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Classical Probabilistic Number Theory

Probability tools Arithmetic tools

Definition of convergence in law
(Section B.3)

Integers in arithmetic progressions
(Section 1.3)

Convergence in law using auxiliary
parameters (Prop. B.4.4)

Mertens and Chebychev estimate
(Prop. C.3.1)

Central Limit Theorem (Th. B.7.2) Additive and multiplicative functions
(Section C.1, C.2)

Gaussian random variables (Section B.7)

The method of moments (Th. B.5.5)

Poisson random variables (Section B.9)

2.1 Introduction

This chapter contains some of the earliest theorems of probabilistic number
theory. We will prove the Erdős–Kac Theorem, but first we consider an even
more classical topic: the distribution of multiplicative and additive arithmetic
functions. The essential statements predate the Erdős–Kac Theorem, and can
be taken to be the beginning of true probabilistic number theory. As we will
see, the limiting distributions that are obtained are far from generic.

2.2 Distribution of Arithmetic Functions

The classical problem of the distribution of the values of arithmetic func-
tions concerns the limiting behavior of (arithmetic) random variables of the
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2.2 Distribution of Arithmetic Functions 27

form g(SN), where g is an additive or multiplicative function, and SN is
the identity random variable on the probability space �N = {1, . . . ,N} with
uniform probability measure. We saw an example in Proposition 1.4.1, but we
will now prove a much more general statement.

In fact, in the additive case (see Section C.2 for the definition of additive
functions), there is a remarkable characterization of those additive functions g
for which the sequence (g(SN))N converges in law as N → +∞. Arithmeti-
cally, it may be surprising that it depends on no more than Theorem 1.3.1 (or
Corollary 1.3.9), and the simplest upper bound of the right order of magnitude
for the numbers of primes less than a given quantity (Chebychev’s estimate);
this was not even needed for Proposition 1.4.1.

Theorem 2.2.1 Let g be a complex-valued additive function such that the
series ∑

|g(p)|�1

g(p)

p
,

∑
|g(p)|�1

|g(p)|2
p

,
∑

|g(p)|>1

1

p

converge. Then the sequence of random variables (g(SN))N converges in law
to the series over primes ∑

p

g(pVp ), (2.1)

where (Vp)p is a sequence of independent geometric random variables with

P(Vp = k) =
(

1− 1

p

)
1

pk

for k � 0.

Recall that, in terms of p-adic valuations of integers, we can write

g(n) =
∑
p

g
(
pvp(n)

)
for any integer n � 1. Since the sequence of p-adic valuations converges in
law to the sequence (Vp) (Corollary 1.3.9), the formula (2.1) for the limiting
distribution appears as a completely natural expression.

Proof We write g = g�+g� where both summands are additive functions, and

g�(pk) =
{
g(p) if k = 1 and |g(p)| � 1,

0 otherwise.
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28 Classical Probabilistic Number Theory

Thus g�(p) = 0 for a prime p unless |g(p)| > 1. We denote by (Bp) the
Bernoulli random variable indicator function of the event {Vp = 1}; we have

P(Bp = 1) = 1

p

(
1− 1

p

)
.

We will prove that the vectors (g�(SN),g
�(SN)) converge in law to(∑

p

g�(pVp ),
∑
p

g�(pVp )

)
,

and the desired conclusion then follows by composing with the continuous
addition map C2 → C (i.e., applying Proposition B.3.2).

We will apply Proposition B.4.4 to the random vectors GN= (g�(SN),

g�(SN)) (with values in C2), with the approximations GN = GN,M + EN,M,
where

GN,M =
( ∑
p�M

g�(pvp(SN)),
∑
p�M

g�(pvp(SN))

)
.

Let M � 1 be fixed. The random vectors GN,M are finite sums, and are
expressed as obviously continuous functions of the valuations vp of the
elements of �N, for p � M. Since the vector of these valuations converges in
law to (Vp)p�M by Corollary 1.3.9, applying composition with a continuous
map (Proposition B.3.2 again), it follows that (GN,M)N converges in law
as N →+∞ to the vector( ∑

p�M

g�(pVp ),
∑
p�M

g�(pVp )

)
.

It is therefore enough to verify that Assumption (2) of Proposition B.4.4
holds, and we may do this separately for each of the two coordinates of the
vector (by taking the norm on C2 in the proposition to be the maximal of the
modulus of the two coordinates).

We begin with the second coordinate involving g�. For any δ > 0, and
2 � M < N, we have

PN

(∣∣∣∣ ∑
M<p�N

g�(pvp(SN))

∣∣∣∣ > δ) �
∑

M<p�N

PN(vp(SN) � 2)

+
∑

M<p�N
|g(p)|>1

PN(vp(SN) = 1)

�
∑
p>M

1

p2
+

∑
p>M
|g(p)|>1

1

p
(2.2)

https://doi.org/10.1017/9781108888226.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108888226.003


2.2 Distribution of Arithmetic Functions 29

(simply because, if the sum is nonzero, at least one term must be nonzero, and
the probability of a union of countably many sets is bounded by the sums of
the probabilities of the individual sets).

Since the right-hand side converges to 0 as M → +∞ (by assumption),
this verifies that the variant discussed in Remark B.4.5 of the assumption of
Proposition B.4.4 holds (note that the series∑

p�M

g�(pVp )

converges in law by a straightforward application of Kolmogorov’s Three
Series Theorem, which is stated in Remark B.10.2 – indeed, since |g�| � 1, it
suffices to observe that ∑

p�M

P(|g�(pV
p )| � 2) < +∞,

which follows by arguing as in (2.2)).
We next handle g�. We denote by BN,p the Bernoulli random variable

indicator of the event {vp(SN) = 1}, and define

�N(p) = PN(BN,p = 1) = PN(vp(SN) = 1).

We also write�(p) = P(Bp = 1). Note that

�N(p) � 1

p
and �N(p) = 1

p

(
1− 1

p

)
+ O

(
1

N

)
= �(p)+ O

(
1

N

)
.

The first coordinate of EN,M is

HN,M =
∑
p>M

g�(pVp ) =
∑
p>M

g�(p)BN,p

(which is a finite sum, so convergence issues do not arise). We will prove that

lim
M→+∞

lim sup
N→+∞

EN(|HN,M|2) = 0,

which will also us to conclude.
By expanding the square, we have

EN(|HN,M|2) = EN

(∣∣∣∣ ∑
p>M

g�(p)BN,p

∣∣∣∣2)
=

∑
p1,p2>M

EN

(
g�(p1)g

�(p2)BN,p1BN,p2

)
. (2.3)
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30 Classical Probabilistic Number Theory

The contribution of the diagonal terms p1 = p2 to (2.3) is

∑
p>M

|g�(p)|2�N(p) �
∑
p>M

|g�(p)|2
p

.

We have

EN(BN,p1BN,p2) = PN(vp1(SN) = vp2(SN) = 1) = �(p1)�(p2)+ O

(
1

N

)
(by Example 1.3.10), so that the nondiagonal terms become

∑
p1,p2>M
p1 �=p2

g�(p1)g
�(p2)�(p1)�(p2)+ O

(
1

N

∑
p1,p2>M
p1p2�N

|g�(p1)||g�(p2)|
)

.

(2.4)

The first term S1 in this sum is

S1 =
∣∣∣∣ ∑
p>M

g�(p)�(p)

∣∣∣∣2 −∑
p>M

|g�(p)|2�(p)2 �
∣∣∣∣ ∑
p>M

g�(p)�(p)

∣∣∣∣2

=
∣∣∣∣ ∑
p>M

g�(p)

p

(
1− 1

p

) ∣∣∣∣2,
where the right-hand side of the last equality is convergent because of the
assumptions of the theorem, so that the left-hand side is also finite.

Next, since |g�(p)| � 1 for all primes, the second term S2 in (2.4) satisfies

S2 � 1

N

∑
p1,p2>M
p1p2�N

1 � log log N

log N

for all M � 1 by Chebychev’s estimate of Proposition C.3.1 (extended to
products of two primes as in Exercise C.3.2 (2)). Finally, from the convergence
assumptions, this means that

lim sup
N→+∞

EN(|HN,M|2)�
∣∣∣∣∣∣
∑
p>M

g�(p)

p

∣∣∣∣∣∣
2

+
∑
p>M

|g�(p)|2
p

→ 0

as M →+∞, and this concludes the proof.
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2.3 The Erdős–Kac Theorem 31

Remark 2.2.2 The result above is due to Erdős [33]; the fact that the converse
assertion also holds (namely, that if the sequence (g(SN))N converges in law,
then the three series∑

|g(p)|�1

g(p)

p
,

∑
|g(p)|�1

|g(p)|2
p

,
∑

|g(p)|>1

1

p

are convergent) is known as the Erdős–Wintner Theorem [36]. The reader may
be interested in thinking about proving this; see, for example, [115, pp. 327–
328] for the details.

Although it is of course customary and often efficient to pass from additive
functions to multiplicative functions by taking the logarithm, this is not always
possible. For instance, the (multiplicative) Möbius function μ(n) does have the
property that the sequence (μ(SN))N converges in law to a random variable
taking values 0, 1 and −1 with probabilities which are equal, respectively, to

1− 6

π2
,

3

π2
,

3

π2
.

The limiting probability that μ(n) = 0 comes from the elementary Proposition
1.3.3, but the fact that, among the values 1 and −1, the asymptotic probability
is equal, is quite a bit deeper: it turns out to be “elementarily” equivalent to the
Prime Number Theorem in the form

π(x) ∼ x

log x

as x → +∞ (see, e.g., [59, §2.1] for the proof). However, there is no additive
function logμ(n), so we cannot even begin to speak of its potential limiting
distribution!

2.3 The Erdős–Kac Theorem

We begin by recalling the statement (see Theorem 1.1.1), in its probabilistic
phrasing:

Theorem 2.3.1 (Erdős–Kac Theorem) For N � 1, let �N = {1, . . . ,N} with
the uniform probability measure PN. Let XN be the random variable

n �→ ω(n)− log log N√
log log N

on �N for N � 3. Then (XN)N�3 converges in law to a standard Gaussian
random variable, that is, to a Gaussian random variable with expectation 0
and variance 1.

https://doi.org/10.1017/9781108888226.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108888226.003


32 Classical Probabilistic Number Theory

–1 1 2 3 4 5

0.05

0.10

0.15

0.20

0.25

0.30

Figure 2.1 The normalized number of prime divisors for n � 1010.

Figure 2.1 shows a plot of the empirical density of XN for N = 1010: one
can see something that could be the shape of the Gaussian density appearing,
but the fit is very far from perfect (we will comment later why this could be
expected).

The original proof of Theorem 2.3.1 is due to Erdős and Kac in 1939 [35].
We will explain a proof following the work of Granville and Soundarara-
jan [51] and of Billingsley [9, p. 394]. As usual, the presentation emphasizes
the probabilistic nature of the argument.

As before, we begin by explaining why the statement can be considered to
be unsurprising. This is an elaboration of the type of heuristic argument that
we used to justify the limit in Theorem 2.2.1.

The arithmetic function ω is additive. Write

ω(n) =
∑
p

Bp(n)

for n ∈ �N, where Bp is as usual the Bernoulli random variable on �N that
is the characteristic function of the event p | n. Using Proposition 1.3.7, the
natural probabilistic guess for a limit (if there was one) would be the series∑

p

Bp,

where (Bp) are independent Bernoulli random variables, as in Proposition
1.4.1. But this series diverges almost surely: indeed, the series∑

p

E(Bp) =
∑
p

1

p
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2.3 The Erdős–Kac Theorem 33

diverges by the basic Mertens estimate from prime number theory, namely,∑
p�N

1

p
= log log N+ O(1)

for N � 3 (see Proposition C.3.1 in Appendix C), so that the divergence follows
from Kolmogorov’s Theorem, B.10.1 (or indeed an application of the Borel–
Cantelli Lemma; see Exercise B.10.4).

One can however refine the formula for ω by observing that n ∈ �N has no
prime divisor larger than N, so that we also have

ω(n) =
∑
p�N

Bp(n) (2.5)

for n ∈ �N. Correspondingly, we may expect that the probabilistic distribution
of ω on �N will be similar to that of the sum∑

p�N

Bp. (2.6)

But the latter is a sum of independent (though not identically distributed)
random variables, and its asymptotic behavior is therefore well understood. In
fact, a simple case of the Central Limit Theorem (see Theorem B.7.2) implies
that the renormalized random variables∑

p�N

Bp −
∑
p�N

p−1

√∑
p�N

p−1(1− p−1)

converge in law to a standard Gaussian random variable. It is then to be
expected that the arithmetic sums (2.5) are sufficiently close to (2.6) so that
a similar renormalization of ω on �N will lead to the same limit, and this is
exactly the statement of Theorem 2.3.1 (by the Mertens Formula again).

We now begin the rigorous proof. We will prove convergence in law
using the method of moments, as explained in Section B.3 of Appendix B,
specifically in Theorem B.5.5 and Remark B.5.9. This is definitely not the
only way to confirm the heuristic above, but it may be the simplest.

More precisely, we will proceed as follows:

(1) We show, using Theorem 1.3.1, that for any fixed integer k � 0, we have

EN(XkN) = E(XkN)+ o(1),
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34 Classical Probabilistic Number Theory

where (XN) is the same renormalized random variable described above,
namely,

XN = ZN − E(ZN)√
V(ZN)

with

ZN =
∑
p�N

Bp. (2.7)

(2) As we already mentioned, the Central Limit Theorem applies to the
sequence (XN), and shows that it converges in law to a standard Gaussian
random variable N.

(3) It follows that

lim
N→+∞

EN(XkN) = E(Nk),

and hence, by the method of moments (Theorem B.5.5), we conclude that
XN converges in law to N. (Interestingly, we do not need to know the
value of the moments E(Nk) for this argument to apply.)

This sketch indicates that the Erdős–Kac Theorem is really a result of very
general nature that should be valid for many random integers, and not merely
for a uniformly chosen integer in�N. Note that only Step 1 has real arithmetic
content. As we will see, that arithmetic content is concentrated on two results:
Theorem 1.3.1, which makes the link with probability theory, and the Mertens
estimate, which is only required in the form of the divergence of the series∑

p

1

p

(at least if one is ready to use its partial sums∑
p�N

1

p

for renormalization, instead of the asymptotic value log log N).
We now implement this strategy. As will be seen, some tweaks will be

required. (The reader is invited to check that omitting those tweaks leads, at
the very least, to a much more complicated-looking problem!)

Step 1 (Truncation). This is a classical technique that applies here, and is
used to shorten and simplify the sum in (2.7), in order to control the error terms
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2.3 The Erdős–Kac Theorem 35

in the next step. We consider the random variables Bp on �N as above, that is,
Bp(n) = 1 if p divides n and Bp(n) = 0 otherwise. Let

σN =
∑
p�N

1

p
.

We only need recall at this point that σN →+∞ as N →+∞. We then define

Q = N1/(log log N)1/3 (2.8)

and

ω̃(n) =
∑
p|n
p�Q

1 =
∑
p�Q

Bp(n) and ω̃0(n) =
∑
p�Q

(
Bp(n)− 1

p

)

viewed as random variables on �N. The point of this truncation is the
following: first, for n ∈ �N, we have

ω̃(n) � ω(n) � ω̃(n)+ (log log N)1/3,

simply because if α > 0 and if p1, . . . , pm are primes � Nα dividing n � N,
then we get

Nmα � p1 · · ·pm � N,

and hence m � α−1. Second, for any N � 1 and any n ∈ �N, we get by
definition of σN the identity

ω̃0(n) = ω̃(n)−
∑
p�Q

1

p

= ω(n)− σN + O((log log N)1/3) (2.9)

because the Mertens formula∑
p�x

1

p
= log log x + O(1)

and the definition of σN show that∑
p�Q

1

p
=
∑
p�N

1

p
+ O(log log log N) = σN + O(log log log N).

Now define

X̃N(n) = ω̃0(n)√
σN
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36 Classical Probabilistic Number Theory

as random variables on �N. We will prove that X̃N converges in law to N. The
elementary Lemma B.5.3 of Appendix B (applied using (2.9)) then shows that
the random variables

n �→ ω(n)− σN√
σN

converge in law to N. Finally, applying the same lemma one more time using
the Mertens formula we obtain the Erdős–Kac Theorem.

It remains to prove the convergence of X̃N. We fix a nonnegative integer k,
and our target is to prove the limit

EN(X̃kN)→ E(Nk) (2.10)

as N →+∞. Once this is proved for all k, then the method of moments shows
that (XN) converges in law to the standard normal random variable N.

Remark 2.3.2 We might also have chosen to perform a truncation at p � Nα

for some fixed α ∈]0,1[. However, in that case, we would need to adjust the
value of α depending on k in order to obtain (2.10), and then passing from the
truncated variables to the original ones would require some minor additional
argument. Note that the function (log log N)1/3 which is used to define the
truncation could be replaced by any function going to infinity slower than
(log log N)1/2.

Step 2 (Moment computation). We now begin the proof of (2.10). We use
the definition of ω̃0(n) and expand the kth power in EN(X̃kN) to derive

EN(X̃kN) =
1

σ
k/2
N

∑
p1�Q

· · ·
∑
pk�Q

EN

((
Bp1 −

1

p1

)
· · ·
(

Bpk −
1

pk

))
(where we omit for simplicity the subscripts N for the arithmetic random
variables Bpi ). The crucial point is that the random variable(

Bp1 −
1

p1

)
· · ·
(

Bpk −
1

pk

)
(2.11)

can be expressed as f (πq) for some modulus q � 1 and some function
f : Z/qZ −→ C, so that the basic result of Theorem 1.3.1 may be applied to
each summand.

To be precise, the value at n ∈ �N of the random variable (2.11) only
depends on the residue class x of n in Z/qZ, where q is the least common
multiple of p1, . . . , pk . In fact, this value is equal to f (x), where

f (x) =
(
δp1(x)−

1

p1

)
· · ·
(
δpk (x)−

1

pk

)
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2.3 The Erdős–Kac Theorem 37

with δpi denoting the characteristic function of the residues classes modulo q
which are 0 modulo pi . It is clear that |f (x)| � 1, as product of terms which
are all � 1, and hence we have the bound

‖f ‖1 � q

(this is extremely imprecise, but suffices for now). From this we get∣∣∣∣EN

((
Bp1 −

1

p1

)
· · ·
(

Bpk −
1

pk

))
− E(f )

∣∣∣∣ � 2q

N
� 2Qk

N

by Theorem 1.3.1.
But by the definition of f , we also see that

E(f ) = E
((

Bp1 −
1

p1

)
· · ·
(

Bpk −
1

pk

))
,

where the random variables (Bp) form a sequence of independent Bernoulli
random variables with P(Bp = 1) = 1/p (the (Bp) for p dividing q are
realized concretely as the characteristic functions δp on Z/qZ with uniform
probability measure).

Therefore we derive

EN(X̃kN) =
1

σ
k/2
N

∑
p1�Q

· · ·
∑
pk�Q

{
E
((

Bp1 −
1

p1

)
· · ·
(

Bpk −
1

pk

))

+ O(QkN−1)

}
=
(
τN

σN

)k/2
E(XkN)+ O(Q2kN−1)

=
(
τN

σN

)k/2
E(XkN)+ o(1)

by our choice (2.8) of Q, where

XN = 1√
τN

∑
p�Q

(
Bp − 1

p

)
.

and

τN =
∑
p�Q

1

p

(
1− 1

p

)
=
∑
p�Q

V(Bp)

Step 3 (Conclusion). We now note that the version of the Central Limit
Theorem which is recalled in Theorem B.7.2 applies to the random variables
(Bp), and implies precisely that XN converges in law to N. But moreover, the
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38 Classical Probabilistic Number Theory

sequence (XN) satisfies the uniform integrability assumption in the converse of
the method of moments (see Example B.5.7, applied to the variables Bp−1/p,
which are independent and bounded by 1), and hence we have in particular

E(XkN) −→ E(Nk).

Since τN ∼ σN by the Mertens formula, we deduce that EN(X̃kN) converges
also to E(Nk), which was our desired goal (2.10).

Exercise 2.3.3 One can avoid appealing to the converse of the method of
moments by directly using the combinatorics involved in proofs of the Central
Limit Theorem based on moments, which directly imply the convergence of
moments for (XN). Find such a proof in this special case. (See, for instance,
[9, p. 391]; note that one must then know what are the moments of Gaussian
random variables,; these are recalled in Proposition B.7.3.)

Exercise 2.3.4 Consider the probability spaces ��N consisting of integers
1 � n � N that are squarefree, with the uniform probability measure. Prove
a version of the Erdős–Kac Theorem for the number of prime factors of an
element of ��N.

Exercise 2.3.5 For an integer N � 1, let m(N) denote the set of integers that
occur in the multiplication table for integers 1 � n � N:

m(N) = {k = ab | 1 � a � N, 1 � b � N} ⊂ �N2 .

Prove that PN2(m(N))→ 0, that is, that

lim
N→+∞

|m(N)|
N2

= 0.

This result is the basic statement concerning the “multiplication table”
problem of Erdős; the precise asymptotic behavior of |m(N)| has been
determined by K. Ford [41] (improving results of Tenenbaum): we have

|m(N)|
N2

� (log N)−α(log log N)−3/2,

where

α = 1− 1+ log log 2

log 2
.

See also the work of Koukoulopoulos [64] for generalizations.
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2.4 Convergence without Renormalization 39

Exercise 2.3.6 Let �(n) be the number of prime divisors of an integer n � 1,
counted with multiplicity (so �(12) = 3).1 Prove that

PN

(
�(n)− ω(n) � (log log N)1/4

)
� (log log N)−1/4,

and deduce that the random variables

n �→ �(n)− log log N√
log log N

also converge in law to N.

Exercise 2.3.7 Try to prove the Erdős–Kac Theorem using the same “approx-
imation” approach used in the proof of the Erdős–Wintner Theorem; what
seems to go wrong (suggesting – if not proving – that one really should use
different tools)?

2.4 Convergence without Renormalization

One important point that is made clear by the proof of the Erdős–Kac Theorem
is that, although one might think that a statement about the behavior of the
number of prime factors of integers tells us something about the distribution of
primes (which are those integers n with ω(n) = 1), the Erdős–Kac Theorem
provides no such information. This can be seen mechanically from the proof,
where the truncation step means in particular that primes are simply discarded
unless they are smaller than the truncation level Q, or intuitively from the
fact that the statement itself implies that “most” integers of size about N have
log log N prime factors. For instance, as N →+∞, we have

PN

(
|ω(n)− log log N| > a

√
log log N

)
−→ P(|N| > a)

�
√

2

π

∫ +∞

a

e−x
2/2dx � e−a2/4.

The problem lies in the normalization used to obtain a definite theorem of
convergence in law: this “crushes” to some extent the more subtle aspects of the
distribution of values of ω(n), especially with respect to extreme values. One
can however still study this function probabilistically, but one must use less
generic methods, to go beyond the “universal” behavior given by the Central
Limit Theorem. There are at least two possible approaches in this direction,
and we now briefly survey some of the results.

1 We only use this function in this section and hope that confusion with �N will be avoided.
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40 Classical Probabilistic Number Theory

Both methods have in common a switch in probabilistic focus: instead of
looking for a Gaussian approximation of a normalized version of ω(n), one
looks for a Poisson approximation of the un-normalized function.

Recall (see also Section B.9 in Appendix B) that a Poisson distribution with
real parameter λ � 0 satisfies

P(λ = k) = e−λ λ
k

k!

for any integer k � 0. It turns out that an inductive computation using the
Prime Number Theorem leads to the asymptotic formula

1

N
|{n � N | ω(n) = k}| ∼ 1

(k − 1)!

(log log N)k−1

log N

= e− log log N (log log N)k−1

(k − 1)!

for any fixed integer k� 1. This suggests that a better probabilistic approxi-
mation to the arithmetic function ω(n) on �N is a Poisson distribution with
parameter log log N. The Erdős–Kac Theorem would then be, in essence,
a consequence of the simple fact that a sequence (Xn) of Poisson random
variables with parameters λn→+∞ has the property that

Xn − λn√
λn

→ N, (2.12)

as explained in Proposition B.9.1. Figure 2.2 shows the density of the values
of ω(n) for n � 1010 and the corresponding Poisson density. (The values
of the probabilities for consecutive integers are joined by line segments for
readability.)

Remark 2.4.1 The fact that the approximation error in such a statement is
typically of size comparable to λ−1/2

n explains why one can expect that the
convergence to a Gaussian in the Erdős–Kac Theorem should be extremely
slow, since in that case the normalizing factor is of size log log N, and goes to
infinity very slowly.

To give a rigorous meaning to these ideas of Poisson approximation ofω(n),
one must first give a precise definition, which can not be a straightforward
convergence property, because the parameter of the Poisson approximation is
not fixed.

Harper [53] (to the author’s knowledge) was the first to implement explicitly
such an idea. He derived an explicit upper bound for the total variation
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Figure 2.2 The number of prime divisors for n � 1010 (solid line) compared with
a Poisson distribution.

distance between a truncated version of ω(n) on �N and a suitable Poisson
random variable, namely, between∑

p|n
p�Q

1, where Q = N1/(3 log log N)2

and a Poisson random variable PoN with parameter

λN =
∑
p�Q

1

N

⌊
N

p

⌋
(so that the Mertens formula implies that λN ∼ log log N).

Precisely, Harper proves that for any subset A of the nonnegative integers,
we have ∣∣∣∣PN

( ∑
p|n
p�Q

1 ∈ A

)
− P(PoN ∈ A)

∣∣∣∣� 1

log log N
,

and moreover that the decay rate (log log N)−1 is best possible. This requires
some additional arithmetic information than the proof of Theorem 2.3.1 (essen-
tially some form of sieve), but the arithmetic ingredients remain to a large
extent elementary. On the other hand, new ingredients from probability theory
are involved, especially cases of Stein’s Method for Poisson approximation.

A second approach starts from a proof of the Erdős–Kac Theorem due to
Rényi and Turán [100], which is the implementation of the Lévy Criterion for
convergence in law. Precisely, they prove that

EN(e
itω(n)) = (log N)e

it−1(�(t)+ o(1)) (2.13)
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for any t ∈ R as N → +∞ (in fact, uniformly for t ∈ R – note that the
function here is 2π -periodic), with a factor �(t) given by

�(t) = 1

�(eit )

∏
p

(
1− 1

p

)eit (
1+ eit

p − 1

)
, (2.14)

where the product over all primes is absolutely convergent. Recognizing that
the term (log N)e

it−1 is the characteristic function of a Poisson random variable
PoN with parameter log log N, one can then obtain the Erdős–Kac Theorem by
the same computation that leads to (2.12), combined with the continuity of �
that shows that

�

(
t√

log log N

)
−→ �(0) = 1

as N →+∞.
The computation that leads to (2.13) is now interpreted as an instance of

the Selberg–Delange method (see [115, II.5, Th. 3] for the general statement,
and [115, II.6, Th. 1] for the special case of interest here).

It should be noted that the proof of (2.13) is quite a bit deeper than the proof
of Theorem 2.3.1, and this is at it should be, because this formula contains
precise information about the extreme values of ω(n), which we saw are not
relevant to the Erdős–Kac Theorem. Indeed, taking t = π and observing that
�(π) = 0 (because of the pole of the Gamma function), we obtain

1

N

∑
n�N

(−1)ω(n) = E(e−iπω(n)) = o
(

1

(log N)2

)
.

It is well known (as for the partial sums of the Möbius function, mentioned
in Remark 2.2.2) that this implies elementarily the Prime Number Theorem∑

p�N

1 ∼ N

log N

(see again [59, §2.1]).
The link between the formula (2.13) and Poisson distribution was noticed

in joint work with Nikeghbali [77]. Among other things, we remarked that it
implies easily a bound for the Kolmogorov–Smirnov distance between n �→
ω(n) on �N and a Poisson random variable PoN. Additional work with A.
Barbour [5] leads to bounds in total variation distance, and to even better (but
non-Poisson) approximations. Another suggestive remark is that if we consider
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the independent random variables that appear in the proof of the Erdős–Kac
theorem, namely,

XN =
∑
p�N

(
Bp − 1

p

)
,

where (Bp) is a sequence of independent Bernoulli random variables with
P(Bp = 1) = 1/p, then we have (by a direct computation) the following
analogue of (2.13):

E(eitXN) = (log N)e
it−1

(∏
p

(
1− 1

p

)eit (
1+ eit

p − 1

)
+ o(1)

)
.

It is natural to ask then if there is a similar meaning to the factor 1/�(eit )
that also appears in (2.14). And there is: for N � 1, define 
N as the random
variable on the symmetric group SN that maps a permutation σ to the number
of cycles in its canonical cyclic representation (where we count fixed points as
cycles of length 1, so, for instance, we have 
N(1) = N). Then, giving SN the
uniform probability measure, we have

E(eit
N) = Ne
it−1

(
1

�(eit )
+ o(1)

)
, (2.15)

corresponding to a Poisson distribution with parameter log N this time. This
is not an isolated property: see the survey paper of Granville [48] for many
significant analogies between (multiplicative) properties of integers and ran-
dom permutations.2

Remark 2.4.2 Observe that (2.13) would be true if we had a decomposition

ω(n) = PoN(n)+ YN(n)

as random variables on �N, where YN is independent of PoN and converges
in law to a random variable with characteristic function �. However, this is
not in fact the case, because � is not a characteristic function of a probability
measure! (It is unbounded on R.)

Exercise 2.4.3 The goal of this exercise is to give a proof of the formula (2.15).
We assume basic familiarity with the notion of tensor product of vector spaces
and symmetric powers of vector spaces, and elementary representation theory
of finite groups.

For N � 1, we define 
N as a random variable on SN as above.

2 Some readers might also enjoy the comic-book version [49].
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(1) Show that the formula (2.15) follows from the exact expression

E(eit
N) =
N∏
j=1

(
1− 1

j
+ e

it

j

)
valid for all N � 1 and all t ∈ R. [Hint: Use the formula

1

�(z+ 1)
=
∏
k�1

(
1+ z

k

)(
1+ 1

k

)−z
,

which is valid for all z ∈ C (this is due to Euler).]
(2) Show that (1) is also equivalent with the formula

E(m
N) =
N∏
j=1

(
1− 1

j
+ m
j

)
(2.16)

for all N � 1 and all integers m � 0.
(3) Letm � 0 be a fixed integer. Let V be anm-dimensional complex vector

space. For any N � 1, there is a homomorphism

�N : SN → GL(V⊗ · · · ⊗ V) = GL(V⊗N)

(with N tensor factors) such that σ ∈ SN is sent to the unique automorphism
of the tensor power V⊗N which satisfies

x1 ⊗ · · · ⊗ xN �→ xσ(1) ⊗ · · · ⊗ xσ(N)
for all (x1, . . . ,xN) ∈ V⊗N. (This is a representation of SN on the vector space
V⊗N; note that this space has dimension mN.)

(4) Show that for any σ ∈ SN, the trace of the automorphism �N(σ ) of
V⊗N is equal to m
N(σ ).

(5) Deduce that the formula (2.16) holds. [Hint: Use the fact that for
any representation � : G → GL(E) of a finite group on a finite-dimensional
C-vector space, the average of the trace of �(g) over g ∈ G is equal to the
dimension of the space of vectors x ∈ E that are invariant, that is, that satisfy
�(g)(x) = x for all g ∈ G (see, e.g., [70, Prop. 4.3.1] for this); then identify
this space to compute its dimension.]

(6) Deduce also from (2.16) that there exists a sequence (Bj )j�1 of
independent Bernoulli random variables such that we have an equality in law


N = B1 + · · · + BN

for all N � 1, and P(Bj = 1) = 1/j for all j � 1. (This decomposition
is often obtained by what is called the “Chinese Restaurant Process” in the
probabilistic literature; see, for instance, [2, Example 2.4].)
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2.5 Final Remarks

Classically, the Erdős–Wintner and the Erdős–Kac Theorem (and related
topics) are presented in a different manner, which is well illustrated in the
book of Tenenbaum [115, III.1, III.2]. This emphasizes the notion of density
of sets of integers, namely, quantities like

lim sup
N→+∞

1

N
|{1 � n � N | n ∈ A}|

for a given set A, or the associated liminf, or the limit when it exists.
Convergence in law is then often encapsulated in the existence of these limits
for sets of the form

A = {n � 1 | f (n) � x},
the limit F(x) (which is only assumed to exist for continuity points of F) being a
“distribution function,” that is, F(x) = P(X � x) for some real-valued random
variable X.

Our emphasis on a more systematic probabilistic presentation has the
advantage of leading more naturally to the use of purely probabilistic tech-
niques and insights. This will be especially relevant when we consider random
variables with values in more complicated sets than R (as we will do in the
next chapters), in which case the analogue of distribution functions becomes
awkward or simply doesn’t exist. Our point of view is also more natural when
we come to consider arithmetic random variables YN on �N that genuinely
depend on N, in the sense that there doesn’t exist an arithmetic function f
such that YN is the restriction of f to �N for all N � 1.

Among the many generalizations of the Erdős–Kac Theorem (and related
results for more general arithmetic functions), we wish to mention Billingsley’s
work [8, Th. 4.1, Example 1, p. 764] that obtains a functional version where
the convergence in law is toward Brownian motion (we refer to Billingsley’s
very accessible text [7] for a first presentation of Brownian motion, and to the
book of Revuz and Yor [104] for a complete modern treatment): for 0 � t � 1,
define a random variable X̃N on �N with values in the Banach space C([0,1])
of continuous functions on [0,1] by putting X̃N(n)(0) = 0 and

X̃N(n)

(
log log k

log log N

)
= 1

(log log N)1/2

(∑
p|n
p�k

1− log log k

)

for 2 � k � N, and by linear interpolation between such points. Then
Billingsley proves that X̃N converges in law to Brownian motion as N →+∞.
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Another very interesting limit theorem of Billingsley (see [6] and also [10,
Th. I.4.5]) deals with the distribution of all the prime divisors of an integer n ∈
�N, and establishes convergence in law of a suitable normalization of these.
Precisely, let X be the compact topological space

X =
∏
k�1

[0,1].

For all integers n � 1, denote by

p1 � p2 � · · · � p�(n)
the prime divisors of n, counted with multiplicity and in nonincreasing order.
Moreover, define pk = 1 if k >�(n). Define then an X-valued random variable
DN = (DN,k)k�1, where

DN,k(n) = logpk
log n

for n ∈ �N (in other words, we have pk = nDN,k(n)). Then Billingsley proved
that the random variables DN converge, as N → +∞, to a measure on X,
which is called the Poisson–Dirichlet distribution (with parameter 1). This
measure is quite an interesting one, and occurs also (among other places) in
a similar limit theorem for random variables encoding the length of the cycles
occurring in a random permutation, again ordered to be nonincreasing (another
example of the connections between prime factorizations and permutations
which were mentioned in the previous section 2.4).

A shorter proof of this limit theorem was given by Donnelly and Grimmett
[27]. It is based on the remark that the Poisson–Dirichlet measure is the image
under a certain continuous map of the natural measure on X under which
the components of elements of X form a sequence of independent uniformly
distributed random variables on [0,1]; arithmetically, it turns out to depend
only on the estimate ∑

p�N

logp

p
= log N+ O(1),

which is at the same level of depth as the Mertens formula (see C.3.1 (3)).

[Further references: Tenenbaum [115].]
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