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Absolute Nérlund summability of
Fourier series of functions
of bounded variation

Masako Izumi and Shin-ichi Izumi

The authors prove two theorems. The first theorem generalizes
theorems due to T. Singh and O.P. Varshney, concerning absolute
Norlund summability of Fourier series of functions of bounded
variation. The second theorem generalizes theorems of L.S.

Bosanquet and H.P. Dikshit.

1. Introduction and theorems

1.1. et } a, be an infinite series and (sn) be the sequence of
its partial sums. Let {pn) be a sequence of positive numbers and let
Pn =P, *tP1*,... *p, for nz O and Py = P_l = 0 . We suppose that

Pn +®® gs n + o ., The sequence (tn) defined by

1 n
(1) t, =3 L Poasi
n k=0

(n=1, 2, ...)

is called the Norlund means of the series z a, - If the sequence (tn)

is of bounded variation, that is, X [tn-tn_ll < o . then the series Z a,

is said to be absolutely Norlund summable or ]N, pnl summable.

Let f ©be an integrable function, periodic with period 2w , and its
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Fourier series be

oo 00
1
N = + 4 3 = .
(2) flz) v Za, Z (a cosnz+b sinnx) ! A (x)
n=1 n=0
If the series (2) is |, pnl summable, then we say that the Fourier
series of f 1is IN, pn] summable at the point x and we write

Feln,pl .

We use the notations

o(t) = o_(£) = fla+t) + fla-t) - 2f(x) ,

t
o1 (t) = %] olwdu (¢ > 0)
0

1.2. T. Singh [1] has proved the following theorem (ef. T. Pati [21],
H.P. Dikshit [3] and O.P. Varshney [4]):

THEOREM A. If the function ¢ 1is of bounded variation on the

interval (0, T) and if the sequence (pn) 18 non-increasing and convex,

and satisfies the condition

Px
(3) % = AP forall nz1l,

He~13

k=1

then f € |N, pnl .

On the other hand, 0.P. Varshney [5] has proved the following:

THEOREM B, If the funetion o¢(t)log(k/t) (X > m) is of bounded

variation over the interval (0, m) , then f € |W, pnl where

1 1 1
(L) P, = a1 [l + §-+ el ;IEJ for all n

v
[«]

T. Pati [6] (ef. R. Mohanty and B.K. Ray [7]) has proved that the

sequence (L) in Theorem B cannot be replaced by

= .1 >
P, = 711 for all nz 0 .

The sequence (4) does not satisfy the condition (3) and then Theorem

B is not contained in Theorem A.
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We shall first prove the following
THEOREM 1. Let az O and K be a constant > m . If the

function o(¢)(logk/t)* is of bounded variation over the interval (0, m)

and if the sequence (pn) is non-increasing and satisfies the condition

*® a
(5) ) Z%r-é A S}%ﬂﬂl_. for all n>1,
k=n "k n

then f € |N, pn[ .

The case a = 0 in Theorem 1 is a generalization of Theorem A, since
the condition of convexity of (pn) is dropped and the condition (3)
implies (5) (see [1]). 1In the case a =1 , we get the following:

COROLLARY. If the function o(t)log(K/t) <is of bounded variation on
the interval (0, m) , then f € |N, pn( , where

p, = Z%I (log(n+l))b for all nz 0 and some b > 0 .

The case b = 1 in the corollary is Theorem B and this corollary
does not hold for b = 0 by Pati's theorem.

1.3. We shall next consider the case that ¢; is of bounded

variation. L.S. Bosanquet [17] has proved the

THEOREM C. If the function ¢, is of bounded variation over the
interval (0, W) , then the Fourier series of f is |C, a| swmmable at

the point « for any a > 1.
This was generalized by H.P. Dikshit [J2] in the following form.

THEOREM D. If the function ¢, 1is of bounded variation over the

interval (0, W) and if the sequence [pn) 18 a non~decreasing and
concave sequence satisfying the conditions

(i) the sequence ((n+1)pn/Pn) 18 of bounded variation and

A

.. T2
(iz) I 5
k=n+l1 P

A él forall nz1,
k n

then f € |0, pnl .
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We shall prove the following generalization.
THEOREM 2. Suppose that the sequence (pn) 18 non~decreasing and

concave and satisfies the condition

vl
(6) I 7= <.
k=1 Fx
Then f € |N, pnl for any f satisfying the condition that @) s of

bounded variation on the interval (0, m) , if and only if

Y Pren Fenaa
(7) S5 -5 —|S4 forall nz1l.
k=n+1 k k-1
The condition (7) is satisfied when the sequence P /P is

n-8 n

non-decreasing for each & =2 1 or the sequence (pn/Pn) is
non-increasing. Further the non-decreasing and concave sequence (pn)

satisfies the following relations which are used in the proof of Theorem

2:
(8) np, < AP for all nz1,
e o]
(9) Y (p. .p, ;. )/P .S A/j forall jz1,
n=j+1 n-j “n~g-1’""n-1
and
- 2 iz .
(10) Ppji1 2pn—j * Py g1 ® 0 foreall jz1

These aré proved easily, so that we omit the proof.

Theorem 2 is a generalization of Theorems C and D.
By Theorem 2, we know that f € |W, (log(n+l))a (a > 1) when o)

a
is of bounded variation, since the sequence p, = (log(n+l)) (a > 1)
satisfies the conditions. But we don't know the case ag =1 .

1.4. For the proof of Theorem 1 we use the following lemma due to
E. Hille and J.D. Tamarkin [8] (see [9]).

LEMMA. If the sequence (pn) ig positive non-increasing, then
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Z Py sin(n-k)t

or = Apo/t
k=0

s AP
A1/
forany N, any n and any t > 0 .

2. Proof of the theorems

2.1. Proof of Theorem 1: the case a = 0 . By (2) and by

integration by parts, we have

2 (7 2 (T
AJ(:::) ='F jo o(t)eosjtdt = - 3-_; Jo sinjtdp(t)

and we can suppose Ao(x) = 0 without loss of generality. By the formula

(1),

n
1
-AM .=t -t . ==— § (P )A(x)
n-1 n n-1 PnPn_l J=1 npn J n g

and then

PP J

Aot m n .p
T dagls [ o) 1] ] 2l mein st
n=1 o] n=1 'g=1 n n=1

It is enough to prove that the sum on the right side is uniformly bounded
in ¢t . We write, putting s = [1/%]

<] P p . .t' oo
I ‘ "'ﬂ "‘L" 51?7 = Z + ) o =U+V.
n=1 n n-1 n=1 n=g+l

Since P ./P 41 as n + o for each J ,
n-gj'"'n

s n Pnp ~P p s s (P . P .
n-g n-gn n-J n-g4-1
Us ¢ = ¢ -
. PP . . P
n=1l g=1 n n-1 Jg=1 n=g n n-1

Now
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(=]

n Pnp ~P o . n @ s o n
V = z ) _%L_”:MS_UAL < 2‘ 1+ 3 z s
n=s+l lj=1 n n-1 J n=s+l 'j=1! =g+l lj=s+1
=W+ X
where
o 8 P P, s o P . P . .y
n-J n-g-it _ n-jg n-g-1
wst I 1 |15t~ =t 1 I -
n=g+l j=1 n n-1 J=1 n=s+l n n-1
s P
=t ) [1- ;‘J]gA
J=1 8
and
2s+1 n ® [n/2] © ®©
= Lol e 1 T B
n=g+l 'j=s+l1 n=2s+2 lj=g+1 n=2s+2 'g=[n/2]+1
=X'+Y+ 2,

X' 1is bounded by the estimation similar to W . Writing [n/2] =nm ,

Y = § % Pnpq-j'Pnfjpn cos{j—l/2)?—cos(j+l[2)t‘
n=2s+2 !j=s+l JPnPn—l 2sint/2
< ozo anpn—m_Pn-mpn cos(m+1/2)t|
n=Bs4D mPnPn-l 2sint/2
md (PPnegPn-Pn) cos(jsi/2)t
RN -y 2sint/2
J=8+1 I n-a
PPr-s-1"Fn-g-1Pn cos{s+1/2)¢t|
(s+1)P P . 2sint/2 |
= Yl + -YZ + .Y3 N
where
4 v 1 .4 § Pm1.a § 1
nsg 1 Z[_;ﬂ' "4"'15' oty I Ssa,
n=28+2 n n-1 n=2g+2 " n n=2s+2 n?
® n-1 . P . P .
A 1{*n-g=-1 n—g] 1 n-g-1 n-j=2
Y25 3 1 ! 7P R W
n=2s+2 j=s+1 n-1 n g2 n n-1
4 © © 4 © D 1
st 11 st 1 [ dsa
J=s+l n=2j+1 J=s+tl J 27 g2
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and similarly Y3 is also bounded. Finally, using the lemma and

condition (5) with a =0 ,

E E 1 Py Pn g
Z = {. p. .sinjt - o5 — — sinjt]l
n=ds+2! jemey WFpy M7 Py d
-] © P
1 A Prtpm-1
s AP ) += ] —_—=x 4 .
8 n=2s+2 nPn—l 4 n=2s+2 nPnPn-l

Thus we have proved Theorem 1 in the case a =0 .

2.2, Proof of Theorem 1: the case a > 0 . We put

n(t) = ¢(£)(logk/t)® for 0 < ts m .

Then, by (2} and by integration by parts,

A

T
[ ¢(t)cosjtdt

Aj(x) .

v t .
- hw)[_ﬂﬁ&_@_éf %“)J_ﬂﬁi_@_
o (logk/u)? Tlo o (logk/u)?

oS

Putting s = [1/t] , we have

gEIAt|=°f %.ﬂ%ﬂ.—_&L‘q(x)
n=1 n n=l 'g=1 n n-1

fiA

o n P ~P p s .
Alh(n)' Z Z‘ npn—j n-J1n J COSJuU du

n=1 'g=1 Pnpn—l ) (logK/ﬁ)a
ul K] © n Pp ~P .p (T .
+ A J |dh(t)|[ ]+ ] ) "p; e J SO — gy
o n=l n=g+l’ 'j=1 7 n-1 o (logk/u)

=R +5+7T.

Since the sequence Lpn) is non-increasing and

—t
(10gK/t)%

<

Jt cosju du
o (logk/u)®

we get
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T s n P P . 1
5= I ldn(t)| —+— ] ¥ [—%i - —;‘-‘7'—]
o (logK/t) n=1l j=1 n n-1
) r‘ tlane)] § [P;-i ) Z—l ]§ J" lane)] .,
o (logk/t)?® s j-1 o (1ogk/t)®

Now, by integration by parts,

Jt cosju du = sinjt . g_[t sinju du |

o (logk/u)® J(1ogk/e)® 7 o u(rogk/u)*t*
and then
re s [ LWL F ) g s
0 (logK/t)a n=g+l 'j=1 n n-1 J
T o t,n P - .
N R .
o n=s+l 1Jo =1 n n-1 J Ju(logK/u)a

=U+V.

U 1is bounded by the estimation of V in the last section, using the

condition (5) with a > 0 and

v © n P " P, 1 1
Vs 4 f [dn(t) | ) [;‘7 - Zﬂ' ] 1

o n=s+l j=1 n n-1 / j{logKj)
m © g o n

safdael [T T+ 1 1]
o] n=g+l j=1 n=s+l j=s+l
"laney) | § 2 = . ]

éA[ dn(t) ——————[1- ']+ A .
0 721 §(10gki )% Pe ) jes+1 j(10g5)""

Therefore T 1is also bounded. It remains to prove R 1is bounded. Using

integration by parts,

R = Aln(m)| OZO 721 TnPreg e (7 __singt dt
P P . a+l
7 n-1 o j(logk/t)
© n P . P,
sa ] ] —i [zd i
- a+l P P
n=1 =2 j(logs) n n-1
© <o D . P . ©
=Az_—l_z[ﬂ__”:liJ=AZ_L__<A’
j=2 j(logj)a+l n=g P, n-1 Jj=2 j(logj)
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by the following inequality

i .. /g ..
I —-—s-w—t—a—_(_Idt~§ J ——S‘:‘M—m‘dt§—A—m for all jz 2.
o t{logk/t) o t(logk/t) {logj)

This inequality is easily seen from the fact that the function
+
t(logK/t)a 1 is non-decreasing on the interval (0, ) , by teking
a+l . .
K = Te , which does not lose any generality.

Thus Theorem 1 is completely proved.

2.3. Proof of Theorem 2. We suppose that @1(7) = 0 without any
loss of generality. By (2)

o7 T o7 i t
A\j(x) = ,n_—f tsinjtq)l (t)dt = - _‘lf d(pl(t) f usinjudu
o]

‘Q " (o}
and then
® © n Pp =P .p 0 t
m -7 n-g N
5 lAtnl s 7 ) s Z Z N 1 I deq(¢) j Jusingudu
n=1 n=1 l4=1 7 n-1 o] 0
™ © n Pp ~P p (t
En-j " n-g o
s f |doy(2)] [ ) .z 75 g 1 J Jusingudu ]
(o} n=1l 'g=l n n-1 [

T .
=[ R(t)|de (2)] .
(o]

We shall show that, if (pn) is non-decreasing and concave and satisfies

the condition (6), then R is bounded if and only if (7) holds. By (6),

we can suppose that = and the sequence ,nzl is concave.
P1 =P, n

We write
b n P ~P .p ¢t s bad
R= 7 ) —ﬂE%:l——ﬂ:l—ﬂ f Jusinjudu| = § + [
n=1 'j=1 Pn-1 o] n=l n=s+l
=5+7T,

where & = [1/¢t] . We shall put
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then

] t

(11) |x.| = % kZJ uldu s Aj3¢3
J k=1 )

and xj is bounded uniformly in ¢ , since

. . t .
_ tsin{j+1/2)¢ sin(4+1/2)y
(12) xj 2sint/2 * 2sinu/2 au .

Now using Abel's transformation,

Pn—l PnPn 1 ‘7 -1

1

8
s4 ] Eear ] ZJM—‘I‘“‘Pn_[l'pi]
n=l "n n=1 |j=1 n—l J n-1 n
8-1 8 p,_ P, . P
s 4+atd ] ja[ ) _n_%_ﬂ_Ll_,LP_F
J=1 n=g+1 n-1 J

by (11), (6) and (9). On the other hand

5 P R (PugP n-j-1 _Pn_iPn
r= 1 7t L 2 “EP )%
n=s+1 n J=1 n-1 n n-1/ 7
© -5} 8 -] n-1
s A ) Z—’l_ + ) 11+ ) =A+U+7V,
=8 n  n=g+l 'j=1 n=g+l !'j=g+l
where
s ® D D,
. ] n-g-l o, 1 1
vs 4atd § 5} S pn_J[P -5t s 4
= n-1 n

n=s+1 n-1

by (11) and (9), and by (12) we can write

o n-1
vsa § |3 [-—L_—J_ P—L]smw/z) )
n=8+l ‘'g=g+l n-1 n n-1
® t n—l D :
s 3 [ - = [pn_-&u ﬁi_n]sin(jﬂ,g)u
n=g+l o SSim Jj= s+l n n-1
= AW + X .

Now again using Abel's transformation, we get
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@ n-1 e .-pn_ i1 Py .pn
(2sint/2)W = ] ¥ [P ‘17, d== . 7 PL} (cosgt-cos(j+1)¢) |
n=g+1 !j=s+1 n-1 n n-1

]

p P

has [PO P1]
nss+l V“n-1 n

+

PP

OZQ nil [p”ﬁ—l—'?p =g Pr-j+l + (pn:j’fl_p n‘i)pn]
Pn—l n n-1

n=g+l j=s+2

. 020 [pn-s—l—pn-s—2 . pn—s-lpn]

n=s+l Pn—l PnPn—l
=Xy + ¥, + ¥
by (10), where
s 1 4
Y s 4 ( - Pi] s £ 4t
n=s+l ‘Y n-1 n s
by (8),
® n-1 p_ . .-2p_ 4p . P -p
n-g-1 n-J “n-g+l n-s-1 “n-s-2
Y, = 4 Z 7 s 4 R - B —
n=g+l j=s+2 n-1 n=s+l n-1

{IA

At

by (9) and similarly Y3s At . Therefore W is bounded, so that it

remains to estimate X . We can easily see that

t . : il .
sin(j+1/2)u _F sin(j+1/2)u = I
f du > du 5~ Y;

2sinu/2 ‘ 2sinu/2
where |yJ.| s A/jt , and hence
S N nl Pp i Pnja PngPny . .
X = m 2 - B sin(j+1/2)u
n=s+l |/o J=s+1 n-1 n-1n
o 0 | nil [pn—j-pn-j—l _ Pn_jpn]l
2 n=g+1 lj=s+1 n-1 n-an
A S (5 PngPaga, "V P
N R L IR ¢
t . JP . P _P 2 2
n=g+l \‘\J=s+1 n-1 J=8+1 n-1 n
where
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©0 p-'_p-._ (2]

st § oY i, oy, [
J=s+1l n=g+1 n-1 n=g+1 n-1 n
(o] (=]

PR SO Al
ges+1 §2 ¥ j=sn1 774

by Abel's transformation, (6) and (9) and

@

P,_e7P p
£y = Z nPs =2 - (Eﬁ-s-l_po) P nP
n=g+1 n-1 n-1n
_ OZC‘, Pn—s—l _ Pn—s-2 I +0 [ 3“0 _l_]
=s+1 Pn Pn-l n=g+l n

Thus we have proved that

2 n=s+l | Pn Pn—l l

R =

o P P
m n-s=1 Nn-s=-2 N
Rel 5 | otz

by (6), therefore the condition (7) is necessary'and sufficient for

boundedness of R . Thus Theorem 2 is proved.
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