Bull. Austral. Math. Soc. Vol. 47 (1993) [333-340]

A FORMULA ON THE SUBDIFFERENTIAL OF THE DECONVOLUTION OF CONVEX FUNCTIONS

M. Volle

It is known that, under suitable assumptions, the subdifferential $\partial(f \Box g)$ of the infimal convolution of two convex functions f and g coincides with the parallel sum of ∂f and ∂g . We prove that a similar formula holds for the subdifferential of the deconvolution of two convex functions: under appropriate hypothesis it coincides with the parallel star-difference of the sub-differentials of the functions.

1. PRELIMINARIES

In what follows (X, Y) is a couple of locally convex real topological spaces paired in separating duality by a bilinear form $\langle .,. \rangle$, and $\Gamma_0(X)$ (respectively $\Gamma_0(Y)$) is the class of convex, lower-semicontinuous proper functions defined on X (respectively Y) with values in $\mathbb{R} \cup \{+\infty\}$. Given $h, k: X \to \overline{\mathbb{R}}$, the inf-convolution $h \Box k$ is defined by

$$(h \Box k)(x) = \inf_{u \in X} \{h(x-u) + k(u)\}$$
 for all $x \in X$,

where $\dot{+}$ is the upper extension of the addition to $\overline{\mathbb{R}}$ (that is, $(+\infty)\dot{+}(-\infty) = (+\infty)\dot{-}(+\infty) = +\infty$, see [10]).

The deconvolution, denoted by the symbol \boxminus , is a kind of inverse operation for the inf-convolution. It was introduced by Hiriart-Urruty and Mazure [5] in order to solve the inf-convolution equation

(1) find
$$\xi \in \overline{\mathbb{R}}^X$$
 such that $k \Box \xi = h$.

It is known [9, Corollary 2] that a solution to (1) exists if and only if the function

(2)
$$x \longmapsto (h \boxminus k)(x) = \sup_{u \in X} \{h(x+u) - k(u)\}$$

is one of them. The function defined by (2) is referred to as the deconvolution of h and k. Here the symbol – denotes the lower extension of the subtraction to $\overline{\mathbb{R}}$ (that is, $(+\infty)-(+\infty) = (+\infty)+(-\infty) = -\infty$, [10]).

Received 27th April, 1992

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/93 \$A2.00+0.00.

The operation \square has many interesting applications. For instance, taking the deconvolution of convex quadratic forms yields a variational formulation of the parallel subtraction of matrices and operators (for example [8, 13]).

The deconvolution operation is strongly linked to the star-difference of sets. Recall that the star-difference of two subsets A and B of a linear space E is defined by

$$A \stackrel{*}{-} B = \{x \in E : x + B \subset A\}$$
.
By setting $E(f) = \{(x, r) \in X \times \mathbb{R} : f(x) \leq r\}$

for the epigraph of $f \in \mathbb{R}^{E}$ and I_{C} for the indicator function of $C \subset X$ $(I_{C}(x) = 0$ if $x \in C$, $I_{C}(x) = +\infty$ if $x \in E \setminus C$), we have then [15, Proposition 6]

$$(3) E(h \boxminus k) = E(h) - E(k)$$

(4)
$$I_A \boxminus I_B = I_{A \rightrightarrows B}$$
 if $B \neq \emptyset$.

In the context of epigraphical analysis [1], formula (3) suggests another terminology for the deconvolution operation, namely the epigraphical difference or, better, the epigraphical star-difference.

In connection with Fenchel's duality theory, the deconvolution operation enjoys some noteworthy properties. Recall that the Fenchel conjugate of $f \in \overline{\mathbb{R}}^X$ is defined by

$$f^*(y) = \sup_{x \in X} \{ \langle x, y \rangle - f(x) \}$$
 for all $y \in Y$.

In a similar way one defines the conjugate of a function in $\overline{\mathbb{R}}^{Y}$. A fundamental result concerning the conjugacy operation is that

$$f = f^{**}$$
 for all $f \in \Gamma_0(X)$.

Now, according to Hiriart-Urruty [4, Theorem 2.2], the formula

$$(5) \qquad \qquad \left(h^* - k^*\right)^* = h \boxminus k$$

holds for all $h, k \in \Gamma_0(X)$. It follows that

(6)
$$(h \boxminus k)^* = (h^* - k^*)^{**}$$
.

If $h^* - k^*$ turns out to be in $\Gamma_0(Y)$, one can also write

(7)
$$(h \boxminus k)^* = h^* - k^*$$
.

335

We end this section by recalling some facts and by introducing some notation. For any extended-real-valued function $\xi \in \mathbb{R}^{Y}$, the ε -subdifferential ($\varepsilon \ge 0$) of ξ at $y \in \xi^{-1}(\mathbb{R})$ is the set

$$\partial_{\epsilon}\xi(y) = \{x \in X : \forall v \in Y : \xi(v) - \xi(y) \ge \langle x, v - y \rangle - \epsilon\}$$

For $\varepsilon = 0$ we set, as usual, $\partial_0 \xi(y) = \partial \xi(y)$. In connection with this concept, the following classical property will be used later on (see for example [6, p.351]):

LEMMA 1. For any
$$\xi \in \overline{\mathbb{R}}^Y$$
 and $y \in Y$ such that $\xi(y) = \xi^{**}(y) \in \mathbb{R}$ one has
 $\partial \xi(y) = \partial \xi^{**}(y)$.

PROOF: As we always have $\xi^{**} \leq \xi$, the inclusion \supset is obvious. Now, for any $x \in \partial \xi(y)$, the affine continuous form $\langle x, . \rangle - \langle x, y \rangle + \xi^{**}(y)$ is smaller than ξ . As ξ^{**} coincides with the upper hull of all affine continuous minorants of ξ , we have $\langle x, . \rangle - \langle x, y \rangle + \xi^{**}(y) \leq \xi^{**}$, that is to say, $x \in \partial \xi^{**}(y)$.

The directional derivative of a function $\xi \in \overline{\mathbb{R}}^{Y}$ at a point $y \in \xi^{-1}(\mathbb{R})$ is defined, when it exists, by

$$\xi'(y,d) = \lim_{t \to 0_+} t^{-1}(\xi(y+td) - \xi(y))$$
 for all $d \in Y$;

the lower subdifferential of ξ at y is the set (for example [14])

$$\partial^-\xi(y)=\{x\in X:\langle x,\ .
angle\leqslant\xi'(y,.)\}$$
 .

The above set obviously contains $\partial \xi(y)$ and coincides with $\partial \xi(y)$ when ξ is convex; in that case (ξ convex) it is well known (for example [6, p.354]) that $\xi'(y, .)$ is a sublinear function whose Fenchel conjugate is the indicator function of $\partial \xi(y)$; in other words

(8)
$$\left(\xi'(y,.)\right)^* = I_{\vartheta\xi(y)}.$$

If, moreover, ξ is continuous at y, then $\xi'(y, .)$ is finitely valued, continuous, and one has

(9)
$$\xi'(y,.) = \left(I_{\partial\xi(y)}\right)^*.$$

2. On the subdifferential of the difference of two convex functions

Let φ and ψ in \mathbb{R}^{Y} be two convex functions, finite at the point $y \in Y$. In connection with the subdifferentiability of the difference $\varphi - \psi$, there are two formulas worth mentioning:

(10)
$$\partial \big(\varphi - \psi\big)(y) = \bigcap_{\varepsilon > 0} \quad \partial_{\varepsilon} \varphi(y) \stackrel{*}{-} \partial_{\varepsilon} \psi(y)$$

(11)
$$\partial^{-}(\varphi - \psi)(y) = \partial \varphi(y) - \partial \psi(y) .$$

The first one is due to Martinez-Legaz and Seeger [7, Theorem 1] and applies to arbitrary functions φ and ψ in $\Gamma_0(Y)$; the second one has been mentioned by Ellaia [3, p.94] for φ and ψ convex on \mathbb{R}^n and finitely valued. The next lemma extends the second formula to our general setting.

LEMMA 2. Let $\varphi, \psi \in \mathbb{R}^Y$ be convex functions, finite at $y \in Y$, and assume that ψ is continuous at y. Then

$$\partial^-ig(arphi-\psiig)(y)=\partial^-ig(arphi-\psiig)(y)=ig\,\partialarphi(y)\stackrel{*}{-}\partial\psi(y)\ .$$

PROOF: Let us consider only the case -. Each of the following lines is equivalent to $x \in \partial \varphi(y) \stackrel{*}{-} \partial \psi(y)$:

$$\forall u \in \partial \psi(y) : x + u \in \partial \varphi(y) \forall u \in \partial \psi(y) : \langle x + u, . \rangle \leq \varphi'(y, .) \quad (\text{as } \partial \varphi(y) = \partial^{-}\varphi(y)) \langle x, . \rangle + (I_{\partial \psi(y)})^{*} \leq \varphi'(y, .) \quad (\text{by taking the supremum for } u \in \partial \psi(y)) \langle x, . \rangle + \psi'(y, .) \leq \varphi'(y, .) \quad (\text{from (9)}) \langle x, . \rangle \leq \varphi'(y, .) - \psi'(y, .) \quad (\text{ as } \psi'(y, .) \text{ is finitely valued}) \langle x, . \rangle \leq (\varphi - \psi)'(y, .) x \in \partial^{-}(\varphi - \psi)(y) .$$

Before passing to next section we record here a by-product of this lemma.

COROLLARY. Let φ, ψ be in $\Gamma_0(Y)$; assume that $\varphi - \psi$ is convex, finite at y, and ψ is continuous at y; then

$$igcap_{\epsilon>0} \;\; \partial_{\epsilon} arphi(y) \stackrel{*}{-} \partial_{\epsilon} \psi(y) \;=\; \partial arphi(y) \stackrel{*}{-} \partial \psi(y) \;.$$

PROOF: As $\partial^-(\varphi - \psi) = \partial(\varphi - \psi)$, it suffices to apply formula (10) and Lemma 2.

3. On the subdifferential of the deconvolution

Let us present now the main results of this note. Given $h, k \in \Gamma_0(X)$, the parallel sum of ∂h and ∂k is defined by (see for example [12])

$$\partial h \Box \partial k = \left(\left(\partial h \right)^{-1} + \left(\partial k \right)^{-1} \right)^{-1}.$$

	-	1	
L			

Here $(\partial h)^{-1}$ is set for the inverse of the multivalued operator ∂h ; in other words:

$$y\in (\partial h\,\square\,\partial k)(x) \Leftrightarrow x\in (\partial h)^{-1}(y)+(\partial k)^{-1}(y)$$

where + denotes the Minkowski vectorial addition. It turns out that, under appropriate constraint qualifications [11, 12], the formula $\partial(h \Box k) = \partial h \Box \partial k$ holds. It is tempting to ask wether or not there is a similar formula for the deconvolution operator. To this end, let us introduce the notion of parallel star difference for subdifferentials.

DEFINITION: Let h and k be in $\Gamma_0(X)$. The parallel star difference of the subdifferentials ∂h and ∂k is the multivalued operator $\partial h \Box \partial k$ defined by

$$\partial h \boxminus \partial k = \left(\left(\partial h \right)^{-1} \stackrel{*}{-} \left(\partial k \right)^{-1} \right)^{-1},$$

that is, for any $(x, y) \in X \times Y$,

$$y\in (\partial h\boxminus\partial k)(x)\Leftrightarrow x\in (\partial h)^{-1}(y)\stackrel{*}{-}(\partial k)^{-1}(y)$$
 .

In [5, Proposition 7] one finds a lower estimate for the subdifferential of two finitely valued convex functions f, g on \mathbb{R}^n ; namely it is shown that

$$\partial(g \boxminus f)(x) \supset \bigsqcup_{(x_1,x_2) \in Ax} \partial g(x_1) \cap \partial f(x_2),$$

where $Ax = \{(x_1, x_2) \in \mathbb{R}^n \times \mathbb{R}^n : x = x_1 - x_2, (g \boxminus f)(x) = g(x_1) - f(x_2)\}$. As pointed out to me by A. Seeger, the condition $(x_1, x_2) \in Ax$ yields the inclusion $\partial g(x_1) \subset \partial f(x_2)$. Moreover, the convexity assumption on f and g is superfluous:

PROPOSITION. Let f, g be arbitrary extended real valued functions on X. Then, for any $x \in X$, we have

$$\partial(g \boxminus f)(x) \supset \bigsqcup_{v \in E(x)} \partial g(v) ,$$

where $E(x) = \{v \in X : g(v) - f(v - x) = (g \boxminus f)(x) \in \mathbb{R}\}$.

PROOF: Let v be in E(x) and $y \in \partial g(v)$; then g(v) and f(v - x) are real numbers and we have,

$$(g \boxminus f)(z) \ge g(z+v-x) - f(v-x)$$
 for all $z \in X$.

Hence,

 $(g \boxminus f)(z) - (g \boxminus f)(x) \ge g(z + v - x) - f(v - x) - g(v) + f(v - x)$ for all $z \in X$, and finally

$$(g \boxminus f)(z) - (g \boxminus f)(x) \geqslant g(z + v - x) - g(v) \geqslant \langle z - x, y \rangle$$
 for all $z \in X$.

This shows that $y \in \partial(g \boxminus f)(x)$.

The next result provides an upper estimate for the subdifferential of the deconvolution of two convex functions $h, k \in \Gamma_0(X)$ in terms of the parallel star difference of ∂h and ∂k ; it involves the set

 $C(h,k) = \{y \in Y : k^* \text{ is finite and continuous at } y, \text{ and } (h^* - k^*)(y) = (h^* - k^*)^{**}(y)\}$

THEOREM 1. Let X, Y be locally convex spaces in separating duality, and let $h, k \in \Gamma_0(X)$. Then, for all $x \in X$, we have

$$\partial (h \boxminus k)(x) \cap C(h,k) \subset (\partial h \boxminus \partial k)(x)$$
.

PROOF: Assume that $y \in \partial(h \boxminus k)(x) \cap C(h,k)$. We have to show that $x \in (\partial h)^{-1}(y) \stackrel{*}{-} (\partial k)^{-1}(y)$. As $y \in \partial(h \boxminus k)(x)$ we have $x \in \partial(h \boxminus k)^*(y)$. Now, from (6), $(h \boxminus k)^* = (h^* \dot{-}k^*)^{**}$; then $x \in \partial(h^* \dot{-}k^*)^{**}(y)$; as $y \in C(h,k)$ it follows from Lemma 1 that $x \in \partial(h^* \dot{-}k^*)(y)$ and, a fortiori, $x \in \partial^-(h^* \dot{-}k^*)(y)$. So, by Lemma 2, we obtain $x \in \partial h^*(y) \stackrel{*}{-} \partial k^*(y)$.

Let us give an example showing that Theorem 1 cannot be improved without additional assumptions. Take for X an Hilbert space with closed unit ball $B, h = \|\|\|, k = (\|\|^2)/2$. We have then by (6) $(h \boxminus k)^* = (I_B - (\|\|^2)/2)^{**} = I_B - 1/2$ so that $h \boxminus k = \|\| + 1/2$. Note also that $C(h, k) = \{y \in X : \|y\| \ge 1\}$. For the subdifferentials we have, on one hand,

$$\partial(h \boxminus k)(x) = \left\{egin{array}{cc} x & ext{if} & x
eq 0 \ B & ext{if} & x = 0 \ B & ext{if} & x = 0 \end{array}
ight.$$

and, on the other hand, $y \in (\partial h \boxminus \partial k)(x)$ if and only if

$$oldsymbol{x} \in \partial I_B(y) \stackrel{*}{-} \partial igg(rac{\parallel \parallel^2}{2} igg)(y) = \partial I_B(y) - y = egin{cases} \emptyset & ext{if} & \lVert y
Vert > 1 \ [-1, +\infty [y & ext{if} & \lVert y
Vert = 1 \ -y & ext{if} & \lVert y
Vert = 1 \ . \end{cases}$$

In particular,

$$\begin{array}{ll} \text{for} & \|x\| = 1 \\ \text{for} & x = 0 \end{array} \quad \begin{array}{l} \partial(h \boxminus k)(x) = \{x\} \underset{\neq}{\subset} (\partial h \boxminus \partial k)(x) = \{x, -x\} \\ \partial(h \boxminus k)(0) = B \underset{\neq}{\supset} (\partial h \boxminus \partial k)(0) = \{y : \|y\| = 1\} \cup \{0\} \end{array}$$

With stronger assumptions it is possible to give an exact formula for $\partial(h \boxminus k)$:

Π

THEOREM 2. Let X, Y be locally convex spaces paired in separating duality, and let $h, k \in \Gamma_0(X)$. Assume that k^* is finite and continuous over Y and that $h^* - k^*$ is convex. Then,

$$\partial(h \boxminus k) = \partial h \boxminus \partial k$$

PROOF: Since for each $f \in \Gamma_0(X)$ one has $(\partial f)^{-1} = \partial f^*$, we easily obtain the equivalence between the assertions below:

$$y \in \partial(h \boxminus k)(x)$$

$$x \in \partial(h \boxminus k)^{*}(y)$$

$$x \in \partial(h^{*} - k^{*})(y) \quad (by (5) as h^{*} - k^{*} is convex proper lower semicontinuous)$$

$$x \in \partial h^{*}(y) \stackrel{*}{-} \partial k^{*}(y) \quad (from Lemma 2)$$

$$x \in (\partial h)^{-1}(y) \stackrel{*}{-} (\partial k)^{-1}(y) .$$

EXAMPLE: Let us take for X a Hilbert space, $h \in \Gamma_0(X)$, $k \in \Gamma_0(X)$. Assume that k^* is finite over X (hence continuous) and suppose that $h^* - k^*$ is strongly convex: there exists t > 0 and $f \in \Gamma_0(X)$ such that $h^* - k^* = f^* + (t \parallel \parallel^2)/2$. We have then by (5)

$$h \boxminus k = \left(f^* + \frac{t \parallel \parallel^2}{2}\right)^* = f \square \frac{\parallel \parallel^2}{2t}.$$

So, $h \boxminus k$ coincides with the Moreau-Yosida regularisation of $f \in \Gamma_0(X)$ (for example [2, p.195]). It follows that $h \square k$ is continuously differentiable. As h^* is also strongly convex, h is continuously differentiable and we have, applying Theorem 2,

$$\nabla(h \boxminus k) = \nabla h \boxminus \partial k \; .$$

References

- H. Attouch and R.J.B. Wets, 'Epigraphical analysis', in Analyse non linaire, (H. Attouch, J.-P. Aubin, F.H. Clarke, I. Ekeland, Editors) (Gauthier-Villars, Paris, 1989), pp. 73-100.
- [2] J.-P. Aubin and I. Ekeland, Applied nonlinear analysis (Wiley, New York, 1984).
- [3] R. Ellaia, Contribution à l'analyse et l'optimisation de difference de fonctions convexes, Thèse (Université Paul Sabatier, Toulouse, 1984).
- [4] J.-B. Hiriart-Urruty, 'A general formula on the conjugate of the difference of functions', Canad. Math. Bull. 29 (1986), 482-485.

Π

- [5] J.-B. Hiriart-Urruty and M.-L. Mazure, 'Formulations variationnelles de l'addition parallèle et de la soustraction parallèle d'opérateurs semi-définis positifs', C.R. Acad. Sci. Paris Série I 302 (1986), 527-530.
- [6] P.-J. Laurent, Approximation et optimisation (Hermann, Paris, 1972).
- [7] J.E. Martinez-Legaz and A. Seeger A formula on the approximate subdifferential of the difference of convex functions, Bull. Austral. Math. Soc. 45 (1992), 37-41.
- [8] M.-L. Mazure, 'La soustraction parallèle d'opérateurs interpretée comme déconvolution de formes quadratiques convexes', Optimization 18 (1987), 465-484.
- [9] M.-L. Mazure and M. Volle, 'Equations inf-convolutives et conjugaison de Moreau-Fenchel', Ann. Fac. Sci. Toulouse Math 12 (1991), 103-126.
- [10] J.-J. Moreau, 'Inf-convolution, sous-additivité, convexité des fonctions numériques', J. Math. Pures Appl. 49 (1970), 109-154.
- [11] A. Moudafi, Convolution des opérateurs monotones et convergence variationnelle (Université de Clermont-Ferrand II, 1991). (Preprint).
- [12] G.B. Passty, 'The parallel sum of nonlinear monotone operators', Nonlinear Anal. 10 (1986), 215-227.
- [13] E.L. Pekarev and L. Smul'jan, 'Parallel addition and parallel subtraction of operators', Math. USSR-Izv. 10 (1976), 351-370.
- [14] J.-P. Penot, 'Calcul sous-différentiel et optimisation', J. Funct. Anal. 27 (1978), 248-276.
- [15] M. Volle, 'Concave duality : application to problems dealing with difference of functions', Math. Programming 41 (1988), 261–278.

University of Avignon 33 rue L. Pasteur 84000 Avignon France