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A FORMULA ON THE SUBDIFFERENTIAL
OF THE DECONVOLUTION OF CONVEX FUNCTIONS

M. VOLLE

It is known that, under suitable assumptions, the subdifferential 8(fOg) of the
infimal convolution of two convex functions f and g coincides with the parallel sum
of 8f and 9g. We prove that a similar formula holds for the subdifferential of the
deconvolution of two convex functions: under appropriate hypothesis it coincides
with the parallel star-difference of the sub-differentials of the functions.

1. PRELIMINARIES

In what follows (X,Y) is a couple of locally convex real topological spaces paired
in separating duality by a bilinear form (.,.), and To(X)(respectively I'4(Y)) is the
class of convex, lower-semicontinuous proper functions defined on X(respectively Y)
with values in R U{4c0}. Given h,k: X — R, the inf-convolution h Ok is defined by

(hOk)(z) = 1‘uelgr{h(:t: —u)tk(u)} forallze X,

where + is the upper extension of the addition to R (that is, (+o00)+(—o0) =
(+00)—(+00) = 400, see [10]).

The deconvolution, denoted by the symbol B, is a kind of inverse operation for the
inf-convolution. It was introduced by Hiriart-Urruty and Mazure [5] in order to solve
the inf-convolution equation

1) find ¢eR* suchthat  kOE=h.
It is known [9, Corollary 2] that a solution to (1) exists if and only if the function

(2) z — (hBk)(z) = fgg{h(z + u)Tk(u)}

is one of them. The function defined by (2) is referred to as the deconvolution of k and
k. Here the symbol — denotes the lower extension of the subtraction to R (that is,

(+00)~(+00) = (+00)+(~00) = —c0, [10]).

Received 27th April, 1992

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/93 $A2.004-0.00.

333

https://doi.org/10.1017/50004972700012569 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700012569

334 M. Volle 2]

The operation B has many interesting applications. For instance, taking the
deconvolution of convex quadratic forms yields a variational formulation of the parallel
subtraction of matrices and operators (for example [8, 13}).

The deconvolution operation is strongly linked to the star-difference of sets. Recall
that the star-difference of two subsets A and B of a linear space E is defined by

AB={zcE:z2+BCA}.
By setting E(f)={(z,7) e X xR: f(z) < r}

for the epigraphof f € R” and I¢ for theindicator function of C C X (Ic(z)=0if
z € C, Ic(z) = +o0 if z € E \ C), we have then [15, Proposition 6]

(3) E(hBk) = E(h)~ E(k)
(4) IkBIsg=1 . if B#£0.

In the context of epigraphical analysis (1], formula (3) suggests another terminology
for the deconvolution operation, namely the epigraphical difference or, better, the epi-
graphical star-difference.

In connection with Fenchel’s duality theory, the deconvolution operation enjoys
some noteworthy properties. Recall that the Fenchel conjugate of f € R* is defined
by

frly) = zsgg{(w,y) —f(z)} forall yeY.

.. . . . =Y
In a similar way one defines the conjugate of a function in R . A fundamental result
concerning the conjugacy operation is that

f=r" foral fely(X).
Now, according to Hiriart-Urruty [4, Theorem 2.2], the formula

(5) (h*=k*)" = hBE
holds for all h,k € T'o(X). It follows that
(6) (RBE)" = (A" =k*)™".

If h*—k* turns out to be in I'y(Y), one can also write

) (RBE)* = h*—k*.
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We end this section by recalling some facts and by introducing some notation. For any
extended-real-valued function £ € ﬁy, the e-subdifferential (¢ > 0) of ¢ at y € £ 7}(R)
is the set

O l(y)={zeX :YVweY  {v)—- &) 2 (z,v—y) —€}.
For ¢ = 0 we set, as usual, 8¢(y) = 8¢(y). In connection with this concept, the
following classical property will be used later on (see for example [6, p.351]):

LEMMA 1. Forany €€ R” and y € Y such that £(y) = €™*(y) € R one has
9¢(y) = 667" (y) -

PROOF: As we always have £** < £, the inclusion D is obvious. Now, for any
z € 9€(y), the affine continuous form (z, .) — (z,y) + £**(y) is smaller than £. As
£** coincides with the upper hull of all affine continuous minorants of ¢, we have
(2,-) = (2,9) + € (y) <€, that is to say, z € 8™ (y) - [

The directional derivative of a function £ € R” ata point y € £71(R) is defined,
when it exists, by

€ln.d) = Jim 17 (Ely+1d) ~€(v) forall de Y ;

the lower subdifferential of £ at y is the set (for example [14])

07¢(y)={ze X :(z, ) <{(v,)}.
The above set obviously contains 8¢(y) and coincides with 8¢(y) when £ is convex; in

that case (¢ convex) it is well known (for example [6, p.354]) that {(y, .) is a sublinear

function whose Fenchel conjugate is the indicator function of 8¢(y); in other words
] *
(8) (6 (y,-)) = Iog(y) -

If, moreover, £ is continuous at y, then fl(y, .) 1s finitely valued, continuous, and one
has

(9) £I(y1') = (Iﬁf(y))* .

2. ON THE SUBDIFFERENTIAL OF THE DIFFERENCE OF TWO CONVEX FUNCTIONS

Let ¢ and % in RY be two convex functions, finite at the point y € Y. In
connection with the subdifferentiability of the difference ¢ — 1, there are two formulas

worth mentioning:

(10) o)) =[] dewly) - d9(v)

e>0

(11) 8 (¢ —¥)(y) = Bp(y) — BY(y) -
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The first one is due to Martinez-Legaz and Seeger |7, Theorem 1] and applies to arbi-
trary functions ¢ and % in I'¢(Y); the second one has been mentioned by Ellaia {3,
p-94] for ¢ and v convex on R™ and finitely valued. The next lemma extends the
second formula to our general setting.

=Y
LEMMA 2. Let p,9 € R* be convex functions, finite at y € Y, and assume that
¥ is continuous at y. Then

o (o = 9)(s) = 0™ (1= ¥) 1) = 20(s) * O0(w).

PROOF: Let us consider only the case — . Each of the following lines is equivalent
to = € Bp(y) — IP(y):

Vu € O¢(y) : ¢ + u € dp(y)

Vu€h(y): (z+u,.) <9 () (as Bp(y) = 0 p(y))

(2,.) + (Tog(yy)” < ©'(y,.)  (by taking the supremum for u € 8%(y))
(@) +¥ (%) <¢'(3.)  (from(9))

(z,) <¢'(y,.)—¥'(v,.) ( as ¢ (y,.)is finitely va.lued)

(2,.) < (p=9) (3, )
z €8 (p=9)(y) .

Before passing to next section we record here a by-product of this lemma.

COROLLARY. Let @, bein I['g(Y); assume that p—+ is convex, finite at y, and
% is continuous at y; then

N Se0(y) = dv(y) = Be(y) = 3(y) -

e>0

PROOF: As 8~ (p—9) = 8(p—1), it suffices to apply formula (10) and Lemma 2. g

3. ON THE SUBDIFFERENTIAL OF THE DECONVOLUTION

Let us present now the main results of this note. Given h,k € T'o(X), the parallel
sum of 8h and Gk is defined by (see for example [12])

o0k = ((9h)™ +(ok) ") .
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Here (ah)_1 is set for the inverse of the multivalued operator 8h; in other words:
y € (8RO Bk)(z) ¢ z € (8h) " (y) + (8k) " (v)

where + denotes the Minkowski vectorial addition. It turns out that, under appropriate
constraint qualifications {11, 12], the formula §(hO k) = dh 0 8k holds. It is tempting
to ask wether or not there is a similar formula for the deconvolution operator. To this
end, let us introduce the notion of parallel star difference for subdifferentials.

DEFINITION: Let h and k be in I'g(X). The parallel star difference of the subd-
ifferentials 0h and 8k is the multivalued operator 8hB 0k defined by

ohaok = ((om)™ = (a))
that is, for any (z,y) € X x Y,
y € (8hE8k)(z) © z € (8h) " (y) — (8k) " (v) .

In [5, Proposition 7] one finds a lower estimate for the subdifferential of two finitely
valued convex functions f, ¢ on R™; namely it is shown that

898f)=) > || Bg(z1)ndf(s2),

(21 122)€A:

where Az = {(z1,22) € R*xR": 2 = z; —z3, (9B f)(z) = g(z1)— f(z2)} . As pointed
out to me by A. Seeger, the condition (z;,z2) € Az yields the inclusion 8g(z,) C
0f(z2). Moreover, the convexity assumption on f and g is superfluous:

PROPOSITION. Let f, g be arbitrary extended real valued functions on X.
Then, for any ¢ € X, we have

de8f)=) > || 8g(v),

vEE(z)

where E(z) = {v € X : g(v) — f(v —z) = (9B f)(z) € R}.
PROOF: Let v bein E(z) and y € dg(v); then g(v) and f(v — z) are real numbers
and we have,

(98f)N(z)29(z+v—2)— f(v—z) forallze X.
Hence,
(9Bf)(z)-(gBf)z) =2 g9(z+v—z)— flv—2)—g(v)+ f(lv—=2) forall z€X,
and finally
@B -(98f)(z)z2g9(z+tv—z)-g(v) 2 (z~=,y) forall 2€ X.
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This shows that y € 8(¢B f)(z) . 1]

The next result provides an upper estimate for the subdifferential of the deconvo-
lution of two convex functions h,k € I'y(X) in terms of the parallel star difference of
8h and Ok; it involves the set

C(h,k)={y €Y : k* is finite and continuous at y, and (h*Zk*)(y) = (h*—k*)""(¥)}

THEOREM 1. Let X,Y be locally convex spaces in separating duality, and let
h,k € T'y(X). Then, for all z € X, we have

8(hBk)(z) N C(h, k) C (OhBOk)(z).

PROOF: Assume that y € 9(h8k)(z) N C(h,k). We have to show that z €
(0R) " (y) = (0k)~ (). As y € 8(hBk)(z) we have z € d(hBk)*(y). Now, from
(6), (hBE)" = (h*-'-k*)“; then z € 6(h*;k*)“(y); as y € C(h,k) it follows from
Lemma 1 that z € B(h*;k")(y) and, a fortiori, = € 8~ (h‘;k*)(y). So, by Lemma 2,

we obtain z € Oh*(y) — Ok*(y) - 0
Let us give an example showing that Theorem 1 cannot be improved without

additional assumptions. Take for X an Hilbert space with closed unit ball B, A =

I, * = (|| ||2)/2. We have then by (6) (hBk)" = (IB— (|| ||2)/2) = Ip -
1/2 so that hBk = |||+ 1/2. Note also that C(h,k) = {y € X : ||ly|| > 1}. For the
subdifferentials we have, on one hand,

T
d(hBEk)(z) = { ! 70
B if z=0

and, on the other hand, y € (0hB0k)(z) if and only if

0 iyl > 1
z € Oln(y) (”“ )()—af() y={ [-L4ooly i [u|=1.
-y if Jlyll <1

In particular,
for ||z]| =1 O(hBEk)(z) = {z} S (8hBKk)(z) = {z, -z}

for z=0 d(hBE)(0) = B 3 (6rRBBE)(0) = {y : llyll=1} U {0}.

With stronger assumptions it is possible to give an exact formula for 8(hBk):
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THEOREM 2. Let X,Y belocally convex spaces paired in separating duality, and
let hyk € To(X). Assume that k* is finite and continuous over Y and that h* — k* is
convex. Then,

d(hBk) = OhE Ik .

PROOF: Since for each f € T'y(X) one has ((9]’)—1 = Jf*, we easily obtain the
equivalence between the assertions below:

y € d(hBE)(z)
z € d(hBE) (y)

z € 8(h* — k*)(y) (by (5) as h* — k* is convex proper lower semicontinuous)

z € 8h*(y) — Ok*(y) (from Lemma 2)
z € (Oh) ' (y) = (8k)'(y) -

1

EXAMPLE: Let us take for X a Hilbert space, h € To(X), k € To(X) . Assume
that k* is finite over X (hence continuous) and suppose that h* —k* is strongly convex:
there exists t > 0 and f € I'¢(X) such that h* — k* = f* + (t I ||2) /2. We have then
by (5)

O R e
hEk—(f +-———2— _fDW'

So, hBk coincides with the Moreau-Yosida regularisation of f € ['o(X) (for example
(2, p.195]). It follows that hOk is continuously differentiable. As h* is also strongly
convex, h is continuously differentiable and we have, applying Theorem 2,

V(hBE) = VhEOk .
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