-1)}}=a_{n}^{q^{3 n-2-i}}(i=2, \cdots, n-1)$ and $a_{n}^{q^{3 n-2}}=e$; i.e.

$$
\begin{aligned}
A_{a, n}= & \operatorname{gp}\left\{a_{2}, \cdots, a_{n} \mid\left[a_{i}, a_{j}\right]=e(i, j=2, \cdots, n),\right. \\
& \left.a_{i}^{a^{2((i-1)}}=a_{n}^{a^{3 n-2-i}}(i=2, \cdots, n-1), a_{n}^{\mathbf{Q}^{3 n-2}}=e\right\}
\end{aligned}
$$

(Here and below e denotes the identity element, and $[x, y]$ denotes the commutator $x^{-1} y^{-1} x y$). Since

$$
\left(a_{i}^{1+a^{2(i-1)}}\right)^{q^{2(i-1)}}=a_{i}^{\alpha^{2(i-1)}} \quad(i=2, \cdots, n-1)
$$

and

$$
\left(a_{n}^{1+q^{2(n-1)}}\right)^{a^{3 n-2-4}}=a_{n}^{q^{3 n-2-4}} \quad(i=2, \cdots, n-1)
$$

there is a unique automorphism ψ of $A_{q, n}$ such that

$$
a_{i} \psi=a_{i}^{1+q^{2(i-1)}} \quad(i=2, \cdots, n)
$$

The order of ψ is q^{n}. Let $B_{q, n}$ be the splitting extension of $A_{q, n}$ by a cyclic group of order $q^{3 n-1}$ generated by an element b which induces ψ in $A_{q, n}$; i.e.

$$
\begin{aligned}
& B_{a, n}=\operatorname{gp}\left\{a_{2}, \cdots, a_{n}, b \mid \text { relations of } A_{a, n},\right. \\
& \left.\qquad b^{-1} a_{i} b=a_{i}^{1+\mathbf{Q}^{2(i-1)}}(i=2, \cdots, n), b^{\mathbf{a}^{3 n-1}}=e\right\}
\end{aligned}
$$

The elements $b^{a^{n}}$ and $a_{n}^{a^{3(n-1)}}$ are in the centre of $B_{q, n}$, so that $a_{n}^{q^{3(n-1)}} b^{-q^{3 n-2}}$ is self-conjugate in $B_{a, n}$. Let $G_{a, n}$ be the group $B_{q, n} /\left\{a_{n}^{3(n-1)} b^{-q^{3 n-2}}\right\}$.

Thus

$$
\begin{aligned}
& G_{q, n}=\operatorname{gp}\left\{a_{2}, \cdots, a_{n}, b \mid \text { relations of } A_{a, n} ;\right. \\
& \left.\qquad b^{-1} a_{i} b=a_{i}^{1+q^{2(i-1)}}(i=2, \cdots, n), b^{a^{3 n-2}}=a_{n}^{a^{3(n-1)}}\right\} .
\end{aligned}
$$

Clearly $G_{a, n}$ is nilpotent of class 2 , so every element can be written uniquely in the form

$$
\begin{gathered}
a_{2}^{\xi_{3}} \cdots a_{n}^{\xi_{n}} b^{\eta}\left[a_{n}, b\right]^{\zeta} \\
0 \leqq \xi_{i}<q^{2(i-1)}, \quad 0 \leqq \eta<q^{3 n-2} \\
0 \leqq \zeta<q^{n} \quad(i=2, \cdots, n)
\end{gathered}
$$

Let β be an automorphism of $G_{q, n}$ and let

$$
\begin{array}{cc}
a_{i} \beta=a_{2}^{\alpha_{i z}} \cdots a_{n}^{\alpha_{i n}} b^{d_{i}}\left[a_{n}, b\right]^{\varepsilon_{i}} \\
b \beta=a_{2}^{\alpha_{2}} \cdots a_{n}^{\alpha_{n}} b^{\delta}\left[a_{n}, b\right]^{\varepsilon} & \\
0 \leqq \alpha_{i j}<q^{2(i-1)}, 0 \leqq \delta_{i}<q^{3 n-2}, 0 \leqq \varepsilon_{i}<q^{n} & (i, j=2, \cdots, n) \\
0 \leqq \alpha_{i}<q^{2(i-1)}, 0 \leqq \delta<q^{3 n-2}, 0 \leqq \varepsilon<q^{n} & (i=2, \cdots, n)
\end{array}
$$

Since $\left(a_{i} \beta\right)^{\mathbf{\alpha}^{2(t-1)}}$ belongs to the derived group, it follows that $q^{2(j-i)}$ divides $\alpha_{i j}$ if $j>i$, and $q^{3 n-2 i}$ divides δ_{i} for every i. Now $G_{q, n}$ is a (q, n)-group and, if $a_{2} V_{q}, \cdots, a_{n} V_{q}, b V_{q}$ is chosen as the basis for reference of $G_{q, n} / V_{q}$, then

$$
\operatorname{det}\left(\beta^{V} \theta\right) \equiv \delta \prod_{i=2}^{n} \alpha_{i i}(\bmod q)
$$

The $a_{i} \beta$'s and $b \beta$ must satisfy the same relations as the a_{i} 's and b. In particular

$$
\begin{equation*}
\left[a_{i} \beta, b \beta\right]=\left(a_{n} \beta\right)^{a^{3 n-z-i}} \quad \text { for } \quad i=2, \cdots, n \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
(b \beta)^{\mathbf{a}^{3 n-2}}=\left(a_{n} \beta\right)^{q^{3(n-1)}} \tag{4}
\end{equation*}
$$

Now,

$$
\begin{aligned}
{\left[a_{i} \beta, b \beta\right] } & =\prod_{j=2}^{n}\left[a_{j}, b\right]^{a_{i j} \delta-\delta_{i} a_{j}} \\
& =\left[a_{n}, b\right]^{\sum_{j-2}^{n}\left(a_{i j} \delta-\delta_{i} a_{j}\right) q^{(n-j}}
\end{aligned}
$$

and

$$
\sum_{j=2}^{n}\left(\alpha_{i j} \delta-\delta_{i} \alpha_{j}\right) q^{(n-j)} \equiv \alpha_{i i} \delta q^{(n-i)}\left(\bmod q^{(n-i+1)}\right)
$$

Also

$$
\left(a_{n} \beta\right)^{a^{8 n-2-1}}=a_{n}^{\alpha_{n-} 0^{3 n-2-t}} a
$$

where $a \in\left\{a_{n}^{\boldsymbol{Q}^{3 n-1-t}}\right\}$. It follows from (3) that

$$
\alpha_{i i} \delta \equiv \alpha_{n n}(\bmod q) \quad \text { for } \quad i=2, \cdots, n
$$

Similarly

$$
\delta \equiv \alpha_{n n}(\bmod q)
$$

follows from (4). Hence

$$
\begin{aligned}
\alpha_{i i} & \equiv \delta(\bmod q) \quad \text { for } \quad i=2, \cdots, n \\
& \equiv 1(\bmod q)
\end{aligned}
$$

Therefore

$$
\operatorname{det}\left(\beta^{v} \theta\right)=1
$$

Thus, for $G_{q, n}$, the group P_{q} consists of just two elements, namely the identity and the element which maps every element to its negative. But Λ_{q} has order $(p-1) p^{r-1}$, so

$$
t_{n, q}\left(G_{q, n}\right)=\max \left(1, \frac{1}{2}(p-1) p^{r-1}\right)
$$

Theorem 1 then follows from Theorem 2.

References

[1] Bernhard H. Neumann und Hanna Neumann, Zwei Klassen charakteristischer Untergruppen und ihre Faktorgruppen. Math. Nachr. 4 (1951) 106-125.
[2] B. H. Neumann, On a Question of Gaschütz. Archiv der Mathematik 7 (1956) 87-90.
[3] Claude Chevalley, Fundamental Concepts of Algebra. Academic Press Inc., New York (1956).
[4] Wolfgang Gaschütz, Zu einem von B. H. und H. Neumann gestellten Problem, Math. Nachr. 14 (1955-56) 249-252.

Australian National University, Canberra.

