ON T-SYSTEMS OF GROUPS

M. J. DUNWOODY

(received 5 June 1962)

1. Introduction

Let G be an *n*-generator group and let $g = (g_1, g_2, \dots, g_n)$ be an ordered set of *n* elements which generate G, then g is called a *generating n*-vector of G. Let Γ_G^n denote the set of all generating *n*-vectors of G.

If x_1, x_2, \dots, x_n is a set of generators of the free group F_n of rank n and if α is an automorphism of F_n such that

$$x_i \alpha = w_i(x_1, x_2, \cdots, x_n)$$
 for $i = 1, 2, \cdots, n$,

then the elements

$$g'_{i} = w_{i}(g_{1}, g_{2}, \cdots, g_{n})$$
 for $i = 1, 2, \cdots, n$

define a generating *n*-vector

$$\mathfrak{g}'=(g_1',g_2',\cdots,g_n').$$

In this way there is assigned to every automorphism α of F_n a permutation α_G of Γ_G^n . If β is an automorphism of G, then a permutation β_G of Γ_G^n is defined by

$$\mathfrak{g}\beta_G = (g_1\beta, g_2\beta, \cdots, g_n\beta).$$

Let P be the group generated by all the permutations of Γ_G^n arising in this way from automorphisms of F_n and automorphisms of G. The transitivity sets of Γ_G^n under P are the *T*-systems of G. The number of *T*-systems of generating *n*-vectors of a group G will be denoted by $t_n(G)$. A full discussion of the significance of *T*-systems can be found in [1].

An abelian group which can be generated by n elements has one T-system of generating n-vectors. In answer to the question — raised by Gaschütz — of whether finite nilpotent groups also have one T-system, B. H. Neumann [2] constructed a finite 2-group which is nilpotent of class 10 and soluble of length 3 and has at least two T-systems of generating 2-vectors. This example led Neumann to ask: "What is the least possible class of a nilpotent group, or the least possible derived length of a soluble group, with more than one T-system?". In this note the following theorem will be proved which completely answers the above question.

172

THEOREM 1. To every pair of integers n > 1 and N > 0 and every prime p, there exists a p-group which is nilpotent of class 2 and has at least N T-systems of generating n-vectors.

The method devised for proving this theorem does not in general give the exact number of T-systems of a group. In particular the method does not distinguish between the T-systems of some groups for which the Higman criterion does (e.g. Neumann's example in [2]).

In § 2 a lower bound for the number of T-systems of a certain type of group is established by showing that each T-system of such a group can be mapped into a set of transitivity of a certain abelian group under a subgroup of its right regular representation. In § 3, Theorem 1 is proved by calculating this lower bound for some class 2 groups.

The work for this note was carried out while I was receiving generous financial help from the Australian National University in the form of a Research Scholarship.

I thank Professor B. H. Neumann F. R. S. for suggesting this topic. I am greatly indebted to Dr. M. F. Newman who supervised my researches.

2. Tk-systems

The verbal subgroup of a group G generated by all the commutators and all the k-th powers (k a positive integer) of elements of G will be written $V_k(G)$ or, where there is little likelihood of confusion, simply V_k or even V.

For positive integers k, n a group G is said to be a (k, n)-group if

(a) G can be generated by n elements and

(b) G/V_k is the direct product of *n* cyclic subgroups of order *k*.

The integers 0, $1, \dots, k-1$ with operations addition modulo k and multiplication modulo k form a ring which will be denoted R_k . The set of $n \times n$ matrices with elements in R_k also form a ring which will be denoted R_k^n . The determinant of an element A of R_k^n which is an element of R_k will be denoted det A. The elements of R_k which are coprime to k form a group Λ_k under multiplication modulo k. The set of $n \times n$ matrices of R_k^n with determinants in Λ_k also form a group (see, for example, [3], Theorem 37, p. 185) which will be denoted Λ_k^n .

In the remainder of this section G will denote a finite (k, n)-group, h_1, h_2, \dots, h_n will denote a fixed basis of G/V_k and θ will denote the mapping of the automorphism group of G/V_k into R_k^n defined as follows:

If τ is an automorphism of G/V_k and

$$h_i \tau = h_1^{\tau_{i1}} h_2^{\tau_{i2}} \cdots h_n^{\tau_{in}} \qquad (i = 1, 2, \cdots, n)$$

where $0 \leq \tau_{ij} < k(i, j = 1, 2, \dots, n)$, then

 $\tau\theta = (\tau_{ij}).$

If $g = (g_1, g_2, \dots, g_n)$ is a generating *n*-vector of *G*, then $gV = (g_1V, g_2V, \dots, g_nV)$ is a generating *n*-vector of *G/V*. Thus there is a unique automorphism γ of *G/V* such that

(1)
$$h_i \gamma = g_i V \quad (i = 1, 2, \cdots, n);$$

hence a mapping D of Γ_{G}^{n} into R_{k} is defined by

 $D(g) = \det(\gamma \theta).$

LEMMA 1. The image of Γ_G^n under D is Λ_k .

PROOF. It is easy to see that if τ , σ are automorphisms of G/V, then

(2)
$$(\tau\sigma)\theta = (\tau\theta)(\sigma\theta)$$
.

Since the identity automorphism of G/V maps onto the identity matrix of R_k^n under θ , it follows that every matrix belonging to the image set of θ has an inverse in R_k^n . Therefore (see [3], Theorem 37, p. 185) the image set of θ is contained in Λ_k^n and consequently the image set of D is contained in Λ_k . Since ([4], Satz 1) there is, for each λ in Λ_k , a generating *n*-vector \mathfrak{g} of G such that $\mathfrak{g}V = (h_1, h_2, \dots, h_{n-1}, h_n^n)$, the image set of D is Λ_k itself.

LEMMA 2. There is a mapping D_F of the automorphism group $A(F_n)$ of the free group of rank n into the right regular representation $R(\Lambda_k)$ of Λ_k such that $D(g)D_F(\alpha) = D(g\alpha_G)$ for all $g \in \Gamma_G^n$ and all $\alpha \in A(F_n)$, where α_G is the induced permutation of Γ_G^n defined in § 1. The range of D_F consists of two elements: the identity and the element which maps every element to its negative.

PROOF. Let x_1, x_2, \dots, x_n be a set of generators of F_n and let α be an arbitrary automorphism of F_n such that

$$x_i \alpha = w_i(x_1, x_2, \cdots, x_n)$$
 for $i = 1, 2, \cdots, n$,

then there is a unique automorphism α^{V} of G/V such that

$$h_i \alpha^{\mathcal{V}} = w_i(h_1, h_2, \cdots, h_n)$$
 for $i = 1, 2, \cdots, n$.

Moreover

$$h_i \alpha^V \gamma = w_i(g_1 V, g_2 V, \cdots, g_n V)$$
 for $i = 1, 2, \cdots, n$

where γ is the automorphism of G/V as defined in (1). Now,

$$g\alpha_G V = (g'_1 V, g'_2 V, \cdots, g'_n V)$$

where

$$g'_i V = w_i(g_1, g_2, \cdots, g_n)V \quad \text{for} \quad i = 1, 2, \cdots, n$$
$$= w_i(g_1 V, g_2 V, \cdots, g_n V).$$

Therefore

$$g\alpha_G V = (h_1 \alpha^V \gamma, h_2 \alpha^V \gamma, \cdots, h_n \alpha^V \gamma)$$

and

$$D(\mathfrak{g}\mathfrak{a}_G) = \det((\mathfrak{a}^V\gamma)\theta).$$

So, by (2),

$$D(\mathfrak{ga}_{\mathbf{G}}) = D(\mathfrak{g})\det(\mathfrak{a}^{\mathbf{V}}\theta).$$

Let $D_F(\alpha)$ be the element of $R(\Lambda_k)$ corresponding to det $(\alpha^V \theta)$; the first part of the lemma follows.

It is easy to see that D_F is a homomorphism. In order to prove the second part of the lemma it is only necessary, therefore, to consider a set of generators of $A(F_n)$. The four automorphisms μ , ν , π , ρ defined by:

$$\begin{aligned} x_1\mu &= x_2, \quad x_2\mu = x_1, \quad x_i\mu = x_i \quad (i = 3, \cdots, n); \\ x_1\nu &= x_1, \quad x_n\nu = x_2, \quad x_{i-1}\nu = x_i \quad (i = 3, \cdots, n); \\ x_1\pi &= x_1, \quad x_2\pi = x_2^{-1}, \quad x_i\pi = x_i \quad (i = 3, \cdots, n); \\ x_1\rho &= x_1, \quad x_2\rho = x_1x_2, \quad x_i\rho = x_i \quad (i = 3, \cdots, n), \end{aligned}$$

form a generating set of $A(F_n)$ (see [1], § 6).

Hence

$$\mu^{V}\theta = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ \hline 0 & I_{n-2} \end{pmatrix};$$

$$\nu^{V}\theta = \begin{pmatrix} 1 & 0 & 0 \\ 0 & I_{n-2} \\ \hline 0 & 1 & 0 \\ \hline 0 & I_{n-2} \end{pmatrix};$$

$$\pi^{V}\theta = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ \hline 0 & I_{n-2} \end{pmatrix};$$

$$\rho^{V}\theta = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \hline 0 & I_{n-2} \end{pmatrix}.$$

(Here -1 represents the negative of 1 in the ring R_k , and I_{n-2} the identity matrix of R_k^{n-2}).

Hence

[4]

$$det(\mu^{\nu}\theta) = -1;$$

$$det(\nu^{\nu}\theta) = 1 \quad \text{if } n \text{ is even,}$$

$$= -1 \quad \text{if } n \text{ is odd;}$$

$$det(\pi^{\nu}\theta) = -1;$$

$$det(\rho^{\nu}\theta) = 1.$$

The result follows immediately.

LEMMA 3. There is a mapping D_G of the automorphism group A(G) of G into $R(\Lambda_k)$ such that

$$D(\mathfrak{g})D_{\boldsymbol{G}}(\boldsymbol{\beta}) = D(\mathfrak{g}\boldsymbol{\beta}_{\boldsymbol{G}})$$

for all $g \in \Gamma_G^n$ and all $\beta \in A(G)$, where β_G is the induced permutation of Γ_G^n defined in § 1.

PROOF. Since V is a characteristic subgroup of G an automorphism β of G induces an automorphism β^{V} of G/V given by

$$gV\beta^{\mathbf{v}} = g\beta V$$

for all $g \in G$. Now,

$$g\beta_{G}V = (g_{1}\beta V, g_{2}\beta V, \cdots, g_{n}\beta V) = (g_{1}V\beta^{V}, g_{2}V\beta^{V}, \cdots, g_{n}V\beta^{V}) = (h_{1}\gamma\beta^{V}, h_{2}\gamma\beta^{V}, \cdots, h_{n}\gamma\beta^{V})$$

where γ is the automorphism of G/V as defined in (1). So

$$D(\mathfrak{g}\beta_G) = \det((\gamma\beta^{\mathbf{v}})\theta)$$
$$= D(\mathfrak{g})\det(\beta^{\mathbf{v}}\theta).$$

Let $D_{\mathcal{G}}(\beta)$ be the element of $R(\Lambda_k)$ corresponding to det $(\beta^{\nu}\theta)$; the lemma follows.

Let P_k denote the subgroup of $R(\Lambda_k)$ generated by all the $D_F(\alpha)$ and $D_G(\beta)$ arising in the above manner from automorphisms of F_n and G respectively. The transitivity sets of Λ_k under P_k will be called the T_k -systems of G, and $t_{n,k}(G)$ will denote the number of T_k -systems of G.

Clearly T-systems map into T_k -systems under D and so a lower bound is obtained for the number $t_n(G)$ of T-systems of generating *n*-vectors of G.

THEOREM 2. If G is a finite (k, n)-group, then

$$t_n(G) \ge t_{n,k}(G).$$

Inequality can hold here, as has been indicated in the introduction.

3. Examples

In this section p denotes a prime and n, r are integers such that n > 1, r > 0; let $q = p^{r}$.

Let $A_{q,n}$ be the abelian group generated by a_2, \dots, a_n with the relations $a_i^{q^{2(i-1)}} = a_n^{q^{2n-2-i}}$ $(i = 2, \dots, n-1)$ and $a_n^{q^{3n-2}} = e$; i.e.

$$A_{q,n} = gp\{a_2, \dots, a_n | [a_i, a_j] = e(i, j = 2, \dots, n), \\ a_i^{q^{2(i-1)}} = a_n^{q^{3n-2-i}} (i = 2, \dots, n-1), a_n^{q^{3n-2}} = e\}.$$

(Here and below e denotes the identity element, and [x, y] denotes the commutator $x^{-1}y^{-1}xy$). Since

$$(a_i^{1+q^{2(i-1)}})^{q^{2(i-1)}} = a_i^{q^{2(i-1)}}$$
 $(i = 2, \dots, n-1)$

and

$$(a_n^{1+q^{2(n-1)}})^{q^{3n-2-i}} = a_n^{q^{3n-2-i}} \qquad (i=2,\cdots,n-1),$$

there is a unique automorphism ψ of $A_{q,n}$ such that

$$a_i \psi = a_i^{1+q^{2(i-1)}}$$
 $(i = 2, \cdots, n).$

The order of ψ is q^n . Let $B_{q,n}$ be the splitting extension of $A_{q,n}$ by a cyclic group of order q^{3n-1} generated by an element b which induces ψ in $A_{q,n}$; i.e.

$$B_{q,n} = gp\{a_2, \cdots, a_n, b | \text{ relations of } A_{q,n}, \\ b^{-1}a_ib = a_i^{1+q^{2(i-1)}} \ (i = 2, \cdots, n), b^{q^{2n-1}} = e\}.$$

The elements b^{q^n} and $a_n^{q^{3(n-1)}}$ are in the centre of $B_{q,n}$, so that $a_n^{q^{3(n-1)}}b^{-q^{3n-2}}$ is self-conjugate in $B_{q,n}$. Let $G_{q,n}$ be the group $B_{q,n}/\{a_n^{q^{3(n-1)}}b^{-q^{3n-2}}\}$.

Thus

$$G_{q,n} = gp\{a_2, \dots, a_n, b | \text{ relations of } A_{q,n}; \\ b^{-1}a_ib = a_i^{1+q^{2(i-1)}} (i = 2, \dots, n), b^{q^{3n-2}} = a_n^{q^{3(n-1)}} \}.$$

Clearly $G_{q,n}$ is nilpotent of class 2, so every element can be written uniquely in the form

$$a_2^{\xi_1} \cdots a_n^{\xi_n} b^{\eta} [a_n, b]^{\zeta}$$

$$0 \leq \xi_i < q^{2(i-1)}, \qquad 0 \leq \eta < q^{3n-2},$$

$$0 \leq \zeta < q^n \qquad (i = 2, \cdots, n).$$

Let β be an automorphism of $G_{q,n}$ and let

$$\begin{aligned} a_i\beta &= a_2^{\alpha_{i1}} \cdots a_n^{\alpha_{in}} b^{\delta_i} [a_n, b]^{\varepsilon_i}, \\ b\beta &= a_2^{\alpha_1} \cdots a_n^{\alpha_n} b^{\delta_i} [a_n, b]^{\varepsilon} \\ 0 &\leq \alpha_{ij} < q^{2(i-1)}, \ 0 \leq \delta_i < q^{3n-2}, \ 0 \leq \varepsilon_i < q^n \qquad (i, j = 2, \cdots, n), \\ 0 &\leq \alpha_i < q^{2(i-1)}, \ 0 \leq \delta < q^{3n-2}, \ 0 \leq \varepsilon < q^n \qquad (i = 2, \cdots, n). \end{aligned}$$

M. J. Dunwoody

Since $(a_i\beta)^{q^{2(i-1)}}$ belongs to the derived group, it follows that $q^{2(j-i)}$ divides α_{ij} if j > i, and q^{3n-2i} divides δ_i for every *i*. Now $G_{q,n}$ is a (q, n)-group and, if $a_2V_q, \cdots, a_nV_q, bV_q$ is chosen as the basis for reference of $G_{q,n}/V_q$, then

$$\det(\beta^V\theta) \equiv \delta \prod_{i=2}^n \alpha_{ii} \pmod{q}$$

The $a_i\beta$'s and $b\beta$ must satisfy the same relations as the a_i 's and b. In particular

(3)
$$[a_i\beta, b\beta] = (a_n\beta)^{q^{3n-2-i}} \text{ for } i=2, \cdots, n$$

and

(4)
$$(b\beta)^{q^{3n-2}} = (a_n\beta)^{q^{3(n-1)}}$$

Now,

$$[a_i\beta, b\beta] = \prod_{j=2}^n [a_j, b]^{\alpha_{ij}\delta - \delta_i \alpha_j}$$
$$= [a_n, b]^{\sum_{j=2}^n (\alpha_{ij}\delta - \delta_j \alpha_j)q^{(n-j)}}$$

and

$$\sum_{j=2}^{\infty} (\alpha_{ij}\delta - \delta_i\alpha_j)q^{(n-j)} \equiv \alpha_{ii}\delta q^{(n-i)} \pmod{q^{(n-i+1)}}.$$

Also

$$(a_n\beta)^{q^{3n-2-i}} = a_n^{\alpha_{nn}q^{3n-2-i}}a$$

where $a \in \{a_n^{a^{3n-1-i}}\}$. It follows from (3) that

$$\alpha_{ii}\delta \equiv \alpha_{nn} \pmod{q}$$
 for $i=2,\cdots,n$.

Similarly

 $\delta \equiv \alpha_{nn} \; (\mathrm{mod} \; q)$

follows from (4). Hence

n

$$\begin{aligned} \alpha_{ii} &\equiv \delta \pmod{q} \quad \text{for} \quad i = 2, \cdots, n \\ &\equiv 1 \pmod{q}. \end{aligned}$$

Therefore

$$\det (\beta^{\mathbf{v}} \theta) = 1.$$

Thus, for $G_{q,n}$, the group P_q consists of just two elements, namely the identity and the element which maps every element to its negative. But Λ_q has order $(p-1)p^{r-1}$, so

$$t_{n,q}(G_{q,n}) = \max(1, \frac{1}{2}(p-1)p^{r-1}).$$

Theorem 1 then follows from Theorem 2.

References

- Bernhard H. Neumann und Hanna Neumann, Zwei Klassen charakteristischer Untergruppen und ihre Faktorgruppen. Math. Nachr. 4 (1951) 106-125.
- [2] B. H. Neumann, On a Question of Gaschütz. Archiv der Mathematik 7 (1956) 87-90.
- [3] Claude Chevalley, Fundamental Concepts of Algebra. Academic Press Inc., New York (1956).
- [4] Wolfgang Gaschütz, Zu einem von B. H. und H. Neumann gestellten Problem, Math. Nachr. 14 (1955-56) 249-252.

Australian National University, Canberra.