STABILITY ON THE BASIS OF ORTHOGONAL TRAJECTORIES
T.A. Burton

(received February 25, 1965)

1. Introduction. We consider a system of differential
equations of second order given by

[ x' = P(x,vy)
(1)
] y' o= Qlxy)

(" =d/dt) where P and Q have continuous first partial deriva-
tives with respect to x and y in some open and simply con-
nected set R containing O =(0,0) which we assume to be the
only singular point in R. In fact, let R be the whole plane;
for if not then the following discussion can be modified.

The differential equation for the orbits of our system is
(1) dy/dx = Q(x,y)/ P(x,y) .

If it is possible to solve (1)' then by examining the direction
field determined by (1) we may determine the stability properties
of the null solution to (1). But to solve (1)' is in general impos-
sible unless it is exact. Even if (1)' is not exact we know that
there exists an integrating factor; however, to find this factor
is to solve a partial differential equatior which is often more of
a problem than the original one.

This paper was motivated by the fact that it is sometimes
easy to find an integrating factor for the orthogonal system even
though one is not readily found for the given equation. This was
first noticed in the Liénard equation x'" + f(x) x' + g(x) =0
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X
under the substitution x' =y - f f(t) dt from which we obtain
0

y' =- g(x). An integrating factor is then easily found for the
orthogonal trajectories. For the van der Pol equation this
1
integrating factor is - The question then arises as to what
X

stability properties of (1) can be inferred from

x' = -0Q(x,y)
(2)
y' = P(x,vy),
or from
(2)' dy/dx = - P(x,y)/Q(x,y) .

which give the orthogonal trajectories to (1)'.

For linear systems with constant coefficients in canonical
form the question is quickly answered, since the null solution to
(1) is a node if and only if (2) is a center and (1) is a saddle if
and only if (2) is a saddle. A focus gives rise to even a simpler
and more general treatment. (For this terminology see
Lefschetz [1; p. 184].) If (1) is nonlinear the treatment is not
nearly so straightforward, but the results are many and varied.

We state the following definitions for reference.

A spherical neighborhood of a point P with radius T
will be denoted by S(P,T) .

The null solution to (1) is Liapunov stable if for every
e > 0 there exists d > 0 such that if X =(x,y) is in S(O,e)
then the solution f(X,t) through X remains in S(O,d) for all
t> 0. 1Ifalso f(X,t) > O as t - then O is asymptotically
stable.

A set K is positively invariant if every solution which
enters it at t = 0 remains in it for all t> 0 .

We shall denote the distance between two sets H and K
by d(H,K).

648

https://doi.org/10.4153/CMB-1965-048-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1965-048-8

A curve C is a transversal if its tangent never coincides
with the direction field of a given differential equation on C .

2. Orthogonal analysis. Following the types of configura-
tions of orbits for linear systems we may obtain a number of
theorems of the following nature about nonlinear systems. These
results are far from exhaustive, but the methods here can be
used on exceptional cases.

THEOREM 1. Let G be a nonzero periodic solution to
(2) with inward normal (X,Y). Then the inner product
M=[(X,Y), (P,Q)] does not vanishon G .

Proof. Let (x,y) be a point on G and M(x,y) > 0 .
Now M 1is continuous on G so there exists an open interval
I on G containing (x,y) on which M> 0. Extend I as
large as possible. Then I is either G or there exists a point
(a,b) on G suchthat M(a,b) =0 and M >0 on G between
(a,b) and (x,y). But M =0 if and only if the normalto G
is orthogonal to (P(a,b),Q(a,b)). This can not be since G
itself is orthogonal to (P(a,b),Q(a,b)). Hence such a point
(a,b) with M(a,b) =0 does not exist and so M >0 for all
(x,y) on G. The proof is symmetric for M <0 .

We shall retain these definitions of M and (X,Y) through-
out the remainder of the discussion.

THEOREM 2. ILet G be a nonzero periodic solution of
(2) and let (X,Y) be an inward normal to G at each point (x,y) .
Then G together with its interior is a positively invariant set
for (1) if and only if M =[(X,Y), (P, Q)] > 0 for all points on G .

Proof. By Theorem 1 M is positive or negative at all
points of G. If M > 0 then the normal to G points in the
same direction as the vector (P, Q). Hence every solution of
(1) which intersects G does so from the outside of G to the
inside and so G together with its interior form a positively

invariant set.
Suppose G and its interior form a positively invariant set.
Then every trajectory of (1) which intersects G does so from

the outside to the inside of G . Butthen M > 0 since the
normal to G and (P, Q) point in the same direction.
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Assume there exists G as above with M >0 . We may
apply the Poincar€-Bendixson (P-B) theorem and assert that
either all solutions to (1) inside G tend to O or there exists
a periodic solution to (1) inside G .

THEOREM 3. There do not exist periodic solutions to
(1) arbitrarily close to a periodic solution G to (2).

Proof. For each (x,y) on G there exists a small
neighborhood N(x,y) such that the vector field [P,Q] in
N(x,y) differs from (X(x,y),Y(x,y)) by less than m/4
[3; p-39]. The collection of all such N(x,y) is an open cover

e
of G so there exists a finite subcover {N.(x,y)} ?_1 . Let
- i ) i=
R=|J N, (x,y) and the complement of R, R =W. W has
i
i=1

one maximal compact connected component W' interior to G.
Let the distance between G and W' be k> 0. Since M>0
between G and all points inside G of distance k from G,
there can exist no periodic solution of (1) in this region.

COROLLARY. If every solution to (2) is periodic then
there exists no periodic solution to (1).

Example. Given

, 3
x' = x +xy

2
y +yx
we obtain
3 2 3 2
dy/dx = (y + yx )/(x + xy )

which is not exact and an integrating factor is not readily found.
We therefore consider the orthogonal system

3 2 3 2
dy/dx = - (x + xy )y +vyx)
whose solution is

2 2.2
Vix,y) = (x +y ) = c.
650
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Hence all solutions to the orthogonal system are periodic and so

no solution to the given system is periodic. An inward normal

. 3 : .
to V=c is (-x -xy , -y =-yx ) whose inner product with

(x',y') is negative. By the Poincaré-Bendixson theorem we
may conclude that O is unstable.

The following theorem follows immediately using the
Poincaré-Bendixson theorem.

THEOREM 4. ILet G and G' be two distinct periodic
solutions to (2). If M on G differs in sign from M on G',
then there exists a periodic solution to (1) between G and G'.

If there exists a nonzero periodic solution to (2) which is
inside all other nonzero periodic solutions to (2) we shall call
it the last periodic solution.

THEOREM 5. If (2) has no last periodic solution and
M > 0 on each then the O solution of (1) is Liapunov stable.

Proof. Since there is no last periodic solution to (2) we
can find a sequence G, of periodic solutions such that
i

d(G.,0) -0 as i »>o . Soforany e >0, there exists i
i
such that G, is in S(O,e). Let d(G.,0)=d. Then the solu-
i i
tion f(X,t) through X remains in S(O,e) so long as X is in
S(0,d) .

Example. Given

2 2 2 21/2
- x-vy(x +y ) sin [w/(x +y ) /

]

N--
1

-y + x(x2+y2) sin [TT/(X2+Y2)1/2]

<
1]

we obtain

2
dy/dx = [- y+ xr” sin (w/r)]

[- x - yrz sin (w/r)]
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2 2 2
where r =x +y . This equation is not exact, but the
orthogonal system can be written as

dr/d6 = r3 sin (mw/r)

in polar coordinates which has limit cycles at r =1/n for every
integer n. An inward normal to the limit cycles is given by

(- x, - y) whose inner product with (x',y') is positive on the
limit cycles. Hence O 1is Liapunov stable by Theorem 5.

THEOREM 6. If O is a saddle point for (2), then O is
a saddle point for (1).

Proof. Since the O solution of (2) is a saddle point, by
definition there are four solutions whose orbits intersect at O.
Two of these solutions enter O as t increases and the other
two enter O as -t increases. If one of the solutions enters O
then the two adjacent ones leave O. All other solutions are
asymptotic to these four and none of the others enter or leave O.
Label these asymptotes R, R', R', and R™ in a counterclock-
wise direction.

LEMMA 1. There exists an orthogonal trajectory (i.e.,
trajectory of (1)) which intersects O between R and R' .
Such trajectories also exist between R' and R'", R'" and
R™, and between R™ and R. These trajectories (K, K',
K", and K™) are the asymptotes of the saddle point of (1).

Proof. Consider a point X on R with X # O but X
as close to O as we please. Let the solution to (1) through X
be f(X,t). Now as t increases f(X,t) leaves R and enters
either the region between R and R' or the region between R
and R™. For the argument which follows we may assume it is
the region between R and R™. (The argument for the other is
symmetric.) f(X,t) crosses orbits of (2) arbitrarily close to R,
but f(X,t) does not cross R"™; for if f(X,t) crosses RM™,
then there are orbits of (2) arbitrarily close to R and R™
which f(X,t) crosses twice. This can not happen by

LEMMA 2. {(X,t) does not cross any orbit asymptotic to
R and R™ twice.
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Proof. Let such an orbit be L and let Y1 and Y2 be

the first two times which f(X,t) crosses L after leaving R.

Then there exist t1 and t2 such that f(X,t1)=Y1 and

(X, tz) = YZ. A simple closed curve C is formed by that part
of f(X,t) for t1 <t< t2 together with the compact part of L
between Y1 and YZ. The region bounded by C 1is dense

with trajectories of (1) and each such trajectory must cross L
twice since there are no singular points inside C and hence no
periodic solutions of (1). Thus there exists a trajectory of (1)
which is tangent to L contradicting the fact that solutions to
(2) are orthogonal to solutions of (1). This proves Lemma 2.

Returning now to the proof of Lemma 1, we see that
f(X,t) must remain between R and R™ since a second appli-
cation of Lemma 2 shows that f(X,t) can not approach O and
it can not again cross R. Thus, by the Poincaré-Bendixson
theorem, f(X,t) eventually leaves any bounded neighborhood
of the origin provided that R and R™ Ileave any such neigh-
borhood.

The same arguments show that f(X,-t), for t> 0,
remains between R and R' and eventually leaves any bounded
neighborhood of the origin.

Now consider any point Y on R™ with Y# O but Y
as close to O as we please. Let the solution through Y be
f(Y,t). Suppose that as t increases f(Y,t) enters the region
between R and R™. Then, by the same arguments as used
before in this iermma £(Y,t) remains between R and R™ and
eventually leaves any neighborhood of O. Note in addition that
f(Y,t) does not cross f(X,t).

Consider two sequences of points {X } and {Y } on
n n

R and R™ respectively with X # O and Y # O for any i.
i i

Let Iim [X |=lim |[Y |=0. Since f(X ,t) and (Y ,t)
n n n n
n—> oo n-—>00
remain between R and R"™, and no f(X ,t) intersects any
n

f(Y ,t), there must exist a separatrix K between the f(X ,t)
n n
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and f(Y ,t), and K is a solution to (1). Now K must enter
n

O as t decreases and leave any neighborhood of O as t
increases, provided that R and R™ Ileave any neighborhood
of O.

The same arguments give the three other separatrices
asserted in Lemma 1 completing the proof of this lemma and,
in fact, the theorem.

If O is a simple singularity [2; p. 87] then the theorem
is immediate since the Poincaré indices of O with respect to
both (1) and (2) are equal; but the index of (2) is -1 since it
is a saddle point and so O with respect to (1) is a saddle point.
However, the weight of this theorem goes far beyond that of
linearization theorems since the latter are local statements
whereas once we have the R! and K! we know the extent to
which the saddle point goes. That is, the existence of the K
is assured and we can continue these curves orthogonal to the
orbits of (2) which are asymptotic to the R'. We know that
no solution of (1) can cross the K! so we can employ the P-B
theorem to assert that all solutions depart until the K! hit a
Iimit cycle. We shall elaborate on this in an example.

Given

x—.

il
<

+
w

we obtain
6 4
dy/dx = (x+ vy )/(y+x)

4 6
whose orthogonal trajectories are given by dy/dx =- (y+x )/(xty ).
5 7

X
The solution to the last equation is V =xy + — + Y_ -¢ which

5 7
gives rise to a saddle point as does the given system. The
asymptotes to the orthogonal system become unbounded, so the
same is true for the given system; otherwise, by the P-B
theorem, the asymptotes to the given system tend to a periodic
solution. Let G be a periodic solution. Then its Poincaré
index is + 1 with respect to both the given system and the
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orthogonal system. But on G the Poincaré index of the
orthogonal system is still - 1 since it is a saddle point.
Hence G does not exist.

THEOREM 7. Let Pdx+ Qdy =0 be exact and let the
solution to Pdx + Qdy =0 be written as V(x,y) =c. If V is
a positive definite or negative definite function in some S(O,A)
then V 1is a Liapunov function for (1).

Proof. By definition 9V/9x=P, 9V/0y=Q, so

. 2 2
V=p +Q >0 exceptat O.

COROLLARY. If V is positive definite, then O is
unstable. If V is negative definite, then O is asymptotically
stable.

Notice that Theorem 7 and its corollary represent a
counterpart to the work of G. K. Pojarickii ([4] or [5; pp. 24-25]).

Suppose Pdx + Qdy =0 is not exact, but z(x,y) is an
integrating factor. Let the solution to z Pdx+ z Qdy =0 be

V(x,y) =c. Then V = z(P2 + QZ) has the same sign as does
z(x,y) at any point (x,y). If z is always positive or always
negative except at (0,0) then Theorem 7 and its corollary
apply. If V is not definite then V =0 has at least one (non-
trivial) real solution curve through the origin. Even a stronger
statement could be made using the Weierstrass preparation
theorem provided only that V 1is analytic. Let these solution
curves divide some disc, of radius A centered at O, into

n distinct simply connected regions labelled consecutively as
G1, cees Gn . The following theorem is a direct consequence

of Cetaev's theorem [6].

THEOREM 8. 1If z(x,y) has the same sign as V at
each point of some G, , then O is unstable.
i

We shall say that the graph of a function V(x,y) =c is a
spiral locally if there exists A > 0 such that for any A' >0,
but A' < A, some straight line L intersects V(x,y) =c twice
in S(O,A') at points Y1 and YZ in such a manner that the

part of L between Y1 and Y2 together with the part of
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V(x,y) =c between Y1 and Y2 form a simple closed curve

containing O in its interior.

THEOREM 9. If Pdx+ Qdy =0 can be integrated as
V(x,y) =c which is a spiral locally; if for some c there
exists a transversal T with respect to (2) which has a unique
normal at each point from O to 9 S(0O,A) so that the normal
to T pointing towards the interior of the spiral, say (X,Y),
satisfies M =[(P,Q),(X,Y)]>0 on T exceptat O ; and if
the inward normal, say (X',Y'), to the spiral satisfies
M' =[(P,Q),(X',Y')] > 0 on the spiral except at O, then O
is asymptotically stable. If M, M' <0 then O is unstable.

Proof. Let e >0 be given with e < A . Consider that
part of V =c inside S(O,e) . Let T intersect V =c at the
first two consecutive points inside S(O,e), say B and B',
which make a simple closed curve K containing O formed by
BB' together with the spiral inward from B to B' . Since
T is a transversal the existence of B and B' is assured.
Let X be inside K. The solution f(X,t) does not cross K
since M and M' are positive. Let d(K,0)=d. If X is
in S(0O,d), then f(X,t) remains in S(O,e) for all t> 0.
Since M and M' are positive there can be no periodic
solution. Hence f(X,t) = O as t - © by the P-B theorem.

Assume that M and M' are negative. Parametrize
the spiral S by x=x(s), y =y(s) so that (x,y) = O as s = o0 .
We may then pick a point X on S and T arbitrarily close to
O so that the first intersection of S outward (s decreasing)
with T after X is D, and the part of S between X and D
together with XD on T form a simple closed curve K'.
Since M, M' <0, {(X,t) can not cross K' inward. By the
P-B theorem either f(X,t) is cyclic, approaches a cyclic
characteristic or leaves S(O,A). M and M' < 0 prevent
the existence of periodic solutions.

Example. Given

2 2.1/2
-x+vy(x +y‘)/

X'

2 21/2
-y -x(x +y) ,
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we consider the orthogonal trajectories given by

2 21/2 2 21/2
(-x+y(x+y ) ydx+ (- y - x(x +y ) ydy =0 .
. L 2.-3/2 . . .
This equation is not exact, but (x +vy ) is an integrating
L 2 2.-1/2
factor. The solution is V =(x + vy ) - arctan (y/x) =c

whose polar form is r =1/(9 + c¢) which is locally a spiral.
Notice that the x axis is a transversal with normal (0, 1)
pointing into the spiral and that [(0,1),(x',y')]> 0. The
inward normal to the spiral is (x',y') so [(x',y'),(x',y")]

2 2
=x' +y' >0 exceptat O. Hence O is asymptotically
stable by Theorem 9.

3. The Liénard equation. We shall conclude with a non-

trivial example. Consider
x" + f(x)x' + G(x) =0 .

x
d
Let F(x) = f f(t)dt and I G(x) = g{x) . Under the substitution
0
x' =y - F(x) we obtain the equivalent system

x' = y - F(X) ’
y' = - G(x) .
d -
The equation for the orbits is given by —&-}X{ = ?T%”(}%)_’ so the
dy _y - F(x)

equation for the orthogonal trajectories is or

dx  G(x)
[F(x) - y]dx + G(x)dy =0 . Let z(x,y) be an integrating factor
so that z[F(x) - y]dx + z G(x)dy =0 is exact. Then

9z 9z .
e G(x) + 5—; [y - F(x)] = - z[1+ g(x)]. Using the method of
d d d
Lagrange we obtain - L = z . Then
G(x) y-F(x) -z[t+g(x)]
X
- 1
___[_1+_gﬂ_ dx:E has a solution z = exp { - f —i—g(—t)— dt }.

G(x) z G(t)

Integrating for the orthogonal trajectories we obtain
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X y
Vix,y) = [ 2[F(x)- yoldx+ [ 2G(x)dy .

0 Yo
We leave the example here since an ad hoc assumption on
F and G would destroy the generality. For specific F and G

we may apply theorems already proved. In addition, the form of
the solution may inspire further generalizations of our results.

ACKNOWLEDGEMENTS

The author wishes to express his appreciation to D. Willett
for reading the manuscript and making valuable criticisms. Also
the referee has pointed out that Professor G. F. D. Duff treated
a general problem which relates to some of the questions treated
here [7].

REFERENCES

1. S. Lefschetz, Differential Equations: Geometric Theory.
Interscience Publishers, New York, 1957.

2. V. Nemystskii and V. Stepanov, Qualitative Theory of
Differential Equations. Princeton University Press,

Princeton, New Jersey, 1960.

3. W. Hurewicz, Lectures on Ordinary Differential Equations,
Wiley and Technology Press of M. 1. T., New York, 1958.

4. G. Pozarickii, On non-steady motion of conservative
holonomic systems. PMM 20 (1956), pp.429-433.

5. W. Hahn, Theory and Application of Liapunov's Direct
Method. Prentice-Hall, New Jersey, 1963.

6. J. Massera, Contributions to Stability Theory. Annals of
Math., V. 64 (1956), pp. 184-186.

7. G. Duff, Limit-Cycles and Rotated Vector Fields.
Annals of Math., V.57 (1951), pp. 15-31.

University of Alberta
658

https://doi.org/10.4153/CMB-1965-048-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1965-048-8

