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On Non-Vanishing of Convolution of
Dirichlet Series

Amir Akbary and Shahab Shahabi

Abstract. We study the non-vanishing on the line Re(s) = 1 of the convolution series associated to

two Dirichlet series in a certain class of Dirichlet series. The non-vanishing of various L-functions on

the line Re(s) = 1 will be simple corollaries of our general theorems.

Let f (z) =
∑∞

n=1 â f (n)e2πinz and g(z) =
∑∞

n=1 âg(n)e2πinz be cusp forms of

weight k and level N with trivial character. Let L f (s) =
∑∞

n=1 a f (n)n−s and Lg(s) =
∑∞

n=1 ag(n)n−s be the L-functions associated to f and g, respectively, where a f (n) =

â f (n)/n
k−1

2 and ag(n) = âg(n)/n
k−1

2 . Let

L( f ⊗ g, s) = ζN(2s)

∞
∑

n=1

a f (n)ag(n)

ns

be the Rankin–Selberg convolution of L f (s) and Lg(s). In [10] Rankin established

the analytic continuation of L( f ⊗ g, s) (see Theorem 1.5). Rankin’s Theorem has

numerous number theoretic applications. In [9], Rankin used this theorem to prove

the non-vanishing of the modular L-function associated to the discriminant function

∆(z) = e2πiz

∞
∏

n=1

(1 − e2πinz)
24

on the line Re(s) = 1. In fact, Rankin’s argument establishes the non-vanishing of

L-functions associated to eigenforms for the points on the line Re(s) = 1, except the

point s = 1. In [8], Ogg proved that the same result is true for s = 1. Moreover, he

showed the following.

Theorem 0.1 (Ogg) If f and g are eigenforms with respect to the family of the Hecke

operators for Γ0(N) and 〈 f , g〉 = 0, then L( f ⊗ g, 1) 6= 0. Here 〈 f , g〉 denote the

Petersson inner product of f and g.

In this paper we prove similar non-vanishing results (Theorem 2.3, Theorem 3.5

and Theorem 4.2) for the convolution of two Dirichlet series belonging to a certain

family of Dirichlet series S∗ (see Definitions 1.1 and 1.2). Our theorems are quite

general and clearly demonstrate the close connection between the analytic continu-

ation of a Dirichlet series and its various convolutions to the left of its half plane of
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convergence and its non-vanishing on the line Re(s) = 1. More precisely, for two

Dirichlet series F and G ∈ S∗ with Euler products

F(s) =

∏

p

exp
(

∞
∑

k=1

bF(pk)

pks

)

and G(s) =

∏

p

exp
(

∞
∑

k=1

bG(pk)

pks

)

valid on Re(s) > 1, we define the Euler product convolution of F and G as

(F ⊗ G)(s) =

∏

p

exp
(

∞
∑

k=1

kbF(pk)bG(pk)

pks

)

.

We say F ∈ S
∗ is ⊗-simple in Re(s) ≥ σ0, if F ⊗ F has an analytic continuation to

Re(s) ≥ σ0, except for a possible simple pole at s = 1. One of our main results is the

following.

Theorem 2.3 Let F,G ∈ S∗ be ⊗-simple in Re(s) ≥ 1 and t 6= 0. Then

(i) (F ⊗ F)(1 + it) 6= 0.

(ii) If F ⊗ G has an analytic continuation to the line Re(s) = 1 and (F ⊗ G)(s) = 0 if

and only if (F⊗G)(s̄) = 0 for any s on the line Re(s) = 1, then (F⊗G)(1+it) 6= 0.

Note that this result does not say anything about the value of (F⊗G)(s) at s = 1. To

deal with this case, in Section 3 we prove a non-vanishing theorem, valid on the line

Re(s) = 1, for Euler product convolution of two Dirichlet series in S∗ with completely

multiplicative coefficients (Theorem 3.5). Finally in Section 4 for Dirichlet series

with general coefficients we prove the following.

Theorem 4.2 Let σ0 < 1, and assume the following:

(i) F and G (as elements of S∗) are ⊗-simple in Re(s) > σ0;

(ii) F ⊗ G has an analytic continuation to the half-plane Re(s) > σ0;

(iii) At least one of F ⊗ F, G ⊗ G, or F ⊗ G has zeros in the strip σ0 < Re(s) < 1.

Then (F ⊗ G)(1 + it) 6= 0 for all real t.

Our general theorems have several applications. The non-vanishing of various

classical L-functions will be simple corollaries of our general theorems (see Corollar-

ies 2.4, 2.6 and 4.4). Moreover, as a consequence of our theorems, we will be able

to extend Ogg’s theorem to the line Re(s) = 1 (Corollary 2.6,(iv)). Another appli-

cation will result in an extension of Ogg’s non-vanishing result to the line Re(s) = 1

and for eigenforms with characters (Corollary 4.4(iv)). Corollary 4.4(ii) gives a gen-

eralization of the non-vanishing result of Rankin to eigenforms with characters. Fi-

nally non-vanishing of twisted symmetric square L-functions on the line Re(s) = 1

(Corollary 4.4(v)) is a simple consequence of our theorems. Our general theorems

could also be applied to the L-functions associated to number fields, however, in ap-

plications of this paper we restrict ourselves to Dirichlet and modular L-functions.

For results of these types in the context of automorphic forms and representations

see [3, 11, 12].

Our approach in this paper is motivated by [7] and [5, §8.4].
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Notation In this paper we use the following notations:

ζ(s) =
∑∞

n=1 1/ns: the Riemann zeta-function,

ζq(s) =
∏

p|q(1 − 1/p)ζ(s): the Riemann zeta-function with the Euler p-factors

corresponding to p | N removed,

Lχ(s) =
∑∞

n=1 χ(n)/ns: the Dirichlet L-function associated to a Dirichlet charac-

ter χ,

Sk(N): the space of cusp forms of weight k and level N with the trivial character,

Sk(N, ψ): the space of cusp forms of weight k and level N with character ψ where

ψ(−1) = (−1)k,

〈 f , g〉 =
∫

D0(N)
f (z)g(z)yk−2dxdy: the Petersson inner product of f , g ∈ Sk(N, ψ).

Here, D0(N) is a fundamental domain for the congruence subgroup Γ0(N),

L f (s) =
∑∞

n=1 a f (n)/ns: the L-function associated to a cusp form f ∈ Sk(N, ψ),

L f ,χ(s) =
∑∞

n=1 a f (n)χ(n)/ns: the twisted L-function associated to a cusp form

f ∈ Sk(N, ψ) and a Dirichlet character χ,

L( f ⊗ g, s) = Lψ1ψ̄2
(2s)

∑∞
n=1 a f (n)ag(n)/ns: the Rankin–Selberg convolution of

L f (s) and Lg(s), where f ∈ Sk(N, ψ1) and g ∈ Sk(N, ψ2),

L(sym2 f , s) = L( f ⊗ f , s)/ζN (s): the symmetric square L-function associated to

a normalized eigenform f in Sk(N),

Lχ( f ⊗ g, s) = Lψ1ψ̄2χ2 (2s)
∑∞

n=1 a f (n)ag(n)χ(n)/ns: the twisted Rankin-Selberg

convolution of L f (s) and Lg(s), where f ∈ Sk(N, ψ1), g ∈ Sk(N, ψ2) and χ is

a Dirichlet character,

Lχ(sym2 f , s) = Lχ( f ⊗ f̄ , s)/Lψχ(s): the twisted symmetric square L-function as-

sociated to a normalized eigenform f with character ψ and a Dirichlet char-

acter χ.

Note that in the above definitions, we assume that Re(s) > 1 and for a normalized

eigenform f we have a f (1) = 1.

1 A Class of Dirichlet Series

We consider the following class of Dirichlet Series.

Definition 1.1 The class S∗1 is the family of Dirichlet series F(s) =
∑∞

n=1 aF(n)n−s

(Re(s) > 1) satisfying the following properties:

(a) (Euler Product): For Re(s) > 1, we have

F(s) =

∏

p

exp
(

∞
∑

k=1

bF(pk)

pks

)

.

1We use this notation to emphasize the relation of this class to the Selberg class S. Note that S ⊂ S∗.
For the definition of the Selberg class S, see [5, Ch. 8].
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(b) (Ramanujan’s Hypothesis): For any fixed ǫ > 0,

aF(n) = O(nǫ)

where the implied constant may depend upon ǫ.
(c) (Analytic Continuation): F(s) has an analytic continuation to the line Re(s) = 1,

except for a possible pole at point s = 1.

For F ∈ S∗, we define

F̄(s) = F(s̄) =

∞
∑

n=1

aF(n)

ns
=

∏

p

exp

( ∞
∑

k=1

bF(pk)

pks

)

.

We continue by defining a convolution operation on S∗.

Definition 1.2 For F,G ∈ S∗, the Euler product convolution of F and G is defined

as

(F ⊗ G)(s) =

∏

p

exp

( ∞
∑

k=1

kbF(pk)bG(pk)

pks

)

.

The following lemma shows that this operation is well-defined on the half plane

Re(s) > 1.

Lemma 1.3 For F,G in S
∗, (F ⊗ G)(s) is convergent for Re(s) > 1.

Proof See [5, Exercise 8.4.3].

The next lemma will enable us to express several classical L-functions of number

theory as an Euler product convolution of two simpler L-functions. This lemma

plays an important role in the applications of our general theorems. The proof is

straightforward.

Lemma 1.4

(i) ζ(s) is in S∗, and for any F in S∗, we have

(F ⊗ ζ)(s) = F(s).

(ii) For F in S∗, we have

(ζ ⊗ F)(s) = F̄(s).

(iii) If χ is a Dirichlet character (mod q), then Lχ(s) is in S∗, and

(Lχ ⊗ Lχ)(s) = ζq(s).

(iv) Let f be a normalized eigenform in Sk(N, ψ). Then L f (s) is in S∗, and

(L f ⊗ Lχ)(s) = L f ,χ(s).
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(v) For any two normalized eigenforms f ∈ Sk(N, ψ1) and g ∈ Sk(N, ψ2) and Dirich-

let characters χ1 and χ2, L f ,χ1
(s) and Lg,χ2

(s) are in S∗, and

(L f ,χ1
⊗ Lg,χ2

)(s) = Lχ1χ̄2
( f ⊗ g, s).

In our applications, we also need the following theorem by Rankin [10].

Theorem 1.5 (Rankin) Let f ∈ Sk(N, ψ1) and g ∈ Sk(N, ψ2). Let

Φ(s) =

( 2π√
N

)−2s

Γ(s)Γ(s + k − 1)L( f ⊗ g, s).

Then both L( f ⊗ g, s) and Φ(s) are entire if ψ1 6= ψ2 or 〈 f , g〉 = 0. Otherwise, for

N = 1 they are analytic everywhere except that L( f ⊗ g, s) has a simple pole at s = 1

and Φ(s) has simple poles at points s = 0 and 1, and for N > 1 both L( f ⊗ g, s) and

Φ(s) are analytic except a simple pole at s = 1.

2 Mertens’ Method

In 1898 Mertens gave a proof for the non-vanishing of ζ(s) on the line Re(s) = 1.

Mertens’ proof depends upon the choice of a suitable trigonometric inequality. This

line of proof is adaptable for establishing the non-vanishing of various L-functions.

For example in [9], Rankin used this method to prove the non-vanishing of L f (s) on

the line Re(s) = 1, s 6= 1, where f is an eigenform for Γ0(N). Another example is the

proof of the following lemma, due to K. Murty [6], which, similar to Mertens’ proof,

depends on a certain trigonometric inequality.

Lemma 2.1 Let f (s) be a complex function satisfying the following:

(i) f (s) is analytic in Re(s) > 1 and non-zero there;

(ii) log f (s) can be written as a Dirichlet series

∞
∑

n=1

bn

ns

with bn ≥ 0 for Re(s) > 1;

(iii) on the line Re(s) = 1, f (s) is analytic except for a pole of order e ≥ 0 at s = 1.

Then, if f (s) has a zero on the line Re(s) = 1, the order of that zero is bounded by e/2.

Proof See [6, Lemma 3.2].

Here by employing the above lemma we prove a conditional theorem regarding

the non-vanishing of (F ⊗ G)(s) on the punctured line Re(s) = 1 (s 6= 1). The

following definition describes one of the main conditions of our theorem.

Definition 2.2 For F ∈ S∗ and σ0 ≤ 1, we say F is ⊗-simple in Re(s) > σ0 (resp.

Re(s) ≥ σ0), if F ⊗ F has an analytic continuation to Re(s) > σ0 (resp. Re(s) ≥ σ0),

except for a possible simple pole at s = 1.

https://doi.org/10.4153/CMB-2005-030-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2005-030-6


326 A. Akbary and S. Shahabi

The following theorem is the main result of this section.

Theorem 2.3 Let F,G ∈ S∗ be ⊗-simple in Re(s) ≥ 1 and t 6= 0. Then

(i) (F ⊗ F)(1 + it) 6= 0.

(ii) If F ⊗ G has an analytic continuation to the line Re(s) = 1 and (F ⊗ G)(s) = 0 if

and only if (F⊗G)(s̄) = 0 for any s on the line Re(s) = 1, then (F⊗G)(1+it) 6= 0.

Proof (i) Let f (s) = (F ⊗ F)(s). We have

log f (s) =

∑

p

∞
∑

k=1

k|bF(pk)|2
pks

=

∞
∑

n=1

c(n)

ns
,

with c(n) ≥ 0. So, f (s) satisfies the conditions of Lemma 2.1 with e = 1. Therefore,

the order of the vanishing of f (s) at point 1 + it is ≤ 1
2
. This means that (F ⊗ F)(1 +

it) 6= 0.
(ii) Let

f (s) = (F ⊗ F)(s) (F ⊗ G)(s) (G ⊗ F)(s) (G ⊗ G)(s).

Since for t 6= 0 all the factors of f (s) have finite values at point 1 + it , in order to

prove that (F ⊗ G)(1 + it) 6= 0, it suffices to show that f (1 + it) 6= 0. Note that

log f (s) =

∑

p

∞
∑

k=1

k|bF(pk) + bG(pk)|2
pks

=

∞
∑

n=1

c(n)

ns

with c(n) ≥ 0. So, f (s) satisfies the conditions of Lemma 2.1 with e ≤ 2, and

therefore, the order of the vanishing of f (s) at point 1 + it is ≤ 1. Now suppose that

f (1 + it) = 0. Thus,

(F ⊗ F)(1 + it) (F ⊗ G)(1 + it) (F ⊗ G)(1 − it) (G ⊗ G)(1 + it) = 0.

Since by part (i), (F ⊗ F)(1 + it) 6= 0 and (G ⊗ G)(1 + it) 6= 0, it follows that

(F ⊗ G)(1 + it) = 0. This is a contradiction, otherwise, the order of the vanishing of

f (s) at point 1 + it should be 2.

Note In Theorem 2.3 in fact we can have (F ⊗ G)(1) = 0. To see this, Let F(s) =
∑∞

n=1
(−1)Ω(n)

ns and G(s) = ζ(s), where Ω(n) is the total number of prime factors of n.

Then we have (F ⊗ G)(s) =
ζ(2s)
ζ(s)

and so (F ⊗ G)(1) = 0.

Corollary 2.4 Let f ∈ Sk(N, ψ) be a normalized eigenform for Γ0(N) and let t 6= 0.

Then

(i) ζ(1 + it) 6= 0.

(ii) L( f ⊗ f , 1 + it) 6= 0.

(iii) For trivial ψ we have L(sym2 f , 1 + it) 6= 0. Here t is any real number including

zero.
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Proof (i) This is a consequence of Theorem 2.3(i) with F(s) = ζ(s).

(ii) From Lemma 1.4(v) we have (L f ⊗ L f )(s) = L( f ⊗ f , s). By Theorem 1.5 we

know that L f (s) is ⊗-simple in the whole plane. So L f (s) satisfies all the conditions

of Theorem 2.3(i) and we have

L( f ⊗ f , 1 + it) = (L f ⊗ L f )(1 + it) 6= 0.

(iii) Note that L(sym2 f , s) = L( f ⊗ f , s)/ζN (s). So the result follows from (i)

and (iii) for t 6= 0. For t = 0, L(sym2 f , 1) in a non-zero multiple of 〈 f , f 〉 (see [10,

Theorem 3(iii)]), and therefore it is non-vanishing.

Corollary 2.5 If F = F̄ ∈ S
∗ is analytic and ⊗-simple in Re(s) ≥ 1, then F(1 + it) 6=

0 for t 6= 0.

Proof This is a simple consequence of (ii) of the previous theorem with G(s) = ζ(s).

The following is a simple corollary of Corollary 2.5 and Theorem 2.3(ii).

Corollary 2.6 Let f ∈ Sk(N) be an eigenform for Γ0(N), let χ be a real non-trivial

Dirichlet character (mod q), and let t 6= 0. Then

(i) Lχ(1 + it) 6= 0.

(ii) L f (1 + it) 6= 0.

(iii) L f ,χ(1 + it) 6= 0.

(iv) Suppose g ∈ Sk(N) is also an eigenform for Γ0(N). If 〈 f , g〉 = 0, then

L( f ⊗ g, 1 + it) 6= 0.

3 Ingham’s Method

One of the main facts regarding Dirichlet series with positive coefficients is the fol-

lowing result of Landau.

Lemma 3.1 (Landau) A Dirichlet series with non-negative coefficients has a singu-

larity at its abscissa of convergence.

Proof See [5, Exercise 2.5.14].

In this section, we will show that for two Dirichlet series in S∗ with completely

multiplicative coefficients2, one can apply this lemma of Landau to prove a non-

vanishing result, valid on the line Re(s) = 1, for the convolution series. Our re-

sult is a generalization of Ingham’s proof of the non-vanishing of the Riemann zeta-

function on the line Re(s) = 1 [2]. To do this, we start by recalling some results

regarding Dirichlet series with completely multiplicative coefficients and completely

multiplicative arithmetic functions. The proof of the following lemma is routine.

2This means aF(mn) = aF(m)aF(n) for every m and n.
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Lemma 3.2 For F,G ∈ S∗ with completely multiplicative coefficients,

(F ⊗ G)(s) =

∞
∑

n=1

aF(n)aG(n)

ns
.

Definition 3.3 If f (n) is an arithmetic function, the formal L-series attached to

f (n) is defined by

L( f , s) =

∞
∑

n=1

f (n)

ns
.

If g(n) is also an arithmetic function, the Dirichlet convolution of f (n) and g(n)

is defined by

( f ∗ g)(n) =

∑

d|n

f (d)g
( n

d

)

.

The following identity of formal L-series, due to Ramanujan (see [5, p. 185]), will

be fundamental in the proof of the main result of this section.

Lemma 3.4 Let f1, f2, g1, g2 be completely multiplicative arithmetic functions. Then

we have

∞
∑

n=1

( f1 ∗ g1)(n)( f2 ∗ g2)(n)

ns
=

L( f1 f2, s)L(g1g2, s)L( f1g2, s)L( f2g1, s)

L( f1 f2g1g2, 2s)
.

We are ready to state and prove the main result of this section.

Theorem 3.5 Let F,G ∈ S
∗ be two Dirichlet series with completely multiplicative co-

efficients. Also assume the following:

(i) F and G are ⊗-simple in Re(s) > 1
2
.

(ii) F ⊗ G has an analytic continuation to Re(s) > 1
2
.

(iii) (F ⊗ G) ⊗ (F ⊗ G) is analytic for Re(s) > 1 and has a pole at s = 1.

(iv) (F ⊗ F)(s), (G ⊗ G)(s) and (F ⊗ G)(s) have finite limits as s → 1
2

+
.3

Then (F ⊗ G)(1 + it) 6= 0 for all t.

Proof Let

F(s) =

∞
∑

n=1

aF(n)

ns
, G(s) =

∞
∑

n=1

aG(n)

ns
.

Let

f1(n) = aF(n)n−it0 , f2(n) = aF(n)nit0 , g1(n) = aG(n), g2(n) = aG(n),

and for Re(s) > 1, consider the following Dirichlet series

f (s) =

∞
∑

n=1

|( f1 ∗ g1)(n)|2
ns

=

∞
∑

n=1

( f1 ∗ g1)(n)( f2 ∗ g2)(n)

ns
.

3This means s = σ + it → 1

2
+ it for any t as σ → 1

2

+
.
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So, by Lemmas 3.2 and 3.4 and for Re(s) > 1, we have

f (s) =
(F ⊗ F)(s) (F ⊗ G)(s + it0) (G ⊗ F)(s − it0) (G ⊗ G)(s)

[(F ⊗ G) ⊗ (F ⊗ G)] (2s)
.

Now suppose that (F⊗G)(1+it0) = 0 for a real t0, then we have in fact the analyticity

of f (s) for Re(s) > 1
2
, and since the coefficients in the series are non-negative, by

Lemma 3.1 the Dirichlet series representing f (s) is convergent for Re(s) > 1
2
. So, for

η > 0, we have

f
( 1

2
+ η

)

=

∞
∑

n=1

|( f1 ∗ g1)(n)|2
n

1
2

+η
≥ 1.

However, since (F ⊗ G) ⊗ (F ⊗ G) has a pole at s = 1,

[(F ⊗ G) ⊗ (F ⊗ G)]
(

2
( 1

2
+ η

))

= [(F ⊗ G) ⊗ (F ⊗ G)] (1 + 2η) → ∞

as η → 0+. This shows that

lim
η→0+

f
( 1

2
+ η

)

= 0,

which is a contradiction. So, (F ⊗ G)(1 + it) 6= 0 for all real t .

By choosing G(s) = ζ(s) in the previous theorem, we have

Corollary 3.6 Let F ∈ S∗ be analytic and ⊗-simple in Re(s) > 1
2
. If the coefficients

of F are completely multiplicative and F(s) together with (F ⊗ F)(s) have finite limits as

s → 1
2

+
, then F(1 + it) 6= 0, for all t ∈ R.

The following non-vanishing results are simple consequences of the previous cor-

ollary.

Corollary 3.7 Let χ be a non-trivial Dirichlet character and let f (n) be a completely

additive4 arithmetic function and let t ∈ R. Then

(i) Lχ(1 + it) 6= 0.

(ii) If
∑

n≤x(−1) f (n)χ(n) = O(xδ) for δ < 1
2
, then L(s) =

∑∞
n=1

(−1) f (n)χ(n)

ns is ana-

lytic in Re(s) > δ and L(1 + it) 6= 0.

4 Ogg’s Method

In this section, we consider the extension of the results of Section 3 to Dirichlet series

with general coefficients. Our approach in this section is motivated by a paper by

Ogg [8]. The following lemma describes the basic ingredient of this approach.

4This means f (mn) = f (m) + f (n) holds for all m and n.
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Lemma 4.1 Let f (s) be a complex function that satisfies the following:

(i) f (s) is analytic on the half-plane Re(s) > σ0;

(ii) log f (s) has a representation in terms of a Dirichlet series with non-negative coef-

ficients on the half-plane Re(s) > σ1 (σ1 > σ0).

Then f (s) 6= 0 for Re(s) > σ0.

Proof Let σ2 be the largest real zero of f (σ0 < σ2 ≤ σ1). Since

log f (s) =

∞
∑

n=1

c(n)

ns

for Re(s) > σ1 (c(n) ≥ 0), and since log f (s) is analytic in a neighborhood of

the segment σ2 < σ ≤ σ1, then by Lemma 3.1, we have log f (s) =
∑∞

n=1
c(n)

ns for

Re(s) > σ2. Thus,

log | f (σ)| = Re(log f (σ)) = log f (σ) =

∞
∑

n=1

c(n)

nσ
≥ 0

for σ > σ2. Therefore, | f (σ)| ≥ 1 for σ > σ2. This contradicts the assumption

f (σ2) = 0, and therefore f has no real zero σ > σ0. So log f (s) is analytic on the

interval (σ0, σ1], and Lemma 3.1 in fact shows that log f (s) exists and is analytic for

Re(s) > σ0. This means that f (s) is non-zero for Re(s) > σ0.

Here, we prove the main result of this section.

Theorem 4.2 Let σ0 < 1, and assume the following:

(i) F and G (as elements of S∗) are ⊗-simple in Re(s) > σ0;

(ii) F ⊗ G has an analytic continuation to the half-plane Re(s) > σ0;

(iii) At least one of F ⊗ F, G ⊗ G, or F ⊗ G has zeros in the strip σ0 < Re(s) < 1.

Then (F ⊗ G)(1 + it) 6= 0 for all real t.

Proof Suppose that (F ⊗ G)(1 + it0) = 0, and let

f (s) = (F ⊗ F)(s) (F ⊗ G)(s + it0) (G ⊗ F)(s − it0) (G ⊗ G)(s).

First of all note that G ⊗ F is analytic for Re(s) > σ0. Since (F ⊗ G)(1 + it0) = 0,

then (G ⊗ F)(1 − it0) = 0, and since s = 1 is a pole of order ≤ 1 for both F ⊗ F and

G ⊗ G, we conclude that f (s) is analytic at point s = 1, and therefore, analytic for

Re(s) > σ0. Now note that for Re(s) > 1,

log f (s) =

∑

p

∞
∑

k=1

k|bF(pk) + bG(pk)pikt0 |2
pks

=

∞
∑

n=1

c(n)

ns

where c(n) ≥ 0. So, f (s) satisfies the conditions of the Corollary 4.1 with σ1 = 1,

and therefore, f (s) 6= 0 for Re(s) > σ0. This contradicts our assumption in (iii).
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Corollary 4.3 Let F ∈ S∗ be analytic and ⊗-simple in Re(s) ≥ 1
2
, then F(1 + it) 6= 0.

Proof Let G(s) = ζ(s). Note that ζ(s) has zeros in the half-plane Re(s) ≥ 1/2 (see

[1, p. 97]). Thus by Theorem 4.2, F(1 + it) = (F ⊗ G)(1 + it) 6= 0.

Corollary 4.4 Let f ∈ Sk(N, ψ1) and g ∈ Sk(N, ψ2) be eigenforms for Γ0(N), let χ
be a non-trivial Dirichlet character (mod q) and let t be any real number. Then

(i) Lχ(1 + it) 6= 0.

(ii) L f (1 + it) 6= 0.

(iii) L f ,χ(1 + it) 6= 0.

(iv) If ψ1 6= ψ2 or 〈 f , g〉 = 0, then L( f ⊗ g, 1 + it) 6= 0.

(v) Let f̄χ̄(z) =
∑∞

n=1 a f (n)χ(n)e2πinz. Then if ψχ is not a real character of or-

der 2 or
∫

D0(Nq2)
f (z) f̄χ̄(z)yk−2 dxdy = 0, we have Lχ( f ⊗ f̄ , 1 + it) 6= 0 and

Lχ(sym2 f , 1 + it) 6= 0. Here D0(Nq2) is a fundamental domain for Γ0(Nq2).

Proof (i), (ii) and (iii) are simple consequences of Corollary 4.3 and Theorem 4.2.

(iv) By Theorem 1.5 we can show that conditions (i) and (ii) of Theorem 4.2 are

satisfied. The result will be obtained if we only show that L( f ⊗ g, s) has a zero in the

half-plane Re(s) < 1. Again by Theorem 1.5, if ψ1 6= ψ2 or 〈 f , g〉 = 0, then

Φ(s) =

(

2π√
N

)−2s

Γ(s)Γ(s + k − 1)L( f ⊗ g, s)

is analytic at s = 0. Since Γ(s) has a pole at s = 0, then L( f ⊗ g, 0) = 0.
(v) First of all note that f̄χ̄ ∈ Sk(Nq2, ψχ2) (see [4, p. 127]) and Lχ( f ⊗ f̄ , s) =

L( f ⊗ f̄χ̄, s). So under the given conditions, by (iv) we have Lχ( f ⊗ f̄ , 1 + it) 6= 0.

This together with (i) imply that

Lχ(sym2 f , 1 + it) = Lχ( f ⊗ f̄ , 1 + it)/Lψχ(1 + it) 6= 0.
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