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Absolute Norlund summability of
Fourier series of functions

of bounded variation

Masako Izumi and Shin-ichi Izumi

The authors prove two theorems. The first theorem generalizes

theorems due to T. Singh and O.P. Varshney, concerning absolute

Norlund summat>ility of Fourier series of functions of bounded

variation. The second theorem generalizes theorems of L.S.

Bosanquet and H.P. Dikshit.

1. Introduction and theorems

1.1. Let £ a be an infinite series and (s ) be the sequence of

its partial sums. Let (p ) be a sequence of positive numbers and let

P = p + p i + . . . + p for n g 0 and p , = P , = 0 . We suppose that

P •*• co as n •+ °° . The sequence (t ) defined by
n ^ n'

, n
(1) t = 4- I Pn_ksk- (n = 1, 2, ...)n n k=o n k K

is called the Norlund means of the series \ a • If the sequence (t )

is of bounded variation, that is, \ \t -t . \ < m , then the series £ a

is said to be absolutely Norlund summable or |#, p | summable.

Let / be an integrable function, periodic with period 2TT , and its
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Fourier series be

OO 00

(2) fix) ̂ — a + I (a cosnx+b sinnx) = \ A (x) .

n=l n=o

If the series' (2) is \N, p | summable, then we say that the Fourier

series of / is \N, p j summable at the point x and we write

/ € \N, pj .

We use the notations

x
= f(x+t) + f(x-t) - 2f{x) ,

(Pl(t) = i j (f(u)du (t > 0) .

1 . 2 . T. S ingh [ J ] h a s proved t h e f o l l o w i n g t h e o r e m {of. T. P a t i [ 2 ] ,

H . P . D i k s h i t [ 3 ] and O . P . Varshney 142):

THEOREM A. If the function ip is of bounded variation on the

interval (0, IT) and if the sequence (p ) i s non-inoreasing and convex,

and satisfies the condition

n P
(3) I -£$ AP for all n g 1 ,

k=l K

then / € \N, p | .

On the other hand, O.P. Varshney [5] has proved the following:

THEOREM B. If the function <pU)logU/i) (K > n) is of bounded

variation over the interval (0, TT) , then f € \N, p | where

T. Pati [6] (cf. R. Mohanty and B.K. Ray [7]) has proved that the

sequence (1() in Theorem B cannot be replaced by

p = for all n § 0 .

The sequence (h) does not satisfy the condition (3) and then Theorem

B is not contained in Theorem A.
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We shall first prove the following

THEOREM 1. Let a § 0 and K be a constant > v . If the

function cp(i) (log#/i)a is of bounded variation over the interval (0, IT)

and if the sequence (p ) is non-increasing and satisfies the condition

(5) I ^ ~ s A ii£SHi_ for all n > 1 ,

then ft \»,pn\ •

The case a = 0 in Theorem 1 is a generalization of Theorem A, since

the condition of convexity of (p ) is dropped and the condition (3)

implies (5) (see [7]). In the case a = 1 , we get the following:

COROLLARY. If the function cp(t)log(.K/t) is of bounded variation on

the interval (0, IT) , then f € \w, p \ , where

p = —• (log(n+l)) for all n g 0 and some b > 0 .

The case b = 1 in the corollary is Theorem B and this corollary

does not hold for b = 0 by Pati's theorem.

1.3. We shall next consider the case that ipi is of bounded

variation. L.S. Bosanquet [H] has proved the

THEOREM C. If the function cpx is of bounded variation over the

interval (0, IT) } then the Fourier series of f is \C, a\ summable at

the point x for any a > 1 .

This was generalized by H.P. Dikshit [72] in the following form.

THEOREM D. If the function <?i is of bounded variation over the

interval (0, IT) and if the sequence (p J is a non-decreasing and

concave sequence satisfying the conditions

(i) the sequence ((n+l)p /P ) is of bounded variation and

GO

(ii) I ^ § A -£- for all n g 1 ,
k=n+l *k n

then f € |//, p j .
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We shall prove the following generalization.

THEOREM 2. Suppose that the sequence (p ) is non-decreasing and

concave and satisfies the condition

(6) I j r < - -

k=l *k

Then f £ \N, p \ for any f satisfying the condition that <pj is of

bounded variation on the interval (0, TT) , if and only if

(T) I
k=n+l

P Pk-n k-n-X _ . ,. ,., .,— - - ' A for all n g 1 .
P.k-x

The condition (7) is satisfied when the sequence (P /P ) is

non-decreasing for each e S, 1 or the sequence (p /P ) is

non-increasing. Further the non-decreasing and concave sequence (p )

satisfies the following relations which are used in the proof of Theorem

2:

(8) «p s AP for all n g 1 ,

(9)

and

(10) p . . - 2p . + p . . S 0 for all j g 1 .
^n-j+1 ^n-j *n-Q-X

These are proved easily, so that we omit the proof.

Theorem 2 is a generalization of Theorems C and D.

By Theorem 2, we know that / N, (a > 1) when

is of bounded variation, since the sequence p = (log(n+l)) (a > l)

satisfies the conditions. But we don't know the case a = 1 .

1.4. For the proof of Theorem 1 we use the following lemma due to

E. Hi I le and J.D. Tamarkin [S] (see [9]).

LEMMA. If the sequence (p ) is positive non-increasing, then

https://doi.org/10.1017/S000497270004572X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270004572X


Summability of Fourier series 115

or

/or any N , any n and any t > 0 .

2. Proof of the theorems

2.1. Proof of Theorem 1: the case a = 0 . By (2) and by

integration by parts, we have

A .(

and we can suppose A (x) = 0 without loss of generality. By the formula

(1),

- At - t
nn-1 n n-X P P -=i

.-P -p )A.(X) ,n~3 n-3 n' 3

and then

=° fTT /- °° W P V .-P ..p . .,|1

| I .|A*n|S |*(t)| X I ™-<l "-AaiSti .
2 n=l Jo *-n=l j=l n n-1 J IJ

It is enough to prove that the sum on the right side is uniformly bounded

in t . We write, putting s = [l/t] ,

n Pv__ ,-P

P P
n=l j=l n n-1

n - j n - j ^ n s i r y t - £ + £ = y + 7 .

n= l n=s+l
x r n̂  n-,7 n-,7*- n sinjr

S i n c e P _./P i 1 a s n + » fo r each j ,

t/ S t
S n P V . - P _ . p S S rP P _ . _ • !

II p p = * Z , Z . p " p
n=l i=l n n-1 j=l n=j K n n-1 '

. n . P P .
,7=1 v s j -

A .

Now
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00 n P v .-P .p

n=s+l j = l n w-l

= W + X

n=s+l

s

I
3=1

n=s+l j=s+l

where

. P .

n=s+l ,7

3=1

s rP . P . \ s

7=1 *• n n-X ' 3=1 n=

s °° /P . P . ,

3=1 n=s+l v n n-1

's-3

and

2s+l n

' - I I
n = s + l j

= AT1 + y + Z .

i iT
J=S+1n=2s+2

I I

' i s bounded by the estimation similar to W . Writing [n/2] = m ,

y PrPn-fPn-3Pn cos (.7-1/2) t-cos(,7+1/2)t
X =

n=2s+2

n=2s+2

rPnmrPn-m n-nPn cos(w+l/2)t
P nrz-1

2sint/2

PrPn-.rPn-.iPn} cos(.7+1/2)t

j=s+l *• " 'n'n-1 -1 2 s i n * / 2

^w-s- l '^ -s - lP?? cos(s+l/2)t
2sint/2

where

O3 * ^

i ~ 7 ^ »7 ~p
n=2s+2

J4

*
-i-S i4 ,

S T"

n=2s+2 j=s+l

00 OO

3'=s+l n=2j+l

n=2s+2 ' " n * n=2s+2

fP •lfPn-,7-1 P^-j) . 1 Tn-j-l V . 7 -

^l V l " Pn J j H P» " Pn-1

" 2j j :
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and similarly Y3 is also bounded. Finally, using the lemma and

condition (5) with a = 0 ,

n=2s+2 3=m+l

P p •*n n-,7

n n-1

n-m-1
% A .

° n=2s+2 '"n-1 " n=2s+2 n n-1

Thus we have proved Theorem 1 in the case a = 0 .

2.2. Proof of Theorem 1: the case a > 0 . We put

h[t) = <p(i)(logK/t)a for 0 < t § n .

Then, by (2) and by integration by parts,

fir

Ax)
7

2 r11
= f

Jr

Putting s = [1/t] , we have

n

17 cos^ du - f cos.ju

I2
n=l n=l

p .P p

n=l

n P p .-P -p r̂n P p .-P -p r

i=l n n-1 J 0 (logX/w)a

v rfn-.i~ n-yn [ cos,-ju(IT / -8 0 0 1 i n r ' p . - r .p r

\dHt)\[l * l \ \ l ^ ' P n~'?
o W=l w=s+l-"j=l n n-1 '•

0 (logX/w)

= R + S + T .

Since the sequence (p ) is non-increasing and

If COSJU

o (logX/w) (logX/t)a

we get
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s n rP . P .
a n=l A I P« Pn-1

'o (logX/t)a J=l I Ps P j - J 'o (logK/tf

Now, by integration by parts,

f* cos^ dM = s i l V * + 5. fr
' 0

du ,

and then

T% A C \dh{t)

o (logX/t) ^ s

A [ -\dHt)\
I n

j=l n n-l

t r n P V --P

o
Pn n- l u(logK/u)

= £/ +

f/ i s bounded by the estimation of V in the las t section, using the

condition (5) with a > 0 and

A f

Jo

^ in

oo

n=s+l

f ̂ ?-
I

s
y
I

n rP

3=1 l~^T
S o

i + ;j = l n=<

1

1 «-\«+3

P

i

o

5+1 J =

'n- l '
n i

I J

P .

P
s J=S+1

A .

Therefore T is also bounded. It remains to prove R is bounded. Using

integration by parts,

n = l

n P p .-P .p fir
I nP^ n-JPn

=l n n-l Jo j(
00 n

1 I
n=l n=2

'A I

•P . P . n«-J n- j -1

n - l

n-d_-loo ,p
y usii _
L j p3=2 3^ogj)a+1 n=j ^ Pn Pn-1 > j=2 jilogj)
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the following inequality

Ifo t(logK/tf+1 Na+1
dt

(logj)
for all

o t(logX/t)

This inequality is easily seen from the fact that the function

t{logK/t)a is non-decreasing on the interval (0, IT) , toy taking

X = Tie , which does not lose any generality.

Thus Theorem 1 is completely proved.

2.3. Proof of Theorem 2. We suppose that <PI(TT) = 0 without any

loss of generality. By (2)

A Ax) = & f ULnjt<?iLt)dt = - &. [ dfAt) I uslnjudu

and then

n=l n=l

n P .-P .p fTT ft

« n-1 Jo Jo

fir f °° n P v --P -p it

Jo 1 M=1 j=l n n-1 Jo

= f
We shall show that, if (p ) is non-decreasing and concave and satisfies

the condition (6), then R is bounded if and only if (T) holds. By (6),

we can suppose that Pi = p and the sequence (p , n g l) is concave.

We write

00 n P p .-P .p tt
R = I I ^-'l n~'ln jusinjudu

n=l j=X rfn-\ >o n=\ n=s+l

= 5 + T ,

where s = [l/t] . We shall put

3 k=i Jo
usinkudu a
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then

(11)
k=l Jo

u2du% AjH3

and x . is bounded uniformly in t , since
3

( sin(.i+l/2)u
2aint/2 I 2sinw/2

Now using Abel's transformation,

s n (V . P .p

S- I \l &*•- ff
w=l j = l L M - 1 w n -

n-1 n n=l
s-1

3=1

b y ( 1 1 ) , ( 6 ) and ( 9 ) . On t h e o t h e r hand

3

T- I
p x n-1 (p -p

onP + i , I P ,n j= l *• n-1
n-,7 w-,7-1 n-xn

where

n=s+l n n=s+l

i/s At3 I p I
3=1 n=s+l

n=s+l

n-1

3=8+1
= A + U + V ,

V l

by ( l l ) and (9) . and by (12) we can write

% A

n=s+l 3'=s+l I n-1

du

n n-1

,3=s+l

Pn-jP

Now again using Abel's transformation, we get

https://doi.org/10.1017/S000497270004572X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270004572X


Summability of Fourier series 121

(2sint/2)</ =
1-1

,7=s+ln=s+l

n=s+l *• n-1 n

,f-l _ ̂ £ » | (cos j-t_cos( j-+l ) t )

n n - l J

00 n-1 rp . , -2p .+p . , [p • , - p -)p
y y r w-,7-1 ^n-,7 yw-.7+l ^ ^n-,7+1 ^n-.i'^n

n=s+l j=s+2 n-1
OO

+ I
n=s+l

P P nn n-1

-l~Pn-s-2 "n-s-lpn
P P P
n-1 n n-1

by (10), where

( 8 ) ,

n=s+l n-1 s

n=s+l j=s+2 n-1 n=s+l n-1

by (9) and similarly ^3 % At . Therefore W i s bounded, so that i t

remains to estimate X . We can easily see that

2sinw/2
)

2sinw/2

where \y .\ S 4 / j t , and hence
0

n=s+l
2sinw/2

n - i

,7=8+1

1 pn-7Pn1
^ - p ^p sin(j+l/2)uPn-iPJ

- \ n=s+i

n - i

3=s+i y n - 1 n-i n
!~1 PM_,-P-

n=s+l

n - j - l

j=s+l
p—p

n 1

where
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t .j=s+l

00 p .-p . ,
y "-J rn-.7-l
4 P

rc=,7+l n-l
A
t ,

• A

t ,

by Abel's transformation, (6) and (9) and

pn-s-l~po fT

*\ = I
n=s+l

oo

n=s+l

Thus we have proved that

P P

r °°
0 ^ ^

ln=e+l n-

P P
n-s-1 n-8-22 i. p

n=s+l n n-1

by (6), therefore the condition (7) is necessary and sufficient for

boundedness of R . Thus Theorem 2 is proved.
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