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Abstract An analytic function f in the unit disc D belongs to F (p, q, s), if∫
D

|f ′(z)|p(1 − |z|2)qgs(z, a) dA(z)

is uniformly bounded for all a ∈ D. Here g(z, a) = − log |ϕa(z)| is the Green function of D, and ϕa(z) =
(a − z)/(1 − āz). It is shown that for 0 < γ < ∞ and |w| = 1 the singular inner function exp(γ(z +
w)/(z −w)) belongs to F (p, q, s), 0 < s � 1, if and only if p � q+ 1

2 (s+3). Moreover, it is proved that, if
0 < s < 1, then an inner function belongs to the Möbius invariant Besov-type space Bp

s = F (p, p − 2, s)
for some (equivalently for all) p > max{s, 1 − s} if and only if it is a Blaschke product whose zero
sequence {zn} satisfies supa∈D

∑∞
n=1(1 − |ϕa(zn)|2)s < ∞.
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1. Introduction and main results

An analytic function in the unit disc D := {z : |z| < 1} is called an inner function if its
modulus equals 1 almost everywhere on the boundary T := {z : |z| = 1}. It is well known
that every such function can be represented as a product of a Blaschke product and a
singular inner function [16]. For a given sequence {zn} in D for which

∑∞
n=1(1 − |zn|2)

converges (with the convention zn/|zn| = 0 for zn = 0), the Blaschke product associated
with the sequence {zn} is defined as

B(z) :=
∞∏

n=1

|zn|
zn

zn − z

1 − z̄nz
.

A singular inner function is of the form

S(z) := exp
( ∫

T

z + w

z − w
dσ(w)

)
,
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where the measure σ on T is singular with respect to the Lebesgue measure. If the
measure σ is atomic and consists of a point mass concentrated in w ∈ T, then S is of the
form

Sγ,w(z) := exp
(

γ
z + w

z − w

)
,

where 0 < γ < ∞.
The purpose of this paper is to study the classical problem of determining which inner

functions (or their derivatives) belong to a given space of analytic functions. In the case of
Hardy and related spaces, this problem has been studied, for example, in [1,3,4,11,35],
and in the case of weighted Bergman spaces the reader is referred to [1,24,25,30]. Many
related results on Blaschke products can be found in [12]. For singular inner functions
and more recent developments on Blaschke products, see, for example, [7,8,14,20,23,31,
40,41]. The general theory of Hardy and Bergman spaces can be found in [16,18,21,27].

The spaces of primary interest in this study are the Möbius invariant Besov-type spaces.
For p > 0 and s � 0, the Besov-type space Bp

s consists of those analytic functions f in D

for which

sup
a∈D

∫
D

|f ′(z)|p(1 − |z|2)p−2gs(z, a) dA(z) < ∞,

where g(z, a) := − log |ϕa(z)| is the Green function of D and ϕa(z) := (a − z)/(1 − āz).
The closure of polynomials in Bp

s is the small Besov-type space Bp
s,0, and it consists of

those analytic functions f in D for which the integral above tends to 0 as a approaches
the boundary T. In the study of inner functions the Besov-type spaces form a family
which is of special interest, since many classical function spaces can be found among Bp

s

by choosing the parameters p and s appropriately. The space Bp
0 is the classical Besov

space Bp that contains no other inner functions than finite Blaschke products [15,30].
For 0 < s < 1, the space B2

s is the Qs-space in which the only inner functions are Blaschke
products whose zeros {zn} have the density supa∈D

∑∞
n=1(1 − |ϕa(zn)|2)s < ∞ [20]. Fur-

thermore, it is well known that B2
1 coincides with BMOA, the space of analytic functions

in the Hardy space H1 whose boundary values have bounded mean oscillation on T,
and therefore it contains all inner functions. Furthermore, an application of the Garsia
norm in BMOA shows that the only inner functions in B2

1,0 = VMOA (the space of ana-
lytic functions of vanishing mean oscillation) are finite Blaschke products. In general,
a function in Bp

s is always a Bloch function and therefore it cannot exceed logarithmic
growth. In particular, Bp

s coincides with the Bloch space B for all 1 < s < ∞ [46].
See [5,34,44,45] for more details on the Qs-theory and the Bloch space.

The first of the main results in this paper is Theorem 1.1. It determines precisely the
values of p, q and s for which the singular inner function Sγ,w belongs to F (p, q, s) or
F0(p, q, s). For 0 < p < ∞, −2 < q < ∞ and 0 � s < ∞ such that q + s > −1, the spaces
F (p, q, s) and F0(p, q, s) consist of those analytic functions f in D for which

‖f‖F (p,q,s) :=
(

sup
a∈D

∫
D

|f ′(z)|p(1 − |z|2)qgs(z, a) dA(z)
)1/p

< ∞
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and
lim

|a|→1−

∫
D

|f ′(z)|p(1 − |z|2)qgs(z, a) dA(z) = 0, 0 < s < ∞,

respectively. It is necessary to assume that q+s > −1, since otherwise F (p, q, s) contains
constant functions only. Moreover, if 1 < s < ∞, then an analytic function f in D belongs
to F (p, q, s) if and only if |f ′(z)|(1 − |z|2)(q+2)/p is uniformly bounded in D. For these
and other basic properties of F (p, q, s), see [36,46].

Theorem 1.1. Let 0 < p < ∞, −2 < q < ∞ and 0 < s � 1 such that q + s > −1.
Then Sγ,w ∈ F (p, q, s) if and only if p � q + 1

2 (s + 3), and Sγ,w ∈ F0(p, q, s) if and only
if p < q + 1

2 (s + 3). Moreover, Sγ,w ∈ F (p, q, 0) if and only if p < q + 3
2 .

Recall that, for 0 < p < ∞ and −1 < q < ∞, the weighted Bergman space Ap
q consists

of those analytic functions f in D for which

‖f‖Ap
q

:=
( ∫

D

|f(z)|p(1 − |z|2)q dA(z)
)1/p

< ∞.

In particular, Ap
0 is the classical Bergman space Ap. The last assertion in Theorem 1.1

says that S′
γ,w ∈ Ap

q if and only if p < q + 3
2 . This result is essentially known [29].

Theorem 1.1 yields the following corollary, which yields precisely the values of p and s

for which Sγ,w belongs to Bp
s or Bp

s,0. It is worth noting that the Besov-type spaces obey
the strict inclusions

Bp1
s � Bp2

s and Bp1
s,0 � Bp2

s,0 (1.1)

for all 1 − s < p1 < p2 < ∞ and 0 � s � 1 [46].

Corollary 1.2. Let 0 < p < ∞ and 0 � s < 1 such that p + s > 1. Then Sγ,w �∈ Bp
s

and Sγ,w �∈ Bp
1,0, but Sγ,w ∈ Bp

1 .

The second of the main results generalizes in part Corollary 1.2 to the case when the
generating measure σ of the singular inner function S is non-atomic.

Theorem 1.3. Let 0 < p < ∞ and 0 � s < 1 such that p + s > 1. Then Bp
s does not

contain any singular inner functions.

By Corollary 1.2, Theorem 1.3 and Corollary 2.5, the only possible inner functions in
Bp

s , 0 � s < 1, and Bp
1,0 are Blaschke products. As mentioned earlier, the only inner

functions in the classical Besov space Bp = Bp
0 are finite Blaschke products. Theorem 1.4

shows that this is no longer true for Bp
s if 0 < s � 1 and p > 1 − s. This result can

also be considered as a refinement of the known fact that an inner function belongs to
Qs = B2

s , 0 < s < 1, if and only if it is a Blaschke product whose zeros {zn} satisfy
supa∈D

∑∞
n=1(1 − |ϕa(zn)|2)s < ∞ [20].

Theorem 1.4. Let 0 < s < 1. Then an inner function belongs to the Möbius invariant
Besov-type space Bp

s = F (p, p − 2, s) for some (equivalently for all) p > max{s, 1 − s} if
and only if it is the Blaschke product associated with a sequence {zn} which satisfies

sup
a∈D

∞∑
n=1

(1 − |ϕa(zn)|2)s < ∞. (1.2)
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For 0 < s � 1
2 , the assertion in Theorem 1.4 is sharp in the sense that 1 − s � s and

the condition p > 1 − s only guarantees that the space Bp
s is not trivial.

The assertion in Theorem 1.4 clearly fails for s = 1 since B2
1 = BMOA contains all

bounded analytic functions, while the condition (1.2) for s = 1 is satisfied if and only if
{zn} is a finite union of uniformly separated sequences [17,32]. Recall that a sequence
{zn} ⊂ D is called uniformly separated if there exists a δ such that

inf
j

∏
k �=j

|ϕzk
(zj)| � δ > 0.

A famous result by Carleson [9] states that {zn} is an interpolating sequence for the
space H∞ of all bounded analytic functions in D if and only if it is uniformly separated.
Therefore, the Blaschke products associated with uniformly separated sequences are often
called interpolating Blaschke products. It is also worth observing that (1.2) for s = 2 is
satisfied if and only if {zn} is a finite union of uniformly discrete sequences [19]. A
sequence {zn} ⊂ D is called uniformly discrete (or separated), if there exists a δ such
that

inf
k �=j

|ϕzk
(zj)| � δ > 0.

For ξ ∈ T and M ∈ [1,∞), the domain {z ∈ D : |1 − ξ̄z| � M(1 − |z|2)} is called
a Stolz angle with vertex at ξ. Blaschke products whose zeros lie in such an angular
domain and which belong to Qs have been studied in [14]. Theorem 1.4 and the proofs
of [14, Theorems 1 and 2] yield Corollary 1.5. A decreasing sequence {an} of positive real
numbers tending to 0 is called asymptotically concentrated if, for any k ∈ N := {1, 2, . . . },
there is an infinite sequence {nj} ⊂ N, depending on k, such that (anj /anj+k) → 1 as
j → ∞.

Corollary 1.5. Let 0 < s < 1 and p > max{s, 1 − s}, and let B be a Blaschke
product with zeros {zn} in a Stolz angle. Then B ∈ Bp

s if and only if {1 − |zn|} is not
asymptotically concentrated.

The question of when the derivative of a Blaschke product with zeros in a Stolz angle
belongs to the weighted Bergman spaces has been studied, for example, in [24–26].

Another immediate consequence of Theorem 1.4 follows by [37, Theorem 2.1]. Corol-
lary 1.6 gives a sufficient condition for the zeros of a Blaschke product such that it belongs
to Bp

s . It is known that the converse implication is not true in general [37].

Corollary 1.6. Let 0 < s < 1, and let B be the Blaschke product associated with a
sequence {zn}. If there exists a positive constant C such that

∞∑
n=k+1

(1 − |zn|2)s � C(1 − |zk|2)s

for all k ∈ N, then B ∈ Bp
s for all p > max{s, 1 − s}.
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Let us return to the case when s = 1, excluded in Theorem 1.4, which does not seem
to be so straightforward. Since B2

1 = BMOA and B2
1,0 = VMOA, the inclusions in (1.1)

ensure that Bp
1 contains all inner functions if p � 2, and Bp

1,0 contains no inner functions
other than finite Blaschke products when p � 2. By Corollary 1.2, the singular inner
function Sγ,w belongs to Bp

1 for all p > 0, and does not belong to Bp
1,0 for any p > 0.

Moreover, Theorem 4.2 (b), below, shows that if the zero-sequence {zn} of a Blaschke
product B satisfies

sup
a∈D

∞∑
n=1

(1 − |ϕa(zn)|2) log
1

1 − |ϕa(zn)|2 < ∞, (1.3)

then B ∈ B1
1 . Conversely, if

sup
a∈D

∫
D

|B′(z)|(1 − |z|2)−1 log
1

1 − |z| (1 − |ϕa(z)|2) dA(z) < ∞, (1.4)

then the zero-sequence {zn} of B satisfies (1.3) (see the discussion before the proof of
Theorem 1.4). If B1

1,log denotes the space of all analytic functions in D satisfying (1.4),
then clearly B1

1,log � B1
1 . By the discussion at the end of § 3, the singular inner function

S does not belong to B1
1,log and, as just pointed out, the zero-sequence {zn} of a Blaschke

product in B1
1,log satisfies (1.3). Complete characterizations of inner functions in Bp

1 and
Bp

1,0 remain as open problems.
The remainder of this paper is organized as follows. Section 2 contains general results

on inner functions and other auxiliary results. Some of these results may be of indepen-
dent interest. For example, Lemma 2.1 on radial integrability of inner functions plays an
important role in the proofs of some of the main results, and it also generalizes [4, The-
orem 1], [20, Lemma 4.1] and [42, Lemma 2.2]. While Theorem 2.3 extends Lemma 2.1,
Lemma 2.2 gives a fairly elementary proof for [28, Lemma 4.6] and [36, Lemma 5.3.1], and
Corollary 2.4 might be of interest for those who wish to study inner–outer factorizations
in F (p, q, s). Moreover, Corollary 2.5 says that, under certain conditions on p, q and s, a
finite product of inner functions belongs to F (p, q, s) if and only if every member in the
product does. Section 3 contains the proofs of Theorems 1.1 and 1.3. Section 4 begins
with a brief discussion on Blaschke products whose first derivatives belong to a given
weighted Bergman space (see Theorems A and 4.1). Theorem 4.2 establishes a sufficient
condition for the zeros of a Blaschke product such that it belongs to Bp

s , 0 < p, s < 1, and
a necessary condition in the case when p � 1 is obtained in Theorem 4.3. These results,
together with some auxiliary results from § 2, finally yield a proof of Theorem 1.4.

2. Results on inner functions and auxiliary results

The first result of this section indicates the values of p, q and s which are of interest when
studying inner functions in the spaces F (p, q, s) and F0(p, q, s). Here A denotes the closure
of polynomials in the space H∞, and Bα stands for the α-Bloch space which consists of
those analytic functions f in D such that |f ′(z)|(1 − |z|2)α is uniformly bounded in D.
In particular, B1 is the Bloch space B.
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Proposition A. Let 0 < p, α < ∞, −2 < q < ∞ and 0 � s � 1 such that q + s > −1.
Then

(1) A �⊂ Bα, 0 < α < 1,

(2) A � H∞ � Bα, 1 � α < ∞,

(3) A � H∞ � B � F0(p, q, s) ⊂ F (p, q, s), p < q + s + 1,

(4) A �⊂ F (p, q, s), p > q + s + 1,

(5) A � VMOA ⊂ F0(p, q, s), p = q + s + 1 � 2,

(6) H∞ � BMOA ⊂ F (p, q, s), p = q + s + 1 � 2,

(7) A �⊂ F (p, q, s), p = q + s + 1 < 2.

Cases (1)–(5) can be found in [36, § 2.3]. In particular, (5) follows by [36, Corol-
lary 2.3.5], which is a consequence of [13, Theorem 8]. Furthermore, (6) follows by the
inclusions H∞ � BMOA and (1.1). Case (7) follows by [22, Theorem 2]. Indeed, if
q + s = p − 1, then

sup
a∈D

∫
D

|f ′(z)|p(1 − |z|2)q(1 − |ϕa(z)|2)s dA(z) �
∫

D

|f ′(z)|p(1 − |z|2)p−1 dA(z),

and by [22, Theorem 2] there is a function f ∈ A for which the last integral diverges if
0 < p < 2.

It is easy to see that the α-Bloch space Bα and the classical Besov space Bp = Bp
0 are

both subsets of VMOA for any 0 < α < 1 and 1 < p < ∞. Since the only inner functions
in VMOA are finite Blaschke products, Proposition 2 implies that the following four cases
are of interest when q + s > −1 and 0 < s � 1:

(1) q + 1 � p < q + 2 for F (p, q, 0),

(2) q + s + 1 < p � q + 2 for both F (p, q, s) and F0(p, q, s),

(3) p = q + s + 1 < 2 for both F (p, q, s) and F0(p, q, s),

(4) 2 � p = q + s + 1 for F0(p, q, s) only.

Two quantities a and b are said to be comparable, denoted by a � b, if the quotient
a/b is bounded and bounded away from 0. Moreover, a � b means that a � Cb for some
positive constant C, and a � b is understood in an analogous manner.

The following result on radial integrability of inner functions plays an important role
in some of the proofs. It also generalizes [4, Theorem 1], [20, Lemma 4.1] and [42,
Lemma 2.2].
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Lemma 2.1. Let S be an inner function and let 1 � p < ∞ and −1 < q < ∞ such
that p > q + 1. Then, for any 0 � δ < 1, there is a constant C, depending only on p and
q, such that

C

∫ 1

δ

(1 − |S(reiθ)|2)p(1 − r2)q−p dr �
∫ 1

δ

|S′(reiθ)|p(1 − r2)q dr

�
∫ 1

δ

(1 − |S(reiθ)|2)p(1 − r2)q−p dr (2.1)

for almost all θ in [0, 2π).

Proof. The second inequality in (2.1) follows by the Schwarz–Pick lemma

|S′(z)|(1 − |z|2) � 1 − |S(z)|2, z ∈ D,

and it holds for all p > 0 and q > −1.
To prove the first inequality in (2.1), the proof of [20, Lemma 4.1] is followed. Let

p � 1 and p > q + 1. Since

1 − |S(reiθ)| �
∫ 1

r

|S′(seiθ)|ds =
∫ 1

0
|S′((t + (1 − t)r)eiθ)|(1 − r) dt (2.2)

for almost all θ in [0, 2π), Minkowski’s integral inequality (Fubini’s theorem in the case
when p = 1) yields

( ∫ 1

δ

(1 − |S(reiθ)|2)p(1 − r2)q−p dr

)1/p

�
∫ 1

0

( ∫ 1

δ

|S′((t + (1 − t)r)eiθ)|p(1 − r)q dr

)1/p

dt

=
∫ 1

0

( ∫ 1

δ+t(1−δ)
|S′(ueiθ)|p(1 − u)q du

)1/p

(1 − t)−(q+1)/p dt

�
( ∫ 1

δ

|S′(ueiθ)|p(1 − u)q du

)1/p

,

and the assertion follows. �

The first inequality in (2.1) is especially easy to prove if q < 0. Namely, if p � 1, then
the inequality in (2.2), Hölder’s inequality and Fubini’s theorem yield

∫ 1

δ

(1 − |S(reiθ)|)p(1 − r)q−p dr �
∫ 1

δ

∫ 1

r

|S′(seiθ)|p ds(1 − r)q−1 dr

=
∫ 1

δ

|S′(seiθ)|p
∫ s

δ

(1 − r)q−1 dr ds

� −1
q

∫ 1

δ

|S′(seiθ)|p(1 − s)q ds.
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In a similar manner one can show that∫ 1

δ

(1 − |S(reiθ)|2)p(1 − r2)−p dr �
∫ 1

δ

|S′(reiθ)|p log
1

1 − r
dr (2.3)

for almost all θ in [0, 2π). Defining logn+1 x := logn(log x), log1 x := log x, expn+1 x :=
expn(exp(x)) and exp1 x := expx, the general form of (2.3) can be written as

∫ 1

δ

(1 − |S(reiθ)|)p (1 − r)−p∏n
j=1 logn 1/(1 − r)

dr �
∫ 1

δ

|S′(reiθ)|p logn+1
1

1 − r
dr,

valid for almost all θ in [0, 2π), provided that δ > 1 − 1/(expn 1).
Next, the reasoning in the proof of Lemma 2.1 is used to prove an area integral ver-

sion involving an arbitrary analytic function (see Theorem 2.3). To do this, the following
lemma is needed. It is worth observing that the proof presented here gives a fairly ele-
mentary proof for [28, Lemma 4.6] and [36, Lemma 5.3.1].

Lemma 2.2. Let f be an analytic function in D, and let 0 < p < ∞, −1 < q < ∞,
0 � t < ∞ and 0 � δ < 1. Then there is a positive constant C, depending only on q and
t, such that

∫ 1

δ

∫ 2π

0
|f(reiθ)|p(1 − r2)q dθ dr � C

∫
D\∆(0,δ)

|f(z)|p(1 − |z|2)q|z|t dA(z), (2.4)

where ∆(0, δ) := {z : |z| < δ}.

Proof. If 1
2 � δ < 1, then (2.4) holds with C = 2t+1. Now let 0 � δ < 1

2 . Since
∫ 2π

0
|f(reiθ)|p dθ

is a non-decreasing function of r by Hardy’s convexity theorem [16, Theorem 1.5], it
follows that∫ 1

0

∫ 2π

0
|f(reiθ)|p(1 − r2)q dθ dr

�
∫ 2π

0
|f( 1

2eiθ)|p dθ

∫ 1/2

0
(1 − r2)q dr

+ 2t+1
∫ 1

1/2

∫ 2π

0
|f(reiθ)|p(1 − r2)qrtr dθ dr

= C(q, t)
∫ 2π

0
|f( 1

2eiθ)|p dθ

∫ 1

1/2
(1 − r2)qrtr dr

+ 2t+1
∫

D\∆(0,1/2)
|f(z)|p(1 − |z|2)q|z|t dA(z)

� (C(q, t) + 2t+1)
∫

D\∆(0,1/2)
|f(z)|p(1 − |z|2)q|z|t dA(z),
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where

C(q, t) :=

∫ 1/2
0 (1 − r2)q dr∫ 1

1/2(1 − r2)qrt+1 dr
.

The inequality (2.4) with C = C(q, t) + 2t+1 for 0 � δ < 1
2 now clearly follows. �

Theorem 2.3. Let S be an inner function and let 1 � p < ∞, −2 < q < ∞,
0 < p∗ < ∞ such that p > q + 1 > 0. Then, for any analytic function f in D and
0 � δ < 1, the following quantities are comparable:

(1)
∫

D\∆(0,δ)
|f(z)|p∗

(1 − |S(z)|2)p(1 − |z|2)q−p dA(z);

(2)
∫

D\∆(0,δ)
|f(z)|p∗ |S′(z)|p(1 − |z|2)q dA(z).

Proof. By the Schwarz–Pick lemma it suffices to show that there exists a positive
constant, depending only on p, q and p∗, such that the integral in (1) is less than or
equal to this constant times the integral in (2). To do this, define

F (reiθ) := sup
0<t�r

|(f(teiθ))|p∗/p.

Reasoning similar to that in the proof of Lemma 2.1 yields

∫
D\∆(0,δ)

|f(z)|p∗
(1 − |S(z)|2)p(1 − |z|2)q−p dA(z)

�
∫ 2π

0

∫ 1

δ

|F (ueiθ)|p|S′(ueiθ)|p(1 − u)q du dθ.

By the Hardy–Littlewood maximal theorem [16, Theorem 1.9],

∫ 2π

0
|F (ueiθ)|p|S′(ueiθ)|p dθ �

∫ 2π

0
|f(ueiθ)|p∗ |S′(ueiθ)|p dθ,

and therefore
∫

D\∆(0,δ)
|f(z)|p∗

(1 − |S(z)|2)p(1 − |z|2)q−p dA(z)

�
∫ 2π

0

∫ 1

δ

|f(ueiθ)|p∗ |S′(ueiθ)|p(1 − u2)q du dθ,

from which the assertion follows by Lemma 2.2. �

Another immediate consequence of Theorem 2.3 is Corollary 2.4, which may be of
interest for those who wish to study inner–outer factorizations in F (p, q, s).
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Corollary 2.4. Let S be an inner function and let 1 � p < ∞, −2 < q < ∞ and
0 � s, p∗ < ∞ such that p > q + s + 1 > 0. Then, for any analytic function f in D and
a ∈ D, the following quantities are comparable:

(1)
∫

D

|f(z)|p∗
(1 − |S(z)|2)p(1 − |z|2)q−p(1 − |ϕa(z)|2)s dA(z);

(2)
∫

D

|f(z)|p∗ |S′(z)|p(1 − |z|2)q(1 − |ϕa(z)|2)s dA(z).

The last result of this section is a consequence of Lemma 2.1 and [2, Theorem 6]. The
reasoning involves Carleson measures. For 0 < s < ∞, a positive measure µ on D is a
bounded s-Carleson measure, if µ(Q(I)) = O(|I|s), where |I| denotes the arc length of
a subarc I of T and Q(I) := {z ∈ D : z/|z| ∈ I, 1 − |I| � |z|} is the Carleson box
based on I. Moreover, if µ(Q(I)) = o(|I|s) as |I| → 0, then µ is a compact (or vanishing)
s-Carleson measure. These measures (for s = 1) were introduced by Carleson [9, 10]
(see [33] for a list of relevant references). It is known that an analytic function f in D

belongs to F (p, q, s) (respectively, F0(p, q, s)), 0 < s < ∞, if and only if the measure
µ such that dµ(z) = |f ′(z)|p(1 − |z|2)q+s dA(z) is a bounded (respectively, compact)
s-Carleson measure [6,46].

Corollary 2.5. Let 1 � p < ∞, −2 < q < ∞ and 0 � s < ∞ such that p >

q+s+1 > 0. Let S :=
∏n

j=1 Sj , where Sj is an inner function for all j = 1, 2, . . . , n. Then
S ∈ F (p, q, s) if and only if Sj ∈ F (p, q, s) for all j = 1, 2, . . . , n. Similarly, S ∈ F0(p, q, s)
if and only if Sj ∈ F0(p, q, s) for all j = 1, 2, . . . , n. Moreover, if q = p − 2, then these
assertions hold for all p > 1 − s.

Proof. Let first 1 � p < ∞ and Sj ∈ F (p, q, s) for all j = 1, 2, . . . , n. Define S :=∏n
j=1 Sj . Then

S′ =
n∑

j=1

S′
j

∏
k �=j

Sk,

from which Hölder’s inequality yields |S′(z)|p � np−1 ∑n
j=1 |S′

j(z)|p, and it follows that
S ∈ F (p, q, s).

Now let S ∈ F (p, q, s). Since |Sj(z)| � |S(z)| for all z ∈ D and j = 1, 2, . . . , n,
Lemma 2.1 implies that

∫
Q(I)

|S′
j(z)|p(1 − |z|2)q+s dA(z) �

∫
Q(I)

(1 − |S(z)|2)p(1 − |z|2)q+s−p dA(z)

�
∫

Q(I)
|S′(z)|p(1 − |z|2)q+s dA(z),

from which [46, Theorem 2.4] yields Sj ∈ F (p, q, s) for all j = 1, . . . , n. The assertion for
small spaces follows readily by the proof above.

If q = p − 2 and 0 < p < 1, then the assertions follow by using the inequality
|S′(z)|p �

∑n
j=1 |S′

j(z)|p, an equivalent seminorm in F (p, q, s), established in [46] and
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defined by (
sup
a∈D

∫
D

|f ′(z)|p(1 − |z|2)q(1 − |ϕa(z)|2)s dA(z)
)1/p

, (2.5)

the change of variable z = ϕa(w) and [2, Theorem 6]. �

Note that the assertions of Corollary 2.5 in the case when p � 1 can also be proved by
using (2.5) and Corollary 2.4 with f ≡ 1.

3. Singular inner functions

This section contains the proofs of Theorems 1.1 and 1.3 on singular inner functions.
Recall that if the generating measure σ of the singular inner function S is atomic and
consists of a point mass concentrated in w ∈ T, then S is of the form

Sγ,w(z) = exp
(

γ
z + w

z − w

)
,

where 0 < γ < ∞, and then

|S′
γ,w(z)| =

2γ

|z − w|2 exp
(

− γ
1 − |z|2
|z − w|2

)
. (3.1)

Proof of Theorem 1.1. Let q+s+1 � p < q+s+ 3
2 and let w = eiθ. Then, by (3.1),

J(t) :=
∫ 1

0
|S′

γ,eiθ (re
it)|p(1 − r2)q+sr dr

�
∫ 1

0
exp

(
− pγ

1 − r

|1 − rei(t−θ)|2

)
γp(1 − r)q+s

|1 − rei(t−θ)|2p
dr,

and since |1 − rei(t−θ)|2 = (1 − r)2 + rc2, where c := |1 − ei(t−θ)|, it follows that

J(t) �
∫ 1

0
exp

(
− pγ

u

u2 + c2(1 − u)

)(
γu

u2 + c2(1 − u)

)p du

up−q−s
.

Without loss of generality, assume c � 1. Then

J(t) �
∫ c

0
exp

(
− p

2
γu

c2

)(
γu

c2

)p du

up−q−s
+

∫ 1

c

exp
(

− p

2
γ

u

)(
γ

u

)p du

up−q−s

=
(

γ

c2

)p−q−s−1 ∫ γ/c

0
exp(− 1

2pv)vq+s dv + γq+s+1−p

∫ γ/c

γ

exp(− 1
2pv)v2p−q−s−2 dv

=: J1(t) + J2(t).

The quantity J2(t) is bounded by a positive constant, depending only on p, q, s and γ,
for all t ∈ [0, 2π]. Moreover, since q + s > −1, J1(t) � c2(q+s+1−p), and thus J(t) �
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c2(q+s+1−p) + 1. It follows that
∫

Q(I)
|S′

γ,w(z)|p(1 − |z|2)q+s dA(z) �
∫ θ+|I|

θ

1
|1 − ei(t−θ)|2(p−q−s−1) dt + |I|

�
∫ |I|

0

dt

(1 − cos t)p−q−s−1 dt + |I|

�
∫ |I|

0

dt

t2(p−q−s−1) + |I|

� |I|2(q+s+1−p)+1 + |I| (3.2)

for all I ⊂ T such that |I| � 1. If q = p − 1
2 (s + 3), then (3.2) implies that Sγ,w ∈

F (p, p − 1
2 (s + 3), s), and the nesting property of F (p, q, s) with respect to p yields

Sγ,w ∈ F (p, q, s) for all p � q + 1
2 (s + 3). Moreover, if q + s + 1 < p < q + 1

2 (s + 3) and
0 < s < 1, then Sγ,w ∈ F0(p, q, s) by (3.2), since 2(q+s+1−p)+1−s > 0 and 1−s > 0.
It follows that Sγ,w ∈ F0(p, q, s) for all p < q + 1

2 (s + 3), provided that 0 < s < 1. The
case when s = 1 follows by Proposition 2 (3).

To see that the conditions p � q + 1
2 (s + 3) and p < q + 1

2 (s + 3) are also necessary,
assume first that s > 0 and choose I := I(w) := {eit : θ � t � θ + |I|}. Then reasoning
similar to that above yields

∫ 1

1−|I|
|S′

γ,eiθ (re
it)|p(1 − r2)q+sr dr �

∫ c

0
exp

(
− 8p

3
γu

c2

)(
γu

c2

)p du

up−q−s

�
(

γ

c2

)p−q−s−1 ∫ γ

0
exp

(
− 8p

3
v

)
vq+s dv

=: J1(t),

where J1(t) � c2(q+s+1−p). Further, the reasoning in (3.2) gives
∫

Q(I)
|S′

γ,w(z)|p(1 − |z|2)q+s dA(z) � |I|2(q+s+1−p)+1.

It follows that if q + 1
2 (s + 3) < p < q + s + 3

2 , then Sγ,w �∈ F (p, q, s), and similarly if
q + 1

2 (s + 3) � p < q + s + 3
2 , then Sγ,w �∈ F0(p, q, s). The case when s = 0 follows by

observing the proof above. �

Theorem 1.1, with an additional restriction p � 1, can also be proved by using
Lemma 2.1 and following the proof of [20, Corollary 4.2]. The proof presented here
uses some ideas from the proof of [43, Lemma 2.6].

Proof of Theorem 1.3. Let 1 < p < ∞, 0 < s < 1 and I ⊂ T with |I| � δ < 1
2 , and

let z = reiθ ∈ Q(I). If

S(z) = exp
( ∫

T

z + w

z − w
dσ(w)

)
,
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where σ is a non-atomic singular measure on T, then

|S(z)| = exp
(

−
∫

T

1 − |z|2
|w − z|2 dσ(w)

)
= exp

(
−

∫
T

1 − |z|2
|1 − w̄z|2 dσ(w)

)
. (3.3)

By Lemma 2.1 and (3.3),

JI(θ) :=
∫ 1

1−|I|
|S′(reiθ)|p(1 − r2)p−2+sr dr

�
∫ 1

1−|I|
(1 − |S(reiθ)|2)p(1 − r2)s−2 dr

�
∫ 1

1−|I|

(
1 − exp

(
−

∫ θ+|I|

θ−|I|

1 − r

|eit − reiθ|2 dσ(eit)
))p

(1 − r)s−2 dr

�
∫ 1

1−|I|

(
1 − exp

(
− σ(I)(1 − r)

2|I|2

))p

(1 − r)s−2 dr

for almost all θ in [0, 2π), and therefore

JI :=
∫

Q(I)
|S′(z)|p(1 − |z|2)p−2+s dA(z)

� |I|
∫ 1

1−|I|

(
1 − exp

(
− σ(I)(1 − r)

2|I|2

))p

(1 − r)s−2 dr

= |I|s
(

σ(I)
|I|

)1−s ∫ σ(I)/|I|

0
(1 − e−t/2)pts−2 dt. (3.4)

If S ∈ Bp
s , then JI = O(|I|s) by [46, Theorem 2.4], and (3.4) implies that

(
σ(I)
|I|

)1−s ∫ σ(I)/|I|

0
(1 − e−t/2)pts−2 dt = O(1)

as |I| → 0. But this is a contradiction since lim sup|I|→0 σ(I)/|I| = ∞ by [39, Theorem
8.11]. Thus, the assumption S ∈ Bp

s is wrong, and since the space Bp
s gets larger with p

by (1.1) it follows that S �∈ Bp
s for p > 1 − s. �

It will be shown next that the singular inner function S does not belong to B1
1,log.

By [6, Lemma 2.1], an analytic function f belongs to B1
1,log if and only if

sup
I

1
|I|

∫
Q(I)

|f ′(z)| log
1

1 − |z| dA(z) < ∞.

Assuming now that S ∈ B1
1,log and following the proof of Theorem 1.3, the inequality

in (2.3) with p = 1 yields
∫ σ(I)/|I|

0
(1 − e−t/2)t−1 dt = O(1).

This is again clearly a contradiction since lim sup|I|→0 σ(I)/|I| = ∞. Thus, the inner
function S does not belong to B1

1,log.
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4. Blaschke products

We begin with a brief discussion on Blaschke products whose first derivatives belong to
a given weighted Bergman space Ap

q . The proof of Theorem A can be found in [30] (see
also [4,38]).

Theorem A. Let 0 < p < ∞ and −1 < q < ∞. Let B be the Blaschke product
associated with a sequence {zn}.

(1) If
∞∑

n=1

(1 − |zn|2)2+q−p < ∞, max{ 1
2q + 1, q + 1} < p < q + 2,

then B′ ∈ Ap
q .

(2) Furthermore, if

∞∑
n=1

(1 − |zn|2)p log
1

1 − |zn|2 < ∞, p = 1
2q + 1 � q + 1,

then B′ ∈ Ap
q .

(3) Furthermore, if
∞∑

n=1

(1 − |zn|2)δ < ∞

for some δ < 1
2q + 1, then B′ ∈ Ap

q for any p < 1
2q + 1.

If B is the Blaschke product associated with a uniformly separated sequence {zn}
(i.e. B is an interpolating Blaschke product) such that B′ ∈ Ap

q , then reasoning similar
to that in the proof of [25, Theorem 5] shows that

∞∑
n=1

(1 − |zn|2)q+2−p < ∞. (4.1)

Therefore, assertion (1) in Theorem A is sharp. We next prove a slightly strengthened
version of this result in the case when p � 1 without appealing to [25, Lemma 6]. Some
details of the proof of Theorem 4.1 will be needed while proving Theorem 1.4. Recall
that {zn} is a finite union of uniformly separated sequences if and only if

sup
a∈D

∞∑
n=1

(1 − |ϕa(zn)|2) < ∞. (4.2)

Theorem 4.1. Let 1 � p < ∞ and −1 < q < ∞ such that q +1 < p < q +2. Let B be
the Blaschke product associated with a sequence {zn} which satisfies (4.2). If B′ ∈ Ap

q ,
then (4.1) is satisfied.
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Proof. Since 1 − r2 � −2 log r for all 0 < r � 1, it follows that

2 log |B(z)| =
∞∑

n=1

log(|ϕzn
(z)|2) � −

∞∑
n=1

(1 − |ϕzn
(z)|2),

and therefore |B(z)|2 � exp(−
∑∞

n=1(1 − |ϕzn
(z)|2)). Hence,

1 − |B(z)|2 � 1 − exp
(

−
∞∑

n=1

(1 − |ϕzn(z)|2)
)

, (4.3)

and since the function (1 − e−x)/x is decreasing in (0,∞), the assumption (4.2) yields

1 − |B(z)|2 �
∞∑

n=1

(1 − |ϕzn(z)|2)1 − exp(− supz∈D

∑∞
n=1(1 − |ϕzn(z)|2))

supz∈D

∑∞
n=1(1 − |ϕzn(z)|2)

�
∞∑

n=1

(1 − |ϕzn
(z)|2). (4.4)

By Lemma 2.1, the inequality (
∑

|bk|)p � (
∑

|bk|p) and (4.4), we obtain

‖B′‖p
Ap

q
�

∫
D

∞∑
n=1

(1 − |ϕzn(z)|2)p(1 − |z|2)q−p dA(z)

�
∞∑

n=1

(1 − |zn|2)p

∫
D

(1 − |z|2)q

|1 − z̄nz|2p
dA(z). (4.5)

Let In := {eiζ : |ζ − arg zn| � 1
2 (1 − |zn|)}, so that |In| = 1 − |zn|. It is easy to see that

|1 − z̄nz| � (2 +
√

5
2 )(1 − |zn|)

for z ∈ Q(In). This combined with (4.5) yields

‖B′‖p
Ap

q
�

∞∑
n=1

(1 − |zn|2)p

∫
Q(In)

(1 − |z|2)q

|1 − z̄nz|2p
dA(z)

�
∞∑

n=1

(1 − |zn|2)1−p

∫ 1

|zn|2
(1 − r)q dr

�
∞∑

n=1

(1 − |zn|2)q+2−p,

and the desired assertion follows. �

It is worth noting that if B is the Blaschke product associated with a sequence {zn}
which satisfies (4.2) and

∫
D

|B′(z)| log
1

1 − |z| dA(z) < ∞,
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then the inequality (2.3) and the proof of Theorem 4.1 show that the sum in Theorem
A (2) with p = 1 is finite.

We now turn to consider the Besov-type spaces. The following theorem is a partial
improvement on [43, Theorem 2.12].

Theorem 4.2. Let B be the Blaschke product associated with a sequence {zn}.

(a) If 0 < p < 1 and

sup
a∈D

∞∑
n=1

(1 − |ϕa(zn)|2)p < ∞,

then B ∈
⋂

s>max{p,1−p} Bp
s .

(b) If 1
2 < p � 1 and

sup
a∈D

∞∑
n=1

(1 − |ϕa(zn)|2)p log
1

1 − |ϕa(zn)|2 < ∞,

then B ∈ Bp
p .

(c) If 0 < s < 1 and

sup
a∈D

∞∑
n=1

(1 − |ϕa(zn)|2)s < ∞, (4.6)

then B ∈
⋂

p>max{s,1−s} Bp
s .

Proof. Since
B′(z)
B(z)

=
∞∑

n=1

|zn|2 − 1
(1 − z̄nz)(zn − z)

,

it follows that

|B′(z)| =
∣∣∣∣

∞∑
n=1

1 − |zn|2
(1 − z̄nz)(zn − z)

∣∣∣∣
∣∣∣∣

∞∏
k=1

|zk|
zk

zk − z

1 − z̄kz

∣∣∣∣

�
∞∑

n=1

1 − |zn|2
|zn − z| |1 − z̄nz|

|zn − z|
|1 − z̄nz| |Bn(z)|

�
∞∑

n=1

|ϕ′
zn

(z)|, (4.7)

where

Bn(z) :=
∏
k �=n

|zk|
zk

zk − z

1 − z̄kz
.

The inequality (4.7) yields

|(B ◦ ϕa)′(z)| �
∞∑

n=1

|ϕ′
zn

(ϕa(z))| |ϕ′
a(z)| =

∞∑
n=1

|ϕ′
ϕa(zn)(z)|,
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and it follows that

|(B ◦ ϕa)′(z)|p �
∞∑

n=1

|ϕ′
ϕa(zn)(z)|p

for 0 < p � 1. The change of variable w = ϕa(z) gives
∫

D

|B′(w)|p(1 − |w|2)p−2(1 − |ϕa(w)|2)s dA(w)

=
∫

D

|(B ◦ ϕa)′(z)|p(1 − |z|2)s+p−2 dA(z)

�
∫

D

∞∑
n=1

(1 − |ϕa(zn)|2)p

|1 − ϕa(zn)z|2p
(1 − |z|2)s+p−2 dA(z)

=
∞∑

n=1

(1 − |ϕa(zn)|2)p

∫
D

(1 − |z|2)p−2+s

|1 − ϕa(zn)z|2p
dA(z),

from which Forelli–Rudin estimates [27, Theorem 1.7] with the assumptions yield the
assertions. �

The following result is a partial converse of Theorem 4.2 (c). The proof uses ideas
from [20,42].

Theorem 4.3. Let 0 < p < ∞ and 0 < s < 1 such that p + s > 1, and let B be the
Blaschke product associated with a sequence {zn}. If B ∈ Bp

s , then (4.6) is satisfied.

Proof. Since Bp
s gets larger with p by (1.1), we may assume that B ∈ Bp

s for some
p � 1. Let I ⊂ T such that |I| � 1

2 , and define R := R(I) :=
∑

zn∈Q(I)(1 − |zn|2). By
Lemma 2.1 and the inequality (4.3), we have

JI :=
∫

Q(I)
|B′(z)|p(1 − |z|2)p−2+s dA(z)

�
∫

Q(I)

(
1 − exp

(
−

∞∑
n=1

(1 − |ϕzn(z)|2)
))p

(1 − |z|2)s−2 dA(z)

�
∫

Q(I)

(
1 − exp

(
− (1 − |z|2)

∑
zn∈Q(I)

1 − |zn|2
|1 − zz̄n|2

))p

(1 − |z|2)s−2 dA(z)

�
∫

Q(I)

(
1 − exp

(
− 1 − |z|

2|I|2 R(I)
))p

(1 − |z|2)s−2 dA(z)

= |I|
∫ 1

1−|I|

(
1 − exp

(
− 1 − r

2|I|2 R

))p

(1 − r2)s−2r dr

� |I|s
(

R

|I|

)1−s ∫ R/2|I|

0
(1 − e−u)pus−2 du.
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Since B ∈ Bp
s , [46, Theorem 2.4] implies that JI = O(|I|s), and therefore

(
R

|I|

)1−s ∫ R/2|I|

0
(1 − e−u)pus−2 du � C

for a positive constant C. It follows that R = R(I) = O(|I|), and hence (4.2) is satisfied
by [21, Chapter VI, Lemma 3.3]. If Bϕa

denotes the Blaschke product associated with
the sequence {ϕa(zn)}, then |B(ϕa(z))| = |Bϕa(z)|, and (4.4) yields

1 − |B(ϕa(z))|2 = 1 − |Bϕa(z)|2 �
∞∑

n=1

(1 − |ϕϕa(zn)(z)|2). (4.8)

By the inequality −2 log r � 1−r2, a change of variables, Lemma 2.1 and (4.8), we finally
obtain

‖B‖p
Bp

s
�

∫
D

|(B ◦ ϕa)′(z)|p(1 − |z|2)p−2+s dA(z)

�
∫

D

(1 − |(B ◦ ϕa)(z)|2)p(1 − |z|2)s−2 dA(z)

�
∫

D

( ∞∑
n=1

(1 − |ϕϕa(zn)(z)|2)
)p

(1 − |z|2)s−2 dA(z)

�
∞∑

n=1

(1 − |ϕa(zn)|2)p

∫
D

(1 − |z|2)p−2+s

|1 − ϕa(zn)z|2p
dA(z),

from which reasoning similar to that at the end of the proof of Theorem 4.1 yields the
assertion. �

The reasoning in the proof of Theorem 4.3 can also be used to obtain a necessary
condition for the zeros of a Blaschke product in B1

1,log. Namely, if the Blaschke product
B associated with a sequence {zn} belongs to B1

1,log, then the inequality in (2.3) (with
the same steps as in the proof of Theorem 4.3) yields

∫ R/2|I|

0
(1 − e−u)u−1 du � C

for a positive constant C. It again follows that R = O(|I|), and thus (4.2) is satisfied.
Following the proof further, we obtain

sup
a∈D

∞∑
n=1

(1 − |ϕa(zn)|2) log
1

1 − |ϕa(zn)|2 < ∞.

Proof of Theorem 1.4. Let S be an inner function and let 0 < s < 1. If S ∈ Bp
s for

some p > 0, then by Corollary 1.2, Theorem 1.3 and Corollary 2.5, S must be a Blaschke
product. Furthermore, its zero sequence {zn} satisfies (4.6) by Theorem 4.3. Conversely,
if the zero sequence {zn} of a Blaschke product B satisfies (4.6), then B ∈ Bp

s for all
p > max{s, 1 − s} by Theorem 4.2. �
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770 F. Pérez-González and J. Rättyä
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