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Introduction

In nonlinear sigma models (see Appendix B.2 in [CK] on physical theories) there are

two twisted theories, the A-model and the B-model. Mirror symmetry is an iso-

morphism between the A-model and the B-model for a pair of two distinct

Calabi–Yau threefolds V and V� with Kähler structures. One consequence of mirror

symmetry is an isomorphism between the quantum cohomology on
L

p;q Hp;qðVÞ and

the chiral ring of the B-model
L

p;q HpðV�;^qT V� Þ, which implies the equality of the

corresponding correlation functions (Yukawa couplings). These correlation func-

tions describe interactions between strings. From a mathematical point of view,

knowledge about the B-model Yukawa coupling and the equality with the A-model

Yukawa coupling of the mirror manifold produces enumerative information on this

mirror manifold. One important construction widely used in physics and mathe-

matics is the Batyrev mirror construction in toric varieties (see [B2]).

In this paper we study the chiral ring
L

p HpðX;^pT X Þ (this is actually a subring of

the whole chiral ring) for quasismooth hypersurfaces X in complete simplicial toric

varieties. In particular, we completely describe the chiral ring
L

p HpðX;^pT X Þ in the

case of three-dimensional Calabi–Yau hypersurfaces. This applies to the mirror sym-

metric hypersurfaces in Batyrev’s construction.

The following is an outline of the paper. We begin in Section 1 with a review of

notation and general facts from toric geometry. For complete toric varieties, the

notions of semiample, nef (numerically effective) and generated by global sections

are equivalent for invertible sheaves (divisors). Geometry and intersection theory
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associated with big (the self-intersection number is positive) and nef divisors was

studied in [M]. Here, we generalize those results to all semiample divisors. Such divi-

sors on complete toric varieties naturally produce a surjective morphism of the ambi-

ent space onto another complete toric variety. Moreover, this construction is unique

with certain conditions relating semiample divisors to ample divisors on the new

toric variety. We also show that a proper birational morphism of toric varieties indu-

ces a natural graded homomorphism of the coordinate rings. For a semiample divi-

sor, this gives an isomorphism of rings in the degree of the divisor.

Section 2 uses the results of Section 1 to describe the geometry of semiample non-

degenerate (transversal to orbits) hypersurfaces in complete toric varieties. We get a

stratification of such hypersurfaces in terms of nondegenerate affine hypersurfaces

cohomology of which has been studied in [B1]. We also review some facts about

hypersurfaces in complete simplicial toric varieties. In particular, we recall from

[M] the relationship between the Jacobian ring Rð f Þ (resp., R1ð f Þ) and the middle

cohomology Hd�1ðX Þ of a quasismooth (resp., big and nef nondegenerate) hypersur-

face X in a d-dimensional complete simplicial toric variety. The ring R1ð f Þ has been

used in [M] to describe the middle cohomology of a three-dimensional big and nef

nondegenerate hypersurface completely.

In Section 3, we introduce the (Zariski) pth exterior power ^pT X of the tangent

sheaf for an arbitrary orbifold X, which is defined similarly to the sheaf Op
X of

Zariski p-forms (see [CK, A.3]). Then we show that for a quasismooth hypersur-

face X of degree b there is a ring homomorphism Rð f Þ�b! H�ðX;^�T X Þ (the lat-

ter is our notation for
L

p HpðX;^pT X Þ). Also, with respect to this homomorphism

the map between Rð f Þ and the middle cohomology of a quasismooth hypersurface

is a morphism of modules. In the Calabi–Yau case the situation is especially nice

because we get an injective ring homomorphism R1ð f Þ�b ! H�ðX;^�T X Þ (we call

R1ð f Þ�b the polynomial part of the chiral ring because its graded piece in

H1ðX; T X Þ should correspond to polynomial infinitesimal deformations for a mini-

mal Calabi–Yau X (see [CK])).

According to the above terminology, in Section 4, we study the nonpolynomial

part of the chiral ring complementary to the polynomial part. We construct new ele-

ments in H�ðX;^�T X Þ for a big and nef quasismooth hypersurface X, and in the case

of a minimal Calabi–Yau these elements in H1ðX; T X Þ should correspond to non-

polynomial deformations. The new elements are represented by a map from some

quotient Rsð f Þ of the Jacobian ring to H�ðX;^�T X Þ, and this map is actually a

morphism of modules with respect to the ring homomorphism Rð f Þ�b !

H�ðX;^�T X Þ. We also calculate some vanishing cup products of the new elements.

The new part of H�ðX;^�T X Þ has its analogue in the middle cohomology Hd�1ðX Þ of

the hypersurface. This is also given by a map from certain graded pieces of Rsð f Þ to

Hd�1ðX Þ. We show that this map is morphism of modules with respect to

Rð f Þ�b ! H�ðX;^�T X Þ.

In Section 5, we describe the toric part of cohomology of a semiample nondegene-

rate hypersurface. This part is the image of cohomology of the ambient space, while
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its complement, called the residue part, comes from the residues of rational differen-

tial forms with poles along the hypersurface. We show that the cohomology of a

semiample nondegenerate hypersurface is a direct sum of its toric and residue parts.

Section 6 studies the middle cohomology of a big and nef nondegenerate hypersur-

face. We provide a better and more general description of the middle cohomology

than the one given for three-dimensional hypersurfaces in [M]. Here, we use a new

ring Rs
1ð f Þ, analogous to the ring R1ð f Þ. An algebraic description of the middle

cohomology can be used in the Calabi–Yau case to compute the product structure

on the chiral ring.

In Section 7, we consider semiample anticanonical nondegenerate hypersurfaces.

Such hypersurfaces are Calabi–Yau, implying that their chiral ring is isomorphic

to the middle cohomology. Using the description of Section 6, we have a partial

description of the space H�ðX;^�T X Þ in terms of R1ð f Þ and Rs
1ð f Þ. We show that

this part is a subring of the chiral ring. This subring is the whole H�ðX;^�T X Þ in

the case of Calabi–Yau threefolds. The product structure of the polynomial part

R1ð f Þ is in Section 3, while the product of two different elements from R1ð f Þ

and Rs
1ð f Þ is in Section 4. We describe the nontrivial product structure on the spaces

Rs
1ð f Þ in terms of triple products. Since H�ðX;^�T X Þ and the described subring have

a nondegenerate pairing, induced by the cup product on the middle cohomology, one

can recover the chiral ring structure completely on these spaces.

1. Semiampleness

In this section we first review some basic facts and notation, and then generalize the

geometric construction of [M] associated with semiample divisors on complete toric

varieties. We show that a semiample divisor naturally produces a surjective mor-

phism of the ambient space onto another complete toric variety. This construction

is unique with certain conditions which relate the semiample divisor to an ample

divisor on the new toric variety. At the end of this section we show that a proper

birational morphism of toric varieties gives a natural graded homomorphism of

the homogeneous coordinate rings of the varieties. We apply this to the maps asso-

ciated with semiample divisors.

Let M be a lattice of rank d, then N ¼ HomðM;ZÞ is the dual lattice; MR (resp.

NR) denotes the R-scalar extension of M (resp. of N). The symbol PS stands for a

d-dimensional toric variety associated with a finite rational fan S in NR. A toric vari-

ety PS is a disjoint union of its orbits by the action of the torus T ¼ N	C
� that sits

naturally inside PS. Each orbit Ts is a torus corresponding to a cone s 2 S. The clo-

sure of each orbit Ts is again a toric variety denoted VðsÞ.
We use SðkÞ for the set of all k-dimensional cones in S; in particular,

Sð1Þ ¼ fr1; . . . ; rng is the set of one-dimensional cones in S with the minimal integral

generators e1; . . . ; en, respectively. Each one-dimensional cone ri corresponds to a

torus invariant divisor Di in PS.
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A torus invariant Weil divisor D ¼
Pn

i¼1 aiDi determines a convex polyhedron

DD ¼ fm 2MR : hm; eii5 � ai for all ig �MR:

Each Weil divisor D gives a reflexive sheaf OPS ðDÞ, whose sections over U � PS

are the rational functions f such that divð f Þ þD5 0 on U. When D ¼
Pn

i¼1 aiDi

is Cartier, there is a support function cD: NR ! R that is linear on each cone

s 2 S and determined by some ms 2M:

cDðeiÞ ¼ hms; eii ¼ �ai for all ei 2 s:

When PS is complete, the polyhedron DD of a torus invariant Weil divisor is boun-

ded and called polytope. Also, the line bundle OPSðDÞ, corresponding to a Cartier

divisor D, is generated by global sections if and only if cD is convex.

We call a Cartier divisor D on a complete toric variety PS semiample if OPSðDÞ is

generated by global sections.

Remark 1.1. This definition is consistent with the one in [EV, Section 5] used in a

non-toric context for projective varieties, because an invertible sheaf L on a complete

toric variety is generated by global sections iff some positive power Lk is generated

by global sections.

Theorem 1.6 in [M] Shows:#OPS ðDÞ is generated by global sections is equivalent to

the condition that the divisor D is nef ðnumerically effectiveÞ. Therefore, the notions

of semiample and nef are equivalent for divisors on complete toric varieties.

Following [EV, Section 5], a semiample divisor D on PS also has the Iitaka

dimension:

kðDÞ :¼ kðOPSðDÞÞ ¼ dimfDðPSÞ;

where fD: PS! PðH0ðPS;OPSðDÞÞÞ is the map defined by the sections of the line

bundle OPS ðDÞ. The possible values for this characteristic are kðDÞ ¼ 0; . . . ; dimPS.

Moreover, the Exercise on page 73 in [F1, Section 3.4] shows that kðDÞ for a torus

invariant D is exactly the dimension of the associated polytope DD. It will be con-

venient for us to introduce the following notion.

DEFINITION 1.2. A semiample divisor D on a complete toric variety PS is called

i-semiample if the Iitaka dimension kðDÞ ¼ i.

Remark 1.3. In [M] we called a Cartier divisor D semiample if OPSðDÞ is generated

by global sections and the intersection number ðDdÞ > 0. In fact, such divisors have

the maximal Iitaka dimension kðDÞ ¼ dimPS. In the common terminology, they

correspond to big (ðDdÞ > 0) and nef, and, according to the above definition, we

should call them d-semiample with d ¼ dimPS.

All ample divisors on PS are semiample and have the Iitaka dimension equal to

dimPS. Our goal is to show that semiample divisors give rise to a natural geometric

292 ANVAR R. MAVLYUTOV

https://doi.org/10.1023/A:1027367922964 Published online by Cambridge University Press

https://doi.org/10.1023/A:1027367922964


construction connected with ample divisors. Let D ¼
Pn

k¼1 akDk be an i-semiample

divisor on PS with the convex support function cD. For each d-dimensional cone

s 2 S there is a unique ms 2M such that cDðvÞ ¼ hms; vi for all v 2 s. Glue together

the maximal dimensional cones in S with the same value ms. The glued set tðmsÞ is a

convex rational polyhedral cone. Indeed, let v be in the convex hull of tðmsÞ, then

cDðvÞ4 hms; vi, by the convexity of the support function. On the other hand, v is

lying in some d-dimensional cone, where the value of cD is determined by m0 2M.

Hence, cDðekÞ ¼ hms; eki4 hm0; eki for all generators ek from the set tðmsÞ. Since v

is a positive linear combination of some generators lying in tðmsÞ, we get

hms; vi4 hm0; vi ¼ cDðvÞ. Therefore, the glued set tðmsÞ coincides with its convex

hull. The new cones tðmsÞ are not necessarily strongly convex, but they all contain

the same linear subspace

tðmsÞ \ ð�tðmsÞÞ ¼ fv 2 NR : cDð�vÞ ¼ �cDðvÞg ð1Þ

To see the equality note that hms;wi5cDðwÞ for any w, by the convexity of the sup-

port function. Therefore, for v in the right-hand side of (1), we have hms;�vi5
cDð�vÞ ¼ �cDðvÞ5 � hms; vi implying that v 2 tðmsÞ \ ð�tðmsÞÞ. The other way

is obvious. From here we get that the linear space in (1) consists of v 2 NR such that

hms; vi is the same for all s. Since OPSðDÞ is generated by global sections, the poly-

tope DD is the convex hull of ms. Therefore, the dimension of (1) is exactly d� i. If

DD contains the origin, this linear space can be obtained as the orthogonal comple-

ment of the polytope.

Denote by N0 ¼ fv 2 N : cDð�vÞ ¼ �cDðvÞg a sublattice of N, we also get the quo-

tient lattice ND :¼ N=N0. Then the i-dimensional linear space N0R is a support of a

complete fan S0 filled up by the cones of the fan S contained in N0R. The quotient

sets tðmsÞ=N
0
R in ðNDÞR are strongly convex polyhedral cones and form another com-

plete fan SD. Thus, we get the following picture: there is a natural exact sequence of

lattices 0! N0 ! N! ND ! 0 compatible with the fans S0, S and SD, giving rise

to toric morphisms PS0 !
v
PS!

p
PSD

. Let us note that linearly equivalent semiample

divisors D produce the same construction. The complete toric variety PS0 is mapped

into an open toric subvariety P ~S0 � PS given by the subfan ~S0 � S of all cones that

lie in N0R. Section 2.1 in [F1] shows that the above sequence of toric morphisms indu-

ces a trivial fibration over the maximal dimensional torus TSD
:¼ ND 	C

� of

PSD
: PS0 !

v
P ~S0 !

p
TSD

: We next show that the above construction is unique in a cer-

tain sense. Using a standard description of a toric morphism, we can see that the

toric subvarieties VðgÞ � PS of dimension i, such that g 2 Sðd� iÞ and g � N0R,

map birationally onto PSD
. As in [F1, Section], let us restrict the semiample divisor

D ¼
Pn

k¼1 akDk to VðgÞ. Using the linear equivalence, we can assume that the origin

is one of the vertices of the polytope DD. In this case, Equation (1) implies that

ak ¼ 0 for rk � N0R (equivalently, cD ¼ 0 on N0R), whence VðgÞ is not contained in

the support of D. Therefore, we get a Weil divisor D � VðgÞ in the Chow group
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Ai�1ðVðgÞÞ representing the Cartier divisor DjVðgÞ. Its support function cD�VðgÞ is

represented by cD which descends to the quotient space ðNDÞR ¼ NR=N
0
R. The lattice

MD :¼ N0? \M is the dual of ND, and the polytope DD contained in ðMDÞR is exactly

the polytope of the Weil divisor D � VðgÞ. By construction, the function cD�VðgÞ is

strictly convex with respect to the fan SD. Now the arguments of [M, Section 1] show

that SD is the normal fan of DD, and the pushforward p�ðD � VðgÞÞ is an ample divi-

sor. We also get a commutative diagram (see F[2]):

Ai�1ðVðgÞÞ !
p� Ai�1ðPSD

Þ

! !

PicðPSÞ  
p�

PicðPSD
Þ;

where the right vertical arrow is injective and the left is the composition

PicðPSÞ ! PicðVðgÞÞ ! Ai�1ðVðgÞÞ of the restriction map and the inclusion. Since

the support function of p�ðD � VðgÞÞ is induced by cD, we have the equality

p�p�½D � VðgÞ� ¼ ½D� in the Chow group Ad�1ðPSÞ.

Now we prove that the conditions on the divisor D deduced in the previous para-

graph uniquely determine the constructed morphism. Let p : PS! PS1
be a surjec-

tive morphism of complete toric varieties arising from a surjective homomorphism

of lattices ~p : N! N1 which maps the fan S into S1. The kernel of ~p is a sublattice

N2 � N. It is not difficult to see that a cone of S is either lying in the space ðN2ÞR or

its relative interior has no intersection with this space. Hence, the space ðN2ÞR is a

support of a complete fan S2 filled up by those cones of S lying in ðN2ÞR. The toric

subvarieties VðgÞ corresponding to g 2 Sðd� kÞ (k :¼ dimPS1
), contained in ðN2ÞR,

are the only ones mapping birationally onto PS1
. Suppose now that we have an

i-semiample (torus invariant) divisor D on PS such that p�½D � VðgÞ� is ample and

p�p�½D � VðgÞ� ¼ ½D� for some VðgÞ, g 2 Sðd� kÞ, which maps birationally onto PS1
.

Then the polytope of the divisor p�ðD � VðgÞÞ has dimension equal to dimPS1
. On

the other hand, the support function of D is induced by the support function of

p�ðD � VðgÞÞ, implying that the polytopes of these divisors is the same set in

M \N?2 . Therefore, the dimension of PS1
is i, and the fan S1 coincides with SD con-

structed before. Thus, we proved the following.

THEOREM 1.4. Let ½D� 2 Ad�1ðPSÞ be an i-semiample divisor class on a complete

toric variety PS of dimension d. Then, there exists a unique complete toric variety PSD

with a surjective morphism p : PS ! PSD
, corresponding to a map of S into SD, such

that p�½D � VðgÞ� is ample and p�p�½D � VðgÞ� ¼ ½D� for some closed toric subvariety

VðgÞ � PS, g 2 S, which maps birationally onto PSD
. Moreover, dimPSD

¼ i, and the

fan SD is the normal fan of DD for a torus invariant D.

Remark 1.5. The fan SD is canonical with respect to the equivalence relation on

the divisors. Therefore, it will sometimes be convenient for us to use the notation

Sb :¼ SD for a semiample divisor class b ¼ ½D� 2 Ad�1ðPSÞ.
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While a restriction of a semiample divisor D on PS to a closed toric subvariety is

again a semiample divisor, the Iitaka dimension of the restricted divisor may change.

Let us investigate this problem. If D is an i-semiample divisor on PS1
then, by the

above theorem, we have a unique toric morphism p : PS ! PSD
, arising from a

homomorphism ~p : NR ! ðNDÞR mapping S into SD. This morphism encodes infor-

mation about the structure of the variety PS. The Iitaka dimension of the semiample

divisor D � VðsÞ on VðsÞ, s 2 S, can be determined in the following way. The com-

plete toric variety VðsÞ is mapped onto a closed subvariety Vðs0Þ � PSD
such that

the cone s0 2 SD is the smallest that contains ~pðsÞ. We claim that this induced

map p : VðsÞ ! Vðs0Þ is exactly the one associated with the semiample divisor

D � VðsÞ. To prove this we will verify the conditions which uniquely determine such

a morphism. As in the theorem above, let VðgÞ be such that p�½D � VðgÞ� is ample and

p�p�½D � VðgÞ� ¼ ½D�, and let Vðg0Þ � VðsÞ be a closed toric subvariety mapping bira-

tionally onto Vðs0Þ. By the projection formula (see [F2]), we get

p�½D � Vðg0Þ� ¼ p�½ðp�p�½D � VðgÞ�Þ � Vðg0Þ�

¼ p�½D � VðgÞ� � p�½Vðg0Þ� ¼ p�½D � VðgÞ� � Vðs0Þ

in the Chow group of the toric variety Vðs0Þ. Since p�½D � VðgÞ� is ample, the divisor

class p�½D � Vðg0Þ� is ample as well. The other condition for the semiample divisor

D � VðsÞ also follows:

p�p�½D � Vðg0Þ� ¼ p�½p�½D � VðgÞ� � Vðs0Þ� ¼ p�p�½D � VðgÞ� � VðsÞ ¼ ½D � VðsÞ�;

where we used the commutative diagram

PicðPSD
Þ !

p� PicðPSÞ

! !

PicðVðs0ÞÞ !
p�

PicðVðsÞÞ:

Thus, by the uniqueness part of Theorem 1.4, we get the next result.

PROPOSITION 1.6. Let ½D� 2 Ad�1ðPSÞ be an i-semiample divisor class on PS with

the associated morphism p: PS ! PSD
arising from a map of the fan S into SD. Then,

for s 2 S, the restriction ½D � VðsÞ� is a k-semiample divisor class on VðsÞ with

k ¼ i� dimðs0Þ ¼ dim Vðs0Þ, where s0 2 SD is the smallest cone that contains the

image of s. Moreover, the induced map p: VðsÞ ! Vðs0Þ is the one associated with the

semiample divisor class ½D � VðsÞ�.

This proposition says that the maps associated with the semiample divisors are

compatible with the restrictions.

Any toric variety PS has a homogeneous coordinate ring SðSÞ ¼ C½x1; . . . ; xn� with

variables x1; . . . ; xn corresponding to the irreducible torus invariant divisors

D1; . . . ;Dn. This ring is graded by the Chow group Ad�1ðPSÞ, assigning ½
Pn

i¼1 aiDi�

to deg
Qn

i¼1 xai

i

� �
. For a Weil divisor D on PS, there is an isomorphism
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H0ðPS;OPSðDÞÞ ffi SðSÞa, where a ¼ ½D� 2 Ad�1ðPSÞ. If D is torus invariant, the

monomials in SðSÞa correspond to the lattice points of the associated polyhedron DD.

Now consider a proper birational morphism p: PS1
! PS2

of toric varieties, asso-

ciated with a subdivision S1 of S2. In this situation, the one-dimensional cones of the

two fans are related by S2ð1Þ � S1ð1Þ, and there is a natural relation of the coordi-

nate rings SðS1Þ ¼ C½xk: rk 2 S1ð1Þ� and SðS2Þ ¼ C½yk: rk 2 S2ð1Þ� of the toric vari-

eties. For a ¼ ½OPS1
ðDÞ� 2 Ad�1ðPS1

Þ we have a commutative diagram:

SðS1Þa ffi H0ðPS1
;OPS1

ðDÞÞ

! !

SðS2Þp�a ffi H0ðPS2
;OPS2

ðp�DÞÞ;

where the left vertical arrow sends a monomial
Q

rk2S1ð1Þ
x

akþhm;eki

k in SðS1Þa toQ
rk2S2ð1Þ

y
akþhm;eki

k , and the right vertical arrow is induced by the natural morphism

of sheaves p�OPS1
ðDÞ ! OPS2

ðp�DÞ. This gives a graded ring homomorphism

p�: SðS1Þ ! SðS2Þ which sends xk to yk, if rk 2 S2ð1Þ, and sends xk to 1, otherwise.

We now apply the above to semiample divisors. Let D be a semiample (torus

invariant) divisor on a complete toric variety PS in degree b 2 Ad�1ðPSÞ. on a com-

plete toric variety PS, By Theorem 1.4, we get the associated toric morphism

p: PS ! PSD
such that p�½D � VðgÞ� is ample and p�p�½D � VðgÞ� ¼ ½D� for some closed

toric subvariety VðgÞ � PS, g 2 S, which maps birationally onto PSD
. In this situa-

tion, there is the following natural diagram:

SðSÞpb ! SðVðgÞÞp �b ! SðSDÞpp
� �b

! ! !

H0ðPS;OPSðpDÞÞ ! H0ðVðgÞ;OVðgÞðpDgÞÞ ! H0ðPSD
;OPSD

ðpp�DgÞÞ;

where �b ¼ ½Dg�, Dg :¼ D � VðgÞ, in the Chow group of VðgÞ, and the vertical arrows

are isomorphisms. Since the monomials in SðSÞpb and SðSDÞpp� �b correspond to the

lattice points of the same polytope pDD, we get the isomorphisms

SðSÞpb ffi SðVðgÞÞp �b ffi SðSDÞpp� �b:

2. Toric Hypersurfaces

Here, we apply the results of the previous section to semiample hypersurfaces in a

complete toric variety PS, which have only transversal intersections with the

torus-orbits. We also review some results about hypersurfaces in complete simplicial

toric varieties. As a reference we use [M] and [BC].

A hypersurface X � PS is called S-regular (or simply nondegenerate) if X \ Ts is

empty or a smooth subvariety of codimension 1 in each torus Ts for s 2 S.

By [D, Proposition 6.8], a generic hypersurface X � PS of a given semiample

degree is S-regular.
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LEMMA 2.1. Let X be an i-semiample hypersurface in a complete toric variety PS

with i > 1. Then X is connected, and X is irreducible if X is S-regular.

Proof. The arguments are the same as for Lemma 2.3 in [M]. &

Remark 2.2. Let us note that a 0-semiample hypersurface is always empty because

its divisor class is trivial.

PROPOSITION 2.3. Let X be a S-regular semiample hypersurface in a complete toric

variety PS, and let p: PS ! PSX
be the associated morphism for ½X � 2 Ad�1ðPSÞ, then

Y ¼ pðX Þ is a SX-regular ample hypersurface, and X ¼ p�1ðY Þ.

Proof. Start with the case of an i-semiample hypersurface with i > 1. From

Theorem 1.4 we have a closed toric subvariety VðgÞ � PS, for g 2 S, which maps

birationally onto PSx
such that p�½X � VðgÞ� is ample and p�p�½X � VðgÞ� ¼ ½X �. Since

X is transversal to the orbits of PS, the divisor class of the hypersurface X \ VðgÞ in
VðgÞ is exactly ½X � VðgÞ�. Proposition 1.6 implies that ½X � VðgÞ� is an i-semiample

divisor class in Ai�1ðVðgÞÞ. The value i is the maximum for the possible Iitaka

dimensions of semiample divisors on the toric variety VðgÞ. Applying Remark 1.3 of

the previous section and Proposition 2.4 in [M], we get that pðX \ VðgÞÞ is a SX-

regular ample hypersurface. On the other hand, by Lemma 2.1, the hypersurface X is

irreducible. Therefore, its image Y ¼ pðX Þ is also irreducible. Since dim pðX Þ4 i and

pðX \ VðgÞÞ � pðX Þ, the hypersurface pðX Þ coincides with pðX \ VðgÞÞ. The hyper-

surface Y is ample nondegenerate and does not intersect the zero-dimensional orbits.

Together with the facts that X and pðX Þ are irreducible this implies the property

X ¼ p�1ðY Þ.

The case of a 1-semiample hypersurface is special because such a hypersurface is

not necessarily connected. In this situation, we have a closed toric subvariety

VðgÞ � PS, for g 2 S, which maps isomorphically onto PSX
ffi P

1 such that

p�½X � VðgÞ� is ample and p�p�½X � VðgÞ� ¼ ½X �. It follows from Proposition 1.6

and Remark 2.2 that the image Y ¼ pðX Þ is contained in the one dimensional

torus of PSX
ffi P

1. The preimage p�1ðY Þ of this finite set can be easily seen from

the description of the toric morphism p in Section 1. This morphism is a trivial

fibration over the one-dimensional torus of PSX
, and each point of pðX Þ gives

exactly one irreducible component of p�1ðY Þ which is actually a complete toric

variety.

On the other hand, each point of pðX Þ came from an irreducible component of

X � p�1ðY Þ. Hence, X ¼ p�1ðY Þ. This gives an isomorphism p: X \ VðgÞ ffi pðX Þ.
Thus, pðX Þ is a SX-regular ample hypersurface. &

Remark 2.4. If, in addition, we assume in this proposition that X is an

anticanonical hypersurface in PS, then X is big and PSx
is a Fano toric variety

associated to a reflexive polytope, and this corresponds to the construction in

[B2].
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Let Y be an ample nondegenerate hypersurface in a complete toric variety PS. A

hypersurface in the torus T � PS isomorphic to the affine hypersurface Y \ T in T is

called nondegenerate. Cohomology of such hypersurfaces has been studied in [DK]

and [B2].

LEMMA 2.5 ([DK]). Let Z be a nondegenerate affine hypersurface in the torus T,

then the natural map HiðTÞ ! HiðZ Þ, induced by the inclusion, is an isomorphism of

Hodge structures for i < dimT� 1 and an injection for i ¼ dimT� 1.

Using the standard description of a toric morphism, from Proposition 2.3 we get a

stratification of an i-semiample nondegenerate hypersurface X � PS in terms of

nondegenerate affine hypersurfaces:

X \ Ts ffi ðpðX Þ \ Ts0
Þ � ðC

�
Þ
l; ð2Þ

where p: PS ! PSx
is the associated morphism, l ¼ d� iþ dim s0 � dim s, d ¼ dim

PS, and s0 2 SX is the smallest cone containing the image of s 2 S.

From here on, we assume that P :¼ PS denotes a complete simplicial toric variety.

In this case, [BC] shows that homogeneous polynomials in S :¼ SðSÞ determine

hypersurfaces in P. In terms of the coordinate ring S, a nondegenerate hypersurface

in P defined by a homogeneous polynomial f 2 Sb is characterized by the condition

that x1ð@f=@x1Þ; . . . ; xnð@f=@xnÞ do not vanish simultaneously on P (see [C2, Propo-

sition 5.3]). A more general class of hypersurfaces in P called quasismooth is defined

by a similar condition that @f=@x1; . . . ; @f=@xn do not vanish simultaneously on P

(see [BC]).

We also like to mention the following fact.

PROPOSITION 2.6. An anticanonical quasismooth hypersurface X in a Gorenstein

complete simplicial toric variety P is Calabi–Yau.

Proof. A quasismooth hypersurface is an orbifold (see [BC]), and for a ðd� 1Þ-

dimensional orbifold X Calabi–Yau means that Od�1
X ’ OX and HiðX;OX Þ ¼ 0 for

i ¼ 1; . . . ; d� 2 (see [CK, A.2]). The arguments of the proof that anticanonical

implies Calabi–Yau are the same as in [C3]: use the adjunction formula

Od�1
X ’ Od

PðX Þ 	OX, the isomorphism OPð�X Þ ’ Od
P and the exact sequence

0! OPð�X Þ ! OP ! OX ! 0. &

DEFINITION 2.7 ([BC]). Fix an integer basis m1; . . . ;md for the lattice M. Then

given subset I ¼ fi1; . . . ; idg � f1; . . . ; ng, denote detðeIÞ ¼ detðhmj; eiki14 j;k4 dÞ,

dxI ¼ dxi1 ^ � � � ^ dxid and x̂I ¼
Q

i =2 I xi. Define the d-form O by the formula

O ¼
P
jIj¼d detðeIÞx̂IdxI, where the sum is over all d element subsets I � f1; . . . ; ng.

Let X � P be a quasismooth (not necessarily Cartier) hypersurface defined by
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f 2 Sb. For A 2 Sðaþ1Þb�b0
(here, b0 ¼

Pn
i¼1 degðxiÞ), consider a rational d-form

oA :¼ AO=f aþ1 2 H0ðP;Od
Pððaþ 1ÞX ÞÞ:

This form gives a class in HdðP n X Þ, and by the residue map Res : HdðP n X Þ !

Hd�1ðX Þ we get ResðoAÞ 2 Hd�1ðX Þ.

Remark 2.8. The residue map and the residues of rational differential forms with

poles along a nondegenerate hypersurface are well defined even if the toric variety is

not simplicial (see the proof of Theorem 3.7 in [DK] and Remark 6.4 in [B2]).

DEFINITION 2.9 ([BC]). Given f 2 Sb, we have the Jacobian ideal Jð f Þ in S

generated by the partial derivatives @f=@x1; . . . ; @f=@xn, the ideal

J0ð f Þ ¼ hx1ð@f=@x1Þ; . . . ; xnð@f=@xnÞi

and the ideal quotient (see [CLO, p. 193]) J1ð f Þ ¼ J0ð f Þ : x1 � � � xn. These give the

Jacobian ring Rð f Þ ¼ S=Jð f Þ, R0ð f Þ ¼ S=J0ð f Þ and R1ð f Þ ¼ S=J1ð f Þ graded by the

Chow group Ad�1ðPÞ.

In [M] we have shown that the induced maps

Resðo Þd�1�q;q : Rð f Þðqþ1Þb�b0
! HqðX;Od�1�q

X Þ

(sending A to the Hodge component ResðoAÞ
d�1�q;q) for a quasismooth hypersurface

X � P and, respectively,

Resðo Þd�1�q;q : R1ð f Þðqþ1Þb�b0
! HqðX;Od�1�q

X Þ

for a big and nef nondegenerate hypersurface are well defined. There we also studied

the relationship between the multiplicative structure on Rð f Þ (resp., R1ð f Þ) and the

cup product on the middle cohomology of a quasismooth (resp., big and nef nonde-

generate) hypersurface in P. From Theorem 4.4 [M] we have the following descrip-

tion of the middle cohomology of big and nef nondegenerate hypersurfaces X � PS:

Hd�1�q;qðX Þ ffi R1ð f Þðqþ1Þb�b0

M�Xn

i¼1

ji!H
d�2�q;q�1ðX \DiÞ

�
; ð3Þ

where ji! are the Gysin maps for ji : X \Di ,!X. In the case, when the dimension of

the ambient space is 4 we have (see [M, Theorem 5.2]):

THEOREM 2.10. Let X � PS, dimPS ¼ 4, be a big and nef nondegenerate hyper-

surface defined by f 2 Sb. Then there is a natural isomorphism

H3�q;qðX Þ ffi R1ð f Þðqþ1Þb�b0

M� M
s2SXð2Þ

ðR1ð fsÞqbs�bs0 Þ
nðsÞ
�
;
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where nðsÞ is the number of cones ri such that ri � s and ri =2 SXð1Þ, and where fs is

the polynomial of degree bs, defining the ample hypersurface pðX Þ \ VðsÞ � VðsÞ
ðhere, p: PS ! PSx

is the associated morphismÞ, and bs0 is the degree of the anticano-

nical divisor on the two-dimensional toric variety VðsÞ.

3. Polynomial Part of the Chiral Ring

Here we show that for a quasismooth hypersurface X of degree b there is a homo-

morphism between Rð f Þ�b and the chiral ring H�ðX;^�T X Þ. We will also show that

R1ð f Þ�b is a subring of the chiral ring for a semiample anticanonical nondegenerate

hypersurface X � P (which is Calabi–Yau). This subring may be called ‘polynomial’

because its graded piece in H1ðX; T X Þ should correspond to polynomial infinitesimal

deformations of X performed in the toric variety P (see [CK]).

Let Op
X be the sheaf of Zariski p-forms on an orbifold X (see Appendix A.3 in

[CK]). We can also define ^pT X :¼ ðOp
X Þ
�
¼ HomOX

ðOp
X;OX Þ for an orbifold X.

We call this the (Zariski) pth exterior power of the tangent sheaf of X. For p ¼ 1 this

sheaf is isomorphic to the usual tangent sheaf YX, by Proposition A.4.1 in [CK].

When X is smooth, ^pT X coincides with the standard exterior power sheaf. More-

over, if j : Xo � X is the inclusion of the smooth locus of X, then the argument in

the proof of Proposition 3.10 in [Od] shows that j�ð
Vp YXo

Þ ¼ ^pT X. One can use

the same argument to prove Op
X ’ ð^

pT X Þ
� and that Op

X is isomorphic to the dual

ð
Vp YX Þ

� of the usual pth exterior power of YX, whence ^pT X ’ ð
Vp YX Þ

��. In par-

ticular, we also have the natural maps of sheaves ^pT X 	 ^
qT X ! ^

pþqT X and

^pT X 	 Oq
X ! Oq�p

X .

Let X � P be a quasismooth hypersurface defined by f 2 Sb, which is an orbifold

as we know from [BC]. By definition of quasismooth, we get an open cover

U ¼ fUig
n
i¼1 of P, where Ui ¼ fx 2 P : fiðxÞ 6¼ 0g and fi denotes the partial derivative

@f=@xi.

DEFINITION 3.1. Denote @i0���ip ¼ @=@xi0 ^ � � � ^ @=@xip for an ordered subset

fi0; . . . ; ipg in f1; . . . ; ng. Then given A 2 Spb, set

ðgAÞi0...ip ¼
ð�1Þp

2=2Ah@i0...ip ; df i

fi0 � � � fip

( )
i0...ip

;

where h ; i denotes the contraction (the extra factor of ð�1Þp
2=2 which is

ffiffiffiffiffiffiffi
�1
p

for odd

p is added to make convenient commutative diagrams later).

This defines a �Cech cocycle, giving its class in �H
p
ðUjX;^pT X Þ. Indeed, ðgAÞi0...ip is

homogeneous of degree 0 and is a cochain in CpðUjX;^pT X Þ by the exact sequence

0! ^pT Xo
! i� ^p T Po

!
i�df
^p�1T Xo

	OXo
ðX Þ
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(where i: X � P is the inclusion, Po is the smooth locus of P such that Xo ¼ Po \ X

(see [Hi, Section 4, p. 55])), and because of hh@i0...ip ; df i; df i ¼ 0 since df ^ df ¼ 0. On

the other hand, it is straightforward to verify that

ðgAÞi0...ip ¼

�
ð�1Þp

2=2A

fi0 � � � fip

Xp

j¼0

ð�1Þ jfij@i0...bij...ip
	

i0...ip

vanishes under the �Cech coboundary map CpðUjX;^pT X Þ ! Cpþ1ðUjX;^pT X Þ. One

can actually show that ðgAÞi0...ip is a coboundary in CpðUjX; i� ^p T PÞ.

For A 2 Spb let gA 2 HpðX;^pT X Þ be the image of the �Cech cocycle ðgAÞi0...ip under

the natural map �HpðUjX;^pT X Þ ! HpðX;^pT X Þ. And we get a well defined map

g:Rð f Þ�b ! H�ðX;^�T X Þ because of the following statement.

LEMMA 3.2. If A 2 Jð f Þpb, then the cocycle ðgAÞi0...ip is a �Cech coboundary in

CpðUjX;^pT X Þ.

Proof. If A 2 Jð f Þpb, then we can assume that A is a multiple of one of the partial

derivatives fk ¼ @f=@xk. We have

fk
h@i0...ip ; df i

fi0 . . . fip
¼
Xp

j¼0

ð�1Þ j
fk@

i0...bij...ip
fi0 . . .

bfij . . . fip ¼
Xp

j¼0

ð�1Þ j
h@k; df i@

i0...bij...ip
fi0 . . .

bfij . . . fip �
�
Xp

j¼0

ð�1Þ j
@k ^



@

i0...bij...ip ; df

�
fi0 . . .

bfij . . . fip ¼
Xp

j¼0

ð�1Þ j



@

ki0...bij...ip ; df

�
fi0 . . .

bfij . . . fip ;

where the second sum after the second equality is identically zero. Hence, it follows

that ðgAÞi0...ip is in the image of the �Cech coboundary map Cp�1ðUjX;^pT X Þ !

CpðUjX;^pT X Þ. &

We now study the compatibility of the multiplication in the Jacobian ring Rð f Þ

and the cohomology ring H�ðX;^�T X Þ. The cocycle ðgAÞi0...ip (up to an extra factor)

and the calculations in the next two theorems are essentially due to D. Cox and D.

Morrison.

THEOREM 3.3. Let X � P be a quasismooth hypersurface defined by f 2 Sb. The

map Rð f Þ�b ! H�ðX;^�T X Þ, assigning gA to a polynomial A, is a ring homomorphism.

Proof. We need to show that gA [ gB ¼ gAB for A 2 Spb and B 2 Sqb. Similar to

[CaG, page 63], the cup product gA [ gB is represented by the �Cech cocycle

ð�1Þpq ð�1Þp
2=2Ah@i0...ip ; df i ^ ð�1Þq

2=2Bh@ip...ipþq
;df i

fi0 � � � fipþq
� fip

( )
i0...ipþq

:
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Note that

h@i0...ip ; df i ^ h@ip...ipþq
; df i ¼

Xp

j¼0

ð�1Þ jfij@i0...bij...ip ^X
pþq

l¼p

ð�1Þl�pfil@ip...bij...ipþq

¼ fip
Xpþq

j¼0

ð�1Þ jfij@i0...bij...ip ¼ fiph@io...ipþq
; df i; ð4Þ

where we used @ip ^ @ip ¼ 0. Hence, the result follows. &

The middle cohomology of a quasismooth hypersurface X � P is a module over

H�ðX;^�T X Þ with respect to the natural cup product

HpðX;^pT X Þ 	HqðX;Od�1�q
X Þ !

[ HpþqðX;Od�1�p�q
X Þ:

From the previous section we know that there is a natural map

ResðoÞd�1�q;q:Rð f Þðqþ1Þb�b0
! HqðX;Od�1�q

X Þ:

We normalize this map as ½oA� ¼ ð�1Þq=2q!ResðoAÞ
d�1�q;q (where we assume

ð�1Þq=2 ¼ ð
ffiffiffiffiffiffiffi
�1
p
Þ
q) to show that this gives a morphism of modules Rð f Þð�þ1Þb�b0

! H�ðX;Od�1��
X Þ.

THEOREM 3.4. Let X � P be a quasismooth hypersurface defined by f 2 Sb. Then

the diagram

Rð f Þpb 	 Rð f Þðqþ1Þb�b0 ! Rð f Þðpþqþ1Þb�b0

g 	½o �! ½o �!

HpðX;^pT X Þ 	HqðX;Od�1�q
X Þ !

[ HpþqðX;Od�1�p�q
X Þ

commutes, where the top arrow is induced by the multiplication. When X � P is a

d-semiample nondegenerate hypersurface the same diagram commutes with

R1ð f Þð�þ1Þb�b0
in place of Rð f Þð�þ1Þb�b0

.

Proof. From Theorem 3.3 in [M] we know that ½oB� ¼ ð�1Þq=2q!ResðoBÞ
d�1�q;q,

for B 2 Sðqþ1Þb�b0
, is represented by the �Cech cocycle

ð�1Þd�1þðqðqþ2Þ=2Þ BKiq � � �Ki0O

fi0 � � � fiq

� 	
i0...iq

2 �HqðUjX;Od�1�q
X Þ;

where Ki is the contraction operator ð@=@xiÞ

o

. Therefore, for A 2 Spb the cup pro-

duct gA [ ½oB� is represented by the �Cech cocycle

ð�1Þp
2=2Ah@i0...ip ; df i

fi0 � � � fip

o

ð�1Þd�1þðqðqþ2Þ=2ÞBKipþq
� � �KipO

fip � � � fipþq

( )
i0...ipþq

:
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But note that

h@i0...ip ;dfi

o

Kipþq
� � �KipO

¼
Xp

j¼0

ð�1Þ jfij@i0...bij...ip o

Kipþq
� � �KipO

¼ð�1Þpfip@i0...ip�1

o

Kipþq
� � �KipO¼ð�1ÞpþpqfipKipþq

� � �Ki0O:

Since ð�1Þp
2=2
� ð�1Þqðqþ2Þ=2

� ð�1Þpþpq
¼ ð�1ÞðpþqÞðpþqþ2Þ=2 we obtain gA [ ½oB� ¼

½oAB�, whence the diagram commutes. &

For an anticanonical quasismooth hypersurface X in a Gorenstein toric variety P

(by Proposition 2.6, X is Calabi–Yau) the situation is especially nice. In this case the

natural product ^pT X 	 Od�1
X ! Od�1�p

X induced by the contraction is an isomor-

phism since Od�1
X ’ OX and Od�1�p

X ’ HomOX
ðOp

X;O
d�1
X Þ (see [CK, A.3]), so that

the cup product with ½o1� corresponding to 1 2 S0 (b ¼ b0 because of anticanonical)

gives
[½o1� : HpðX;^pT X Þ ffi HpðX;Od�1�p

X Þ: ð5Þ

For nondegenerate hypersurfaces this implies:

THEOREM 3.5. Let X � P be a semiample anticanonical nondegenerate hypersur-

face defined by f 2 Sb. Then the map g : R1ð f Þ�b! H�ðX;^�T X Þ is an injective ring

homomorphism.

Proof. The map is a well defined ring homomorphism by Theorems 3.3, 3.4 and

(5), while the injectivity follows from Theorem 4.4 in [M]. &

4. Nonpolynomial Part of the Chiral Ring

This section studies the non-polynomial part of the chiral ring which is complemen-

tary to the polynomial part. We will construct new cocycles representing elements in

H�ðX;^�T X Þ for a big and nef quasismooth hypersurface X � PS. In Section 7 we

will see that these elements with R1ð f Þb span H1ðX; T X Þ for a semiample anticano-

nical nondegenerate hypersurface X � PS (dimPS 6¼ 1; 3). This means that we have

found all cocycles corresponding to nonpolynomial infinitesimal deformations for a

minimal Calabi–Yau X (see [CK]).

Let X be a d-semiample quasismooth hypersurface, defined by f 2 Sb, in a com-

plete simplicial toric variety PS of dimension d. Then, from Proposition 2.3 we get

the associated toric morphism p : PS ! PSX
. Take a two-dimensional cone s 2 SX

with at least one one-dimensional cone ri � s such that ri =2 SXð1Þ. Using such a

cone s we can form a new cover of the toric variety PS by the open sets

Us0 ¼ x 2 PS :
Y

rk�sns0
xk 6¼ 0

( )
for all two-dimensional cones s0 2 S that lie in s. Let us fix one order for this open

cover corresponding to as the cones lie inside s:
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ð6Þ

where nðsÞ is the number of cones ri such that ri � s and ri =2SXð1Þ.

Now we take a refinement Ui;sj
¼ Ui \Usj

of this open cover and the open cover

U ¼ fUig
n
i¼1 from the previous section. Denote the refined cover Us, considering the

order on this cover as the lexicographic order for the pairs of indices ði; jÞ.

DEFINITION 4.1. Given ri � s 2 SXð2Þ such that ri =2SXð1Þ, then, as in (6), i ¼ lk
for some k, and we set

@i
k ¼

xlk�1
@lk�1

multðskÞ
; @i

kþ1 ¼ �
xlkþ1

@lkþ1

multðskþ1Þ
; and @i

j ¼ 0 for j 6¼ k; kþ 1;

where mult denotes multiplicity of a cone as in [F1, page 48]. For A 2 Sbs1 (here,

bs1 :¼
P

rk�s
degðxkÞ), define

ðgi
AÞði0; j0Þ;ði1; j1Þ ¼

AQ
rk�s

xk

h@i1 ^ @i
j1
; df i

fi1
�
h@i0 ^ @i

j0
; df i

fi0

 !( )
ði0; j0Þ;ði1; j1Þ

:

LEMMA 4.2. In the definition, ðgi
AÞði0; j0Þ;ði1; j1Þ is a �Cech cocycle in C1ðUsjX; T X Þ.

Proof. By the arguments after Definition 3.1, ðgi
AÞði0; j0Þ;ði1; j1Þ is a cocycle class in

�H1ðUsjX; T X Þ. The only thing that we need to check in addition is that it is well

defined on the given cover, which follows easily from the following two observations.

Let X be equivalent to a torus invariant divisor D ¼
Pn

k¼1 akDk with the associated

polytope DD and the support function cD. Since cD is linear on s and determines ak,

a monomial
Qn

k¼1 x
akþðm;ekÞ

k (in xlj flj) with m 2 DD is divisible by xlj implies that

ak þ hm; eki > 0 for all rk � s such that rk =2SXð1Þ. In particular, such a monomial

is divisible by xi. On the other hand, we have an identity on PS:

xlk�1
@lk�1

multðskÞ
þ

xlkþ1
@lkþ1

multðskþ1Þ
¼

multðsk þ skþ1Þ

multðskÞmultðskþ1Þ
xlk@lk ; ð7Þ

where sk and skþ1 are the two cones contained in s and containing ri (the identity

corresponds to an Euler vector field (see [BC, Remark 3.10]) coming from the rela-

tion of the cone generators multðskþ1Þelk�1
þmultðskÞelkþ1

¼ multðsk þ skþ1Þelk (see

[D, Section 8.2])). &
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Remark 4:3: Finding the above cocycle is far from obvious, but Propositions 6.3, 6.4,

6.6 with Theorem 4.11 and Equation (5) show how this comes up in the case of

Calabi–Yau threefolds from the description of the middle cohomology in Theorem 2.10.

Next we generalize the cocycles from Definition 4.1.

DEFINITION 4.4. Let ri � s 2 SXð2Þ be such that ri =2SXð1Þ. Given A 2 Sðp�1Þbþbs1 ,

bs1 ¼
P

rk�s
degðxkÞ, and an index set I ¼ fði0; j0Þ; . . . ; ðip; jpÞg, define

ðgi
AÞI ¼

ð�1Þðp�1Þ2=2AQ
rk�s

xk

X
~I¼Infðik; jkÞg

ð�1Þk
h@~i0... ~ip�1

^ @i
~jp�1

; df i

f~i0 � � � f~ip�1

8<:
9=;

I

;

where the sum is over the ordered sets

~I ¼ fð~i0; ~j0Þ; . . . ; ð~ip�1; ~jp�1Þg ¼ fði0; j0Þ; . . . ; dðik; jkÞ; . . . ; ðip; jpÞg:

As in the proof of Lemma 4.2, ðgi
AÞI also determines a �Cech cocycle class in

�HpðUsjX;^
pT X Þ. Denoting its image in HpðX;^pT X Þ by gi

A, we get a map

gi : Sðp�1Þbþbs1 ! HpðX;^pT X Þ;

when rinf0g lies in the relative interior of a two-dimensional cone s 2 SX.

LEMMA 4.5. If A 2 hJð f Þ; xiiðp�1Þbþbs1
and p > 1 or A 2 hxiibs1 , then gi

A ¼ 0.

Proof. If A is divisible by xi, then ðgi
AÞI is clearly a �Cech coboundary, by Defi-

nition 4.4. Assume p > 1 and A 2 Jð f Þðp�1Þbþbs1
is a multiple of one of the partial

derivatives fs. Similar to the proof of Lemma 3.2, we have

fs @~i0... ~ip�1
^ @i

~jp�1
; df

D E
ð
Q

rk�s
xkÞf~i0 � � � f~ip�1

 
Xp�1

l¼0

ð�1Þl
@

s~i0...
b~il... ~ip�1

^ @i
~jp�1

; df


 �
ð
Q

rk�s
xkÞf~i0 � � �

bf~il � � � f~ip�1

 
X

~~I¼ ~Infð~il; ~jlÞg

ð�1Þl
@

s
~~i0...

~~ip�2
^ @i

~~jp�2

; df


 �
ð
Q

rk�s
xkÞf~~i0

� � � f~~ip�2

(the sum is over the ordered sets
~~I ¼ fð~i0; ~j0Þ; . . . ;

d
ð~il; ~jlÞ; . . . ; ð~ip�1; ~jp�1Þg) modulo well

defined expressions on the open set U~i0;s~j0

\ � � � \U~ip�1;s~jp�1

, because h@i
~jp�1

; df i is divi-

sible by xi and because of Equation (7). On the other hand, there is an identity

X
~I¼Infðik; jkÞg

ð�1Þk
X

~~I¼ ~Infð~il; ~jlÞg

ð�1Þl
@

s~~i0...
~~ip�2
^ @i

~~jp�2

; df


 �
f~~i0
� � � f~~ip�2

¼ 0;
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since the square of a coboundary map is zero. This shows that ðgi
AÞI is a �Cech

coboundary for A 2 Jð f Þ. &

DEFINITION 4.6. Given f 2 Sb, let Jið f Þ be the ideal in S generated by the

Jacobian ideal Jð f Þ and xi. Then we get the quotient ring Rið f Þ ¼ S=Jið f Þ graded by

the Chow group Ad�1ðPSÞ.

Lemma 4.5 shows that there are well defined maps gi : Rið f Þðp�1Þbþbs1
! HpðX;^pT X Þ, for p > 1, and gi : ðS=hxiiÞbs1

! H1ðX; T X Þ. Note, however, that

a monomial
Q

rl 6�s
xl

Qn
l¼1 x

ðp�1Þalþhm;eli

l in hxkiðp�1Þbþbs1
(with rk � s) corresponds

to m 2M satisfying the inequalities ðp� 1Þal þ hm; eli5 � 1 for rl � s, l 6¼ k,

and ðp� 1Þak þ hm; eki5 0. Since the support function, corresponding to

b ¼ ½
Pn

i¼1 aiDi�, is linear on s and determines ai, it follows from a relation of the

cone generators that ðp� 1Þai þ hm; eii5 0 and, consequently, the above monomial

is divisible by xi, for all ri � s such that ri =2SXð1Þ. Therefore, for all such ri the ideal

Jið f Þ is the same as

Jsð f Þ :¼ hJð f Þ; xk : rk � si

in the degree ðp� 1Þbþ bs1. Hence, we define Rsð f Þ ¼ S=Jsð f Þ.

The cocycle ðgi
AÞI in Definition 4.4 came from the proof of the following theorem.

THEOREM 4.7. Let X � PS be a d-semiample quasismooth hypersurface defined by

f 2 Sb. Then, for q > 1, the diagram

Rð f Þpb 	 Rsð f Þðq�1Þbþbs1
�! Rsð f Þðpþq�1Þbþbs1

g 	gi ! gi !

HpðX;^pT X Þ 	HqðX;^qT X Þ �!
[

HpþqðX;^pþqT X Þ

commutes, where bs1 ¼
P

rk�s
degðxkÞ and the top arrow is induced by the multiplica-

tion. For q ¼ 1 the diagram commutes with ðS=hxiiÞbs1
in place of Rsð f Þbs1 .

Proof. For simplicity, we just show that if A 2 Spb and B 2 Sbs1 , then

gA [ g
i
B ¼ gi

AB (the general case is similar though more complicated to write out). For

such A and B the cup product gA [ g
i
B is represented by the �Cech cocycle

ð�1Þp
ð�1Þp

2=2ABQ
rk�s

xk

h@i0...ip ; df i

fi0 � � � fip
^
h@ipþ1

^ @i
jpþ1

; df i

fipþ1

�
h@ip ^ @i

jp
; df i

fip

 !( )
I

;

where I ¼ fði0; j0Þ; . . . ; ðipþ1; jpþ1Þg. Compute

h@i0...ip ; df i ^ h@ipþ1
^ @i

jpþ1
; df i

¼
Xp

k¼0

ð�1Þkfik

�
@

i0...bik...ip ^ h@ipþ1
^ @i

jpþ1
; df iþ
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þð�1Þp @
i0...bik...ip ; df


 �
^ @ipþ1

^ @i
jpþ1

�
¼ ð�1Þp

Xp

k¼0

ð�1Þkfik @
i0...bik...ipþ1

^ @i
jpþ1

; df


 �
;

where the sum of the second terms in the first equality is identically equal to zero. On

the other hand, similar to (4),

h@i0...ip ; df i ^ h@ip ^ @i
jp
; df i ¼ fiph@i0...ip ^ @i

jp
; df i:

Hence, the result follows easily. &

We next show when the cup product of two cocycles ðgi
AÞI and ðgj

BÞJ vanishes.

LEMMA 4.8. The cup product gi
A [ g

j
B ¼ 0, for A 2 Sðp�1Þbþbs1 and B 2 Sðq�1Þbþbs1 ,

if ri; rj � s 2 SXð2Þ with i 6¼ j do not span a two-dimensional cone of the fan S.

Proof. For simplicity, we assume that gi
A and gj

B are from H1ðX; T X Þ.

The cup product gi
A [ g

j
B is represented by the �Cech cocycle

ð�1Þ
AB

ð
Q

rk�s
xkÞ

2

ui
i1; j1

fi1
�

ui
i0; j0

fi0

 !
^

uj
i2; j2

fi2
�

uj
i1; j1

fi1

 !( )
I

;

where us
ik; jk

denotes h@ik ^ @s
jk
;df i for s 2 fi; jg, and I ¼ fði0; j0Þ; ði1; j1Þ; ði2; j2Þg. Note

that ui
i1; j1
^ uj

i1; j1
¼ 0 because either @i

j1
or @j

j1
vanishes (see Definition 4.1) since the

corresponding cone sj1 � s can not contain both ri and rj, by the given condition.

The above cocycle vanishes in the cohomology, being the image of

ð�1Þ
ABui

i0; j0
^ uj

i1; j1

ð
Q

rk�s
xkÞ

2fi0 � fi1

( )
ði0; j0Þ;ði1; j1Þ

under the �Cech coboundary map C1ðUsjX;^
2T X Þ ! C2ðUsjX;^

2T X Þ. The latter

cocycle is well defined since

ABh@i0 ^ @i
j0
; df i ^ h@i1 ^ @ j

j1
; df i

ð
Q

rk�s
xkÞ

2fi0 � fi1

has no poles on the open set Ui0 \Usj0
\Ui1 \Usj1

, which follows from the condition

of the lemma. &

We created the cocycles ðgi
AÞI, now we define the corresponding elements in the

middle cohomology Hd�1ðX Þ of a d-semiample quasismooth hypersurface X.

DEFINITION 4.9. Let ri � s 2 SXð2Þ be such that ri =2SXð1Þ. Given A 2 Spb�b0þb
s
1

(where b0 ¼
Pn

k¼1 degðxkÞ, bs1 ¼
P

rk�s
degðxkÞ) and an index set I ¼ fði0; j0Þ;
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. . . ; ðip; jpÞg, define

ðoi
AÞI ¼

ð�1Þdþððp�1Þ2=2ÞAQ
rk�s

xk

X
~I¼Infðik; jkÞg

ð�1Þk
K~ip�1
� � �K~i0

ð@i
~j0

o

OÞ

f~i0 � � � f~ip�1

8<:
9=;

I

;

where the sum is over the ordered sets

~I ¼ fð~i0; ~j0Þ; . . . ; ð~ip�1; ~jp�1Þg ¼ fði0; j0Þ; . . . ; dðik; jkÞ; . . . ; ðip; jpÞg:

This determines a �Cech cocycle class in �HpðUsjX;O
d�1�p
X Þ, whose image in

HpðX;Od�1�p
X Þ is denoted by oi

A.

LEMMA 4.10. If A 2 Jið f Þpb�b0þb
s
1
, then oi

A ¼ 0.

Proof. If A is divisible by xi, then, by Definition 4.9, ðoi
AÞI is a �Cech coboundary.

Assume that A 2 Jð f Þ is a multiple of one of the partial derivatives fs.

First, consider the case p ¼ 1. If rs � s and s 6¼ i, then, by the argument after

Definition 4.1, fs is divisible by xi, implying ðoi
AÞI is a �Cech coboundary. The case

fs ¼ fi is impossible, because of Sbi�b0þb
s1 ¼ 0 (bi :¼ degðxiÞ), following from the

completeness of the fan S. The same is true if rs 6� s and dimPS > 2. Notice

fsK~i0
ð@i

~j0
o

OÞ

ð
Q

rk�s
xkÞf~i0

¼
KsK~i0

@i
~j0

o

ðdf ^ OÞ

ð
Q

rk�s
xkÞf~i0

�
h@i

~j0
; df iKsK~i0

O

ð
Q

rk�s
xkÞf~i0

þ
Ksð@

i
~j0

o

OÞ

ð
Q

rk�s
xkÞ

:

Also, note that if dim PS ¼ 2 and rs 6� s, then Ksð@
i
~j0

o

OÞ is a multiple of xi, by the

definition of the form O. Since df ^ O  0 modulo multiples of f, by Equation (3) in

[M], and since h@i
~j0
; df i is divisible by xi, it follows that ðoi

AÞI is a �Cech coboundary in

this case.

The case left is p > 1. We have

fs
K~ip�1
� � �K~i0

ð@i
~j0

o

OÞ

ð
Q

rk�s
xkÞf~i0 � � � f~ip�1

¼ ð�1Þpþ1
KsK~ip�1

� � �K~i0
@i
~j0

o

ðdf ^ OÞ
ð
Q

rk�s
xkÞf~i0 � � � f~ip�1

þ

þ ð�1Þp
h@i

~j0
; df iKsK~ip�1

� � �K~i0
O

ð
Q

rk�s
xkÞf~i0 � � � f~ip�1

�
Xp�1

l¼0

ð�1Þpþl
KsK~ip�1

� � �cK~il
� � �K~i0

ð@i
~j0

o

OÞ

ð
Q

rk�s
xkÞf~i0 � � �

bf~il � � � f~ip�1

 ð�1Þpþ1
X

~i¼ ~Infð~il; ~jlÞg

ð�1Þl
KsK~ip�2

� � �K~i0
ð@i

~j0

o

OÞ

ð
Q

rk�s
xkÞf~i0 � � � f~ip�2

(the sum is over the ordered sets
~~I ¼ fð~i0; ~j0Þ; . . . ;

d
ð~il; ~jlÞ; . . . ; ð~ip�1; ~jp�1Þg) modulo well

defined expressions on the open set U~i0;s~j0

\ � � � \U~ip�1;s~jp�1

\ X, because df ^ O  0
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modulo multiples of f, h@i
~jp�1

; df i is divisible by xi and because of equation (7). And,

we also have an identity

X
~I¼Infðik; jkÞg

ð�1Þk
X

~I¼ ~Infð~il;~jlÞg

ð�1Þl
KsK~ip�2

� � �K~i0
ð@i

~j0

o

OÞ

f ~~i0
� � � f ~~ip�2

¼ 0;

since the square of a coboundary map is zero. (gi
AÞI is a �Cech coboundary if

A 6¼ Jð f Þ. &

The last lemma shows that there is a well defined map

oi : Rið f Þpb�b0þb
s
1
! HpðX;Od�1�p

X Þ:

Since pb is d-semiample, multiplying a monomial in hxkipb�b0þb
s
1

(for rk � s) byQ
rl 6�s

xl and applying the argument in the proof of Lemma 4.2, we get a monomial

divisible by all xi corresponding to ri � s such that ri =2SXð1Þ.Therefore, for all such

ri the ideal Jið f Þ is the same as Jsð f Þ in the degree pb� b0 þ bs1.
The cocycle ðoi

AÞI came from the proof of the following result.

THEOREM 4.11. Let X � PS be a d-semiample quasismooth hypersurface defined by

f 2 Sb. Then, for p > 1, the diagram

Rsð f Þðp�1Þbþbs1
	 Rð f Þðqþ1Þbþb0 ! Rsð f ÞðpþqÞb�b0þb

s
1

gi
�	½o��! oI

�

!

HpðX;LpT X Þ 	HqðX;Od�1�q
X Þ !

[ HpþqðX;Od�1�p�q
X Þ

commutes, where the top arrow is the multiplication ð for p ¼ 1 the diagram commutes

with ðS=hxiiÞbs1
in place of Rsð f Þbs1 Þ:

Proof. For simplicity, we only show that gi
A [ ½oB� ¼ oi

AB for A 2 Sbs1 and

B 2 Sðqþ1Þb�b0
(as in the proof of Theorem 4.7, the general case is similar, but more

complicated to write out). Similar to the proof of Theorem 3.4, the cup product

gi
A [ ½oB� is represented by the �Cech cocycle�

ð�1Þd�1þðqðqþ2Þ=2ÞABQ
rk�s

xk

�
h@i1 ^ @i

j1
; df i

fi1
�
h@i0 ^ @i

j0
; df i

fi0

� oKiqþ1
� � �Ki1O

fi1 � � � fiqþ1

	
I

;

where I is the index set fði0; j0Þ; . . . ; ðiqþ1; jqþ1Þg, corresponding to the cover UsjX.

Compute�
h@i1 ^ @i

j1
; df i

fi1
�
h@i0 ^ @i

j0
; df i

fi0

�

oKiqþ1
� � �Ki1O

fi1 � � � fiqþ1

¼ ð�1Þqþ1
Kiqþ1
� � �Ki1ð@

i
j1

o

OÞ

fi1 � � � fiqþ1

� ð�1Þqþ1
Kiqþ1
� � �Ki1 ð@

i
j0

o

OÞ

fi1 � � � fiqþ1

þ

þ ð�1Þqþ1
h@i

j0
; df iKiqþ1

� � �Ki0O

fi0 � � � fiqþ1
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Also, notice

Kiqþ1
� � �Ki0@

i
j0

o

ðdf ^ OÞ

¼ h@i
j0
; df iKiqþ1

� � �Ki0O� fi0Kiqþ1
� � �Ki1ð@

i
j0

o

OÞþ

þ
Xqþ1

k¼1

ð�1Þk�1fikKiqþ1
� � �cKik � � �Ki1Ki0 ð@

i
j0

o

OÞ:

Since df ^ O  0 modulo multiples of f, as in Lemma 4.10, we can see that gi
A [ ½oB�

is actually represented by the �Cech cocycle

(
ð�1Þdþðq

2=2ÞABQ
rk�s

xk

� X
~I¼Infðik; jkÞg

ð�1Þk
K~iq
� � �K~i0

ð@i
~j0

o

OÞ

f~i0 � � � f~iq

�)
I

;

where the sum is over the ordered sets

~I ¼ fð~i0; ~j0Þ; . . . ; ð~iq; ~jqÞg ¼ fði0; j0Þ; . . . ; dðik; jkÞ; . . . ; ðiqþ1; jqþ1Þg: &

The next result (a proof of which is similar to the above) shows that the map

oi
� : Rsð f Þ�b�b0þb

s
1
! H�ðX;Od�1��

X Þ is a morphism of modules with respect to the

ring homomorphism Rð f Þ�b! H�ðX;^�T X Þ.

THEOREM 4.12. Let X � PS be a d-semiample quasismooth hypersurface defined by

f 2 Sb. Then the diagram

Rð f Þpb 	 Rsð f Þqb�b0 bþb
s
1

! Rsð f Þðp�qÞb�b0 bþb
s
1

g�	½o
i
��

! oi

!

HpðX;LpT XÞ 	HqðX;Od�1�q
X Þ !

[ HpþqðX;Od�1�p�q
X Þ

commutes, where the top arrow is induced by the multiplication.

Similar to Lemma 4:8, we also get when the cup product of two cocycles ðgI
AÞI and

ðoj
BÞJ vanishes.

LEMMA 4.13. The cup product gI
A [ o

j
B ¼ 0, for A 2 Sðp�1Þbþbs1 and B 2 Sðq�1Þbþbs1 ,

if ri; rj � s 2 SXð2Þ with I 6¼ j do not span a 2-dimensional cone of the fan S.

5. Toric and Residue Parts of Cohomology

In this section we describe the toric part of cohomology of a semiample nondegene-

rate hypersurface in a complete simplicial toric variety PS. This part is the image of

cohomology of the ambient space induced by the inclusion of the hypersurface. In
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this case, we also show that cohomology has a natural decomposition into a direct

sum of the toric part and the residue part which comes from the residues of rational

differential forms with poles along the hypersurface.

Since PS is simplicial, we know from [F1] that the cohomology ring H�ðPSÞ (with

complex coefficients) is isomorphic to

C½D1; . . . ;Dn�=ðPðSÞ þ SRðSÞÞ;

where the generators correspond to the torus invariant divisors of PS, and where

PðSÞ ¼

Xn

i¼1

hm; eiiDi : m 2M

�
;

SRðSÞ ¼
�
Di1 � � �Dik : fei1 ; . . . ; eikg 6� s for all s 2 S

�
(SRðSÞ is the Stanley–Reisner ideal of S) The toric part H�toricðX Þ of cohomology of

a hypersurface X in PS is defined as the image of the restriction map i�: H�

ðPSÞ ! H�ðX Þ induced by the inclusion i : X � PS.

THEOREM 5.1. Let X be a semiample nondegenerate hypersurface in a complete

simplicial toric variety PS. Then

H�toricðX Þ ffi H�ðPSÞ=Annð½X �Þ ffi C½D1; . . . ;Dn�=I;

where Annð½X�Þ is the annihilator of the class ½X � 2 H2ðPSÞ, and where

I ¼ ðPðSÞ þ SRðSÞ : ½X� is the ideal quotient.

Proof. We need to show that kerði�: H�ðPSÞ ! H�ðX ÞÞ coincides with kerð[½X� :

H�ðPSÞ ! H�þ2ðPSÞÞ. Since [½X � ¼ i!i
� (where i! is the Gysin map), this is equivalent

to kerði!Þ \ imði�Þ ¼ 0 in HpðX Þ for all p. Using an induction on the dimension of the

hypersurface, we will show a stronger statement:

HpðX Þ ¼ imði�Þ
M

kerði!Þ for all p: ð8Þ

If dim X ¼ 0, then PS ¼ P
1. In this case, the composition H0ðP

1
Þ �!

i�

H0ðX Þ

�!
I1

H2ðP
1
Þ is clearly an isomorphism, and ð8Þ follows.

Let dim X ¼ d� 1 > 0. For all odd p, HpðX Þ ¼ kerði!Þ and Equation ð8Þ holds

because HoddðPSÞ vanishes. So we can assume that p is even.

We show first that HpðX Þ ¼ imði�Þ þ kerði!Þ. The Gysin spectral sequence (see [M,

Section 4]) gives an exact sequence

Mn

k¼1

Hp�2ðX \DkÞ ! HpðX Þ ! GrW
p HpðX \ TÞ ! 0:

Also, by the Gysin exact sequence (see [DK, Theorem 3.7]), we get

0! Hpþ1ðPS n X Þ �!
Res

HpðX Þ!
ii

Hpþ2ðPSÞ ð9Þ
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for even p. Hence, ResðHpþ1ðPS n X ÞÞ ¼ kerði!Þ. We claim that the composition

Hpþ1ðPS n X Þ �!
Res

HpðX Þ ! GrW
p HpðX \ TÞ ð10Þ

is a surjective map for p > 0. If [X] is an i-semiample divisor class, then we get the

associated morphism p : PS ! PSx
, and the ample nondegenerate hypersurface

Y ¼ pðX Þ in PSx
, by Proposition 2.3. The statement is trivial for p 6¼ i� 1 because,

in this case,

GrW
p HpðX \ TÞ ffi GrW

p HpððY \ TSX
Þ � ðC

�
Þ
d�i
Þ ¼ 0 ð11Þ

ðwhere TSX
is the maximal torus of PSx

Þ, by Equation ð2Þ and the Künneth isomor

phism theorem with Lemma 2.5. For p ¼ i� 1, consider the following commutative

diagram:

HiðPS n X Þ !
Res Hi�1ðX Þ ! Hi�1ðX \ TÞ

! ! !

HiðPSx n YÞ !
Res Hi�1ðYÞ ! Hi�1ðY \ TSX

Þ;

where the vertical arrows are induced by the morphism p. The right vertical arrow

descends to an isomorphism

p�: GrW
i�1H

i�1ðY \ TSX
Þ ffi GrW

i�1H
i�1ðX \ TÞ ð12Þ

which follows from Equation ð2Þ, the Künneth isomorphism and Lemma 2:5: On the

other hand, the proof of Theorem 4:4 in [M] and Remark 2:8 show that the weight

space Wi�1H
i�1ðY \ TSX

Þ lies in the image of the composition of maps on the bottom

of the diagram. Thus, we have shown that the composition ð10Þ is surjective for all

p > 0. Hence, kerði!Þ in HpðX Þ maps onto GrW
p HpðX \ TÞ. Since GrW

p HpðTÞ ¼ 0 for

p > 0, we get the commutative diagram:Ln
k¼1 HpðDkÞ ! Hpþ2ðPSÞ ! 0

!i!

!i!Ln
k¼1 Hp�2ðX \DkÞ ! HpðX Þ ! GrW

p HpðX \ TÞ ! 0

!i� !i�Ln
k¼1 Hp�2ðDkÞ ! HpðPSÞ ! 0;

where the rows are exact sequences arising from the Gysin spectral sequence. Chas-

ing this diagram and using the induction assumption ð8Þ for the semiample nonde-

generate hypersurfaces X \Dk � Dk, we can see that HpðX Þ is spanned by kerði!Þ

and imði�Þ for all p > 0. Let us show this in the case p ¼ 0. If X is connected, then

i� : H0ðPSÞ ! H0ðX Þ is an isomorphism of one-dimensional spaces, whence
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H0ðX Þ ¼ imði�Þ. By Lemma 2.1, we are left to consider the case when X is a 1-semi-

ample hypersurface. We use another commutative diagram:

H0ðPSÞ !
i� H0ðX Þ !

ii H2ðPSÞ

!p� !p� !p�

H0ðPSxÞ ! H0ðYÞ ! H2ðPSxÞ:

The property X ¼ p�1ðYÞ from Proposition 2:3 gives an isomorphism p� : H0ðYÞ !

H0ðX Þ. Using the diagram and the fact PSx
ffi P

1, we deduce H0ðX Þ ¼ imði�Þ þ kerði!Þ.

To prove ð8Þ it suffices now to show that imði�Þ and kerði!Þ have complementary

dimensions in HpðX Þ. From Equation ð9Þ we get dim kerði!Þ ¼ hpþ1ðPS n X Þ. The

exact sequence of cohomology with compact supports

HpðPSÞ!
i�

HpðX Þ ! Hpþ1
c ðPS n X Þ ! 0

also gives dim imði�Þ ¼ hpðX Þ � hpþ1
c ðPS n X Þ for even p. Since HpðX Þ ¼ imði�Þ

þkerði!Þ, the inequalities

hpþ1
c ðPS n X Þ4 hpþ1ðPS n X Þ ð13Þ

hold for all even p. By Poincaré duality, we have the equalities

hpþ1
c ðPS n X Þ ¼ h2d�p�1ðPS n X Þ; hpþ1ðPS n X Þ ¼ h2d�p�1

c ðPS n X Þ:

Applying them to ð13Þ, we get

h2d�p�1ðPS n X Þ4 h2d�p�1
c ðPS n X Þ

for all even p. Hence, all these inequalities are equalities, and Equation (8) follows.

The proof by induction is finished. &

Remark 5:2: We should note that the above nontrivial result or its equivalent has

been used without a proof for smooth Calabi–Yau hypersurfaces (complete inter-

sections) in many papers (e.g., [B3, Proposition 8.1], [HLY, Section 3.4], [St, Section

9]; cup product induces a nondegenerate pairing on the toric part [CK, Lemma

8.6.11], [Gi, Introduction]). In the case of ample quasismooth hypersurfaces, this

follows directly from the Hard–Lefschetz theorem. It is an open question whether

Theorem 5.1 holds in general for smooth or quasismooth semiample hypersurfaces.

Remark 5:3: An interesting equality follows from the proof of Theorem 5.1:

hpðPS n X Þ ¼ hp
cðPS n X Þ for odd p:

If X is ample, these Hodge numbers vanish for p away from the middle dimension d.

But in the semiample case they are nontrivial in general.
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As a consequence of the above proof, we have a direct sum decomposition

HpðX Þ ¼ imði�Þ
L

kerði!Þ for a semiample nondegenerate hypersurface. By the Gysin

exact sequence, the kernel of the Gysin map is exactly the image of the residue map.

Therefore, it is natural to introduce the following.

DEFINITION 5.4. The residue part H�resðX Þ of cohomology of a quasismooth

hypersurface X in a complete simplicial toric variety PS is defined as the image of the

residue map Res : H�þ1ðPS n X Þ ! H�ðX Þ.

Remark 5:5: The residue part H�resðX Þ is isomorphic to the primitive cohomology

PH�ðX Þ defined in [BC] by the exact sequence

H�ðPSÞ ! H�ðX Þ ! PH�ðX Þ ! 0:

By the definitions of the toric and residue parts of cohomology introduced earlier,

we get the next result.

THEOREM 5.6. For a semiample nondegenerate hypersurface X in a complete sim-

plicial toric variety PS, there is a natural decomposition:

H�ðX Þ ¼ H�toricðX Þ
M

H�resðX Þ:

Theorem 5.1 described the toric part. Note that

H�toricðX Þ [H�resðX Þ � H�resðX Þ;

since i!ði
�a [ bÞ ¼ a [ i!b ¼ 0 for b 2 kerði!Þ, by the projection formula. Therefore, the

residue part is a submodule of H�ðX Þ over the ring H�toricðX Þ.

Finally, we suggest an algorithmic approach to computing the residue part of

cohomology. As in the proof of Theorem 5.1, the Gysin spectral sequence gives

the commutative diagram:

0 0 0

! ! !Ln
k¼1 Hp�2

res ðX \DkÞ ! Hp
resðX Þ ! GrW

p PHpðX \ TÞ ! 0

! ! !Ln
k¼1 Hp�2ðX \DkÞ ! HpðX Þ ! GrW

p HpðX \ TÞ ! 0

! ! !Ln
k¼1 Hp�2ðDkÞ ! HpðPSÞ ! GrW

p HpðTÞ ! 0;

ð14Þ

where the columns and the rows are exact, and where PHpðX \ TÞ is defined, as in
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[B1, Definition 3.13], by the exact sequence

H�ðTÞ ! H�ðX \ TÞ ! PH�ðX \ TÞ ! 0:

The hypersurfaces X \Dk in Dk are semiample nondegenerate of lower dimension,

and the space GrW
p PHpðX \ TÞ can be described in terms of cohomology of a non-

degenerate affine hypersurface, again, using the proof of Theorem 5.1. Therefore,

this provides a way to calculate Hp
resðX Þ.

6. Cohomology of Semiample Nondegenerate Hypersurfaces

In this section we continue the study of the cohomology of semiample nondegenerate

hypersurfaces which was initiated in [M, Section 4]. Applying the algorithmic

approach of the previous section, we will compute the residue part of the middle

cohomology of a big and nef nondegenerate hypersurface X. In particular, we will

generalize the description in Equation (3) and Theorem 2.10. An algebraic descrip-

tion of the middle cohomology is important because, in the Calabi–Yau case, this is

isomorphic to the chiral ring H�ðX;^�T X Þ, by Equation (5). In terms of this descrip-

tion, one should be able to compute the product structure of the chiral ring. Here, we

also compute the nontrivial cup products gi
A [ o

j
B of elements constructed in

Section 4.

Let X be a d-semiample nondegenerate hypersurface, defined by f 2 Sb, in a com-

plete simplicial toric variety PS. Our goal is to relate oi
A, defined in Section 4, to the

description of the middle cohomology of X given in Equation (3). First, we define

new Cech cocycles, representing elements in Hd�3ðX \DiÞ.

DEFINITION 6.1. Given s 2 SXð2Þ with the ordered integral generators el0 and

elnðsÞþ1
as in (6), introduce a ðd� 2Þ-form

Os ¼
xl0xlnðsÞþ1

KlnðsÞþ1
Kl0O

multðsÞ
Q

rk�s
xk

:

Then, for A 2 Sðpþ1Þb�b0þb
s
1

and ri � s such that ri =2SXð1Þ, define

ð ~oi
AÞI ¼ ð�1Þp

2=2 AKip � � �Ki0Os

fi0 � � � fip

� 	
I

;

where I is the index set fi0; . . . ; ipg, representing the intersection of open sets

Ui0 \ � � � \Uip \ X \Di in X \Di.

Consider a rational ðd� 2Þ-form

ðAOs=f
pþ1Þ 2 H0ðDi;O

d�2
Di
ððpþ 1ÞXiÞÞ;

where Xi :¼ X \Di (we will use both notations). By the residue map we get

ResðAOs=f
pþ1Þ 2 Hd�3ðX \DiÞ. The next statement shows that up to a constant,

ð ~oi
AÞI is a �Cech cocycle which represents this residue.
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PROPOSITION 6.2. Let X � PS be a d-semiample nondegenerate hypersurface

defined by f 2 Sb. Given ri � s 2 SXð2Þ such that ri =2SXð1Þ, and A 2 Sðpþ1Þb�b0þb
s
1
,

then, under the natural map

�HpðUjX\Di
;Od�3�p

X\Di
Þ !HpðX \Di;O

d�3�p
X\Di
Þ ffi Hd�3�p;pðX \DiÞ;

the Hodge component ResðAOs=f
pþ1Þ

d�3�p;p is represented by the �Cech cocycle

ð�1Þd�3þðpðpþ1Þ=2Þ

p!

AKip � � �Ki0Os

fi0 � � � fip

� 	
I

2 CpðUjX\Di
;Od�3�p

X\Di
Þ:

Proof. The proof of this is similar to the proof of Theorem 3.3 in [M] (see also

[CaG]). We only need to show that

df ^ Os  0 modulo multiples of f and xi: ð15Þ

Note

df ^ Os ¼ df ^
xl0xlnðsÞþ1

KlnðsÞþ1
Kl0O

multðsÞ
Q

rk�s
xk
¼

xl0xlnðsÞþ1
KlnðsÞþ1

Kl0 ðdf ^ OÞ

multðsÞ
Q

rk�s
xk

�

�
xl0 fl0xlnðsÞþ1

KlnðsÞþ1
O

multðsÞ
Q

rk�s
xk
þ

xl0xlnðsÞþ1
flnðsÞþ1

Kl0O

multðsÞ
Q

rk�s
xk

:

The first summand is divisible by f, because df ^ O  0 modulo multiples of f, as in

Lemma 4.10, and because f is not divisible by any variable xk, corresponding to

rk � s, since X is nondegenerate. The sum of the other two terms is a multiple of

xi, because, by the argument after Definition 4.1, xlj flj are divisible by all variables

xk, corresponding to the cones rk � s not contained in SXð1Þ, and because of an

Euler identity similar to (7). Hence, Equation (15) follows.

We also verify that ð ~oi
AÞI is a �Cech cocycle. The �Cech coboundary of ð ~oi

AÞI is

ð�1Þp
2=2 A

Xpþ1

k¼0

ð�1ÞkfikKipþ1
� � �cKik � � �Ki0Os

fi0 � � � fipþ1

( )
I

:

On the other hand,Xpþ1

k¼0

ð�1ÞkfikKipþ1
� � �cKik � � �Ki0Os ¼ Kipþ1

� � �Ki0 ðdf ^ OsÞ � ð�1Þpþ2df ^ Kipþ1
� � �Ki0Os:

Applying Equation (15) and df ¼ 0 on X, we can see that the image of ðeoi
AÞI under

the �Cech coboundary map is zero. &

Denote by eoi
A the image of the cocycle ðeoi

AÞI in HpðX \Di;O
d�3�p
X\Di
Þ. In the next

step we show a relation between eoi
A and oi

A.

PROPOSITION 6.3. Let X � PS be a d-semiample nondegenerate hypersurface

defined by f 2 Sb. Then ji!eoi
A ¼ oi

A, where ji! is the Gysin map for ji : X \Di ,! X.
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Proof. It suffices to show that ji!eoi
A, for A 2 Spb�b0þb

s
1
, is represented by the �Cech

cocycle ðoi
AÞI.

The Gysin map ji! we can compute, using the following commutative diagram

0! CpðVs;Od�1�p
X Þ !CpðVs;Od�1�p

X ðlog XiÞÞ!
Res

CpðVs
i ;O

d�2�p
X\Di
Þ

! ! !

0! Cp�1ðVs;Od�1�p
X Þ !Cp�1ðVs;Od�1�p

X ðlog XiÞÞ!
Res

Cp�1ðVs
i ;O

d�2�p
X\Di
Þ;

where the vertical arrows are the �Cech coboundary maps, Vs denotes the open cover

UsjX, and the cover Vs
i is the restriction VsjXi

, Xi ¼ X \Di. By the residue map, the

cocycle ðeoi
AÞ ~I is lifted to the cochain

c ~I ¼ ð�1Þðp�1Þ2=2
AK~ip�1

� � �K~i0
Os

f~i0 � � � f~ip�1

^
Xn

k¼1

hm~j0
; eki

dxk

xk

( )
I

in Cp�1ðVs;Od�1�p
X ðlog XiÞÞ, where ~I is the index set fð~i0; ~j0Þ; . . . ; ð~ip�1; ~jp�1Þg, corre-

sponding to the cover Vs, and where m~j0
2MR, for s~j0

! ri generated by ei and

es, satisfies hm~j0
; eii ¼ 1, hm~j0

; esi ¼ 0, and m~j0
¼ 0 in all other cases. Appropriately,

this can be obtained, using some affine open cover on X, where X \Di is given byQn
k¼1 xhm;eki

k ¼ 0 up to some multiplicity (we omit the details).

The image of c ~I under the �Cech coboundary map should represent ji!eoi
A. Using

the diagram, we can see that changing of c ~I by a cochain in Cp�1ðVs;Od�1�p
X Þ does

not affect the image. Notice that c ~I is equivalent to

ð�1Þðp�1Þ2=2
AK~ip�1

� � �K~i0

f~i0 � � � f~ip�1

Os ^
Xn

k¼1

hm~j0
; eki

dxk

xk

 !( )
~I

modulo some cochain in Cp�1ðVs;Od�1�p
X Þ. Assume for a moment that

Os ^
Xn

k¼1

hm~j0
; eki

dxk

xk

 !
� ð�1Þd

@i
~j0

o

OQ
rk�s

xk
ð16Þ

is well defined on Us~j0
. Then c ~I is actually equivalent to

ð�1Þdþððp�1Þ2=2Þ
AK~ip�1

� � �K~i0

f~i0 � � � f~ip�1

@i
~j0

o

OQ
rk�s

xk

 !( )
~I

modulo some cochain in Cp�1ðVs;Od�1�p
X Þ. The image of this under the �Cech

coboundary map is clearly ðoi
AÞI. We are left to show that (16) is well defined on

Us~j0
. The case s~j0

6! ri is trivial because m~j0
¼ 0 and @i

~j0
¼ 0. The cases left are

~j0 ¼ k; kþ 1 for i ¼ lk as in (6); we only check the case ~j0 ¼ k (then hm~j0
; elk�1
i ¼ 0,
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@i
~j0
¼ xlk�1

@lk�1
=ðmultðskÞ), the other case is similar. It is enough to verify that multi-

ples of ðdxiÞ=xi cancel each other in the difference (16). We defined

O ¼
P
jIj¼d detðeIÞx̂IdxI; note that the multiples of ðdxiÞ=xi in (16) are

X
jJj¼d�2

detðefl0;lnðsÞþ1g[JÞ

multðsÞ
� ð�1Þd

detðeflk�1g[J[figÞ

multðskÞ

� �
x̂JdxJQ
rk�s

xk

 !
^

dxi

xi
;

where the sum is over all ðd� 2Þ-element subsets J � f1; . . . ; ng: Interchanging i ¼ lk
with the ordered set flk�1g [ J in detðeflk�1g[J[figÞ and using the relations of the cone

generators (see [D, Section 8.2])

elk

multðskÞ
¼

multðs0;kÞelk�1

multðskÞmultðs0;k�1Þ
�

el0

multðs0;k�1Þ
;

multðsÞelk�1

multðs0;k�1Þmultðsk�1;nðsÞþ1Þ
¼

elnðsÞþ1

multðsk�1;nðsÞþ1Þ
þ

el0

multðs0;k�1Þ
;

where ss;t denotes the cone generated by els and elt , we get that the multiples of

ðdxiÞ=xi in (16) cancel each other. The proposition is proved. &

The last proposition shows the relation of oi
A to the description of the middle

cohomology of X given in Equation (3). But we also need to understand the relation

of oi
A to the description of the cohomology in Theorem 2.10. For this, we will have

to consider some toric subvarieties of codimension 2 in PS, and to study the relation

of some quotients of the homogeneous coordinate rings of these toric subvarieties

and PS. This work will culminate in Theorem 6.7, which generalizes Theorem 2.10.

As in [M, Section 5], we consider a two-dimensional cone s0 2 S contained in

s 2 SXð2Þ and containing ri (in the notation of (6), we have i ¼ lk and s0 ¼ sk or

skþ1), and let SðVðs0ÞÞ ¼ C½xg0 : s0 � g0 2 Sð3Þ� be the coordinate ring of the

ðd� 2Þ-dimensional complete simplicial toric variety Vðs0Þ � PS. From Lemma 1.4

in [M], it follows that Xs0 :¼ X \ Vðs0Þ (we will use both notations) has a positive

self-intersection number inside Vðs0Þ, implying Xs0 is a big and nef hypersurface.

We have a natural commutative diagram:

S�b ffi H0ðPS;OPSð�X ÞÞ

j�
s0

! j�
s0

!

SðVðs0ÞÞ
�bs
0 ffi H0ðVðs0Þ;OVðs0Þð�Xs0 ÞÞ;

where bs
0

2 Ad�3ðVðs0ÞÞ is the restriction of b, and the vertical arrows are the restric-

tion maps induced by the inclusion js0 : Vðs0Þ � PS. To describe the vertical arrow

on the left one first has to restrict a Cartier divisor D ¼
Pn

k¼1 akDk (as in [F1, Section
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5.1], assuming that ak ¼ 0 for rk � s0) in degree b to Vðs0Þ:

DjVðs0Þ ¼
X
g0

akðg0Þ
multðs0Þ
multðg0Þ

Vðg0Þ;

where the sum is over all g0 2 Sð3Þ spanned by s0 and a generator ekðg0Þ. Then a mono-

mial
Qn

k¼1 x
qakþhm;eki

k in Sqb with m 2 s0? is sent by the restriction map j�s0 to
Q

g0 x
qag0þhm;eg0 i

g0 , where ag0 ¼ akðg0Þmultðs0Þ=multðg0Þ and eg0 ¼ ekðg0Þmultðs0Þ=multðg0Þ; if

m =2 s0?, the monomial is sent to 0. Hence, we can see that the restriction map

S�b !SðVðs0ÞÞ
�bs
0 is surjective, and its kernel is the ideal in S�b generated by all vari-

ables xk such that rk � s, by the argument in the proof of Lemma 4.2. Therefore, we

have an isomorphism:

j�s0: ðS=hxk : rk � siÞ�b ffi SðVðs0ÞÞ
�bs
0 : ð17Þ

If X is defined by f 2 Sb, then the restriction of f, denoted by fs0 , determines exactly

the hypersurface Xs0 � Vðs0Þ.
We also have a natural map

Sðpþ1Þb�b0þb
s
1 !H0ðDi;O

d�2
Di
ððpþ 1ÞXiÞÞ; ð18Þ

sending A to the rational ðd� 2Þ-form ðAOs=f
pþ1Þ considered after Definition 6.1.

Let us determine the restriction of this form with respect to the map

H0ðDi;O
d�2
Di
ððpþ 1ÞXiÞÞ �!

j�
i;s0

H0ðVðs0Þ;Od�2
Vðs0Þðð pþ 1ÞXs0 ÞÞ;

induced by the inclusion ji;s0: Vðs0Þ � Di. The form O in Definition 2.7 is determined

up to "1, depending on the choice of the basis for the lattice M. We have fixed one

basis m1; . . . ;md, but it is always possible to find another basis ms
1 ; . . . ;m

s
d , for

s 2 SXð2Þ, so that the corresponding O is the same as before and ms
1 ; . . . ;m

s
d�2 form

a basis for the lattice M \ s?. With the new choice of the basis, the proof of Propo-

sition 9.5 in [BC] shows that

O ¼
Yn
k¼1

xk

Xn

k¼1

hms
1 ; eki

dxk

xk

 !
^ � � � ^

Xn

k¼1

hms
d ; eki

dxk

xk

 !
:

Using this, we compute

Os ¼
xl0xlnðsÞþ1

KlnðsÞþ1
Kl0O

multðsÞ
Q

rk�s
xk

¼

Q
rk 6�s

xk

multðsÞ
ed�1;d

Xn

k¼1

hms
1 ; eki

dxk

xk

 !
^ � � � ^

Xn

k¼1

hms
d�2; eki

dxk

xk

 !
;

where ed�1;d denotes ðhms
d�1; el0ihm

s
d ; elnðsÞþ1

i � hms
d ; el0ihm

s
d�1; elnðsÞþ1

iÞ. By the proper-

ties of multðsÞ in [D, Section 8], we can see that ed�1;d=multðsÞ is "1. There were

two (reverse to each other) possibilities of labeling the generators of s when we chose
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the order in (6). In further calculations we assume such a choice of rl0
and rlnðsÞþ1

that

ed�1;d=multðsÞ ¼ 1. Set tsj ¼
Qn

k¼1 x
hms

j ;eki

k , then ts1 ; . . . ; t
s
d�2 are the coordinates on the

torus Ts0 . In terms of the homogeneous coordinates xg0 on Vðs0Þ, the affine coordi-

nates tsj are identified with
Q

g0 x
hms

j ;eg0 i

g0 . Hence,

j�i;s0
AOs

f pþ1

� �
¼ j�i;s0

A
Q

rk 6�s
xk

f pþ1

dts1
ts1
^ � � � ^

dtsd�2

tsd�2

� �
¼

j�s0 ðA
Q

rk 6�s
xkÞ

f
pþ1
s0

X
g0
hms

1 ; eg0 i
dxg0

xg0

 !
^ � � � ^

X
g0
hms

d�2; eg0 i
dxg0

xg0

 !

¼
j�s0 ðA

Q
rk 6�s

xkÞ

ð
Q

g0 xg0 Þf
pþ1
s0

OVðs0Þ;

where, as in Definition 2.7, OVðs0Þ is the ðd� 2Þ-form on the toric variety Vðs0Þ, cor-

responding to the basis ms
1 ; . . . ;m

s
d�2. A monomial in Sðpþ1Þb�b0þb

s
1

with

b ¼ ½
Pn

k¼1 akDk� corresponds to a lattice point m, satisfying the inequalities

ð pþ 1Þak þ hm; eki5 0, for rk � s, and ðpþ 1Þak þ hm; eki5 1, for rk 6� s. Then,

by the earlier explicit description of j�s0 , we can see that the restriction

j�s0 ðA
Q

rk 6�s
xkÞ is a polynomial in SðVðs0ÞÞ

ðpþ1Þbs
0 , divisible by

Q
g0 xg0 . Therefore,

we get the following commutative diagram

Sðpþ1Þb�b0þb
s
1

�! H0ðDi;O
d�2
Di
ððpþ 1ÞXiÞ

j�
s0

! j�
i;s0

!

SðVðs0ÞÞ
ðpþ1Þbs

0
�bs

0

0
�! H0ðVðs0Þ;Od�2

Vðs0Þððpþ 1ÞXs0 ÞÞ;

where bs
0

0 :¼ degð
Q

g0 xg0 Þ 2 Ad�3ðVðs0ÞÞ is the anticanonical degree, and the horizon-

tal arrows are given by (18) and a similar one sending a polynomial A to the form

ðAOVðs0Þ=f
pþ1
s0 Þ. Recall from Section 2 that for the hypersurface Xs0 � Vðs0Þ we have

the residue map

Res: SðVðs0ÞÞ
ðpþ1Þbs

0
�bs

0

0
! HpðX;Od�3�p

X\Vðs0ÞÞ;

sending a polynomial B to the Hodge component ResðoBÞ
d�3�p;p. As in Section 3,

denote ½oB� ¼ ð�1Þp=2p!ResðoBÞ
d�3�p;p. By the naturality of the residue map and

Proposition 6.2, we obtain the following result.

PROPOSITION 6.4. Let X � PS be a d-semiample nondegenerate hypersurface

defined by f 2 Sb. Given ri � s 2 SXð2Þ such that ri =2SXð1Þ, and given s0 2 Sð2Þ such

that ri � s0 � s, then we have a commutative diagram:

Sð pþ1Þb�b0þb
s
1 !

~oi

HpðX \Di;O
d�3�p
X\Di
Þ

j�
s0

! j�
i;s0

!

SðVðs0ÞÞ
ð pþ1Þbs

0
�bs

0

0
!

ð�1Þd�3�p
½o �

HpðX \ Vðs0Þ;Od�3�p
X\Vðs0ÞÞ:
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From Section 2 we know that the map

Res : R1ðfs0 Þðpþ1Þbs
0
�bs

0

0
! HpðX \ Vðs0Þ;Od�3�p

X\Vðs0ÞÞ

is well defined. The map ~oi should also be well defined on some quotient of the coor-

dinate ring S. In Definition 2.9 we had the rings R0ð f Þ ¼ S=J0ð f Þ and R1ð f Þ ¼

S=J1ð f Þ. Now introduce the following similar rings.

DEFINITION 6.5. Given f 2 Sb of d-semiample degree b 2 Ad�1ðPSÞ and s 2 Sbð2Þ

(see Remark 1.5), let Js0ð f Þ be the ideal in S generated by the ideal J0ð f Þ and all xk

such that rk � s, and let Js1ð f Þ be the ideal quotient Js0ð f Þ : ð
Q

rk 6�s
xkÞ. Then we get

the quotient rings Rs
0ð f Þ ¼ S=Js0ð f Þ and Rs

1ð f Þ ¼ S=Js1ð f Þ graded by the Chow group

Ad�1ðPSÞ.

We have the toric morphism p : PS ! PSx
, associated with a d-semiample hyper-

surface X � PS. By the previous discussion, for s0 � s 2 SXð2Þ, Xs0 ¼ X \ Vðs0Þ is a

big and nef hypersurface, defined by fs0 , in the toric variety Vðs0Þ. It follows from

Proposition 1.6 that the restriction of p is the toric morphism ps0 : Vðs0Þ ! VðsÞ,
associated with the semiample divisor Xs0 . In particular, we have a ring homomor-

phism ps0 � : SðVðs0ÞÞ ! SðVðsÞÞ between the coordinate rings of the toric varieties.

The image of fs0 is a polynomial fs 2 SðVðsÞÞbs , which determines the ample hyper-

surface Ys :¼ ps0 ðXs0 Þ in VðsÞ.

PROPOSITION 6.6. Let b 2 Ad�1ðPSÞ be d-semiample and let bs
0

0 ¼ degð
Q

g0 xg0 Þ

2 Ad�3ðVðs0ÞÞ, b
s
0 ¼ degð

Q
g ygÞ 2 Ad�3ðVðsÞÞ be the anticanonical degrees. Then, there

are natural isomorphisms:

ðiÞ Rs
0ð f Þ�bffiR0ð fs0 Þ�bs0 ffiR0ð fsÞ�bs ,

ðiiÞ Rs
1ð f Þ�b�b0þb

s
1
ffiR1ð fs0 Þ�bs0 �bs00

ffiR1ð fsÞ�bs�bs0 .

Proof. (i) To show the first isomorphism, induced by j�s0 , it suffices, because of

equation (17), to check that the ideal J0ð f Þ in S is mapped onto the ideal J0ðfs0 Þ in

SðVðs0ÞÞ. By Proposition 5.3 in [C2], the ideal J0ð f Þ is generated by f and

xi1@f=@xi1 ; . . . ; xid@f=@xid for linearly independent ei1 ; . . . ; eid . We can assume that

ei1 ; . . . ; eid are generators of some simplicial cone t, containing s0, and eid�1
; eid are

generators of s0. By the explicit description of the restriction map j�s0 , f is sent to fs0 ,

while xid�1
@f=@xid�1

and xid@f=@xid are sent to 0. To understand the image of the other

polynomials, as in [BC], we write f ¼
P

m2D\M am

Qn
k¼1 xbkþhm;eki

k , where D is the

polytope associated with a torus invariant divisor
Pn

k¼1 bkDk (assuming

bid�1
¼ bid ¼ 0) in degree b. Then

xis

@f

@xis

¼
X

m2D\M

amðbis þ hm; eisiÞ
Yn
k¼1

xbkþhm;eki

k :
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Applying the restriction map j�s0 to this, we get, for s 6¼ d� 1; d,X
m2D\M\s?

amðbis þ hm; eisiÞ
Y
g0

x
bg0 þhm;eg0 i
g0 ¼

multðg0sÞ
multðs0Þ

xg0s

@f

@xg0s

;

where the cone g0s is spanned by s0 and the generator eis , and where bg0 ¼

bkðg0Þmultðs0Þ=multðg0Þ, eg0 ¼ ekðg0Þmultðs0Þ=multðg0Þ correspond to the cone g0 spanned

by s0 and a generator ekðg0Þ. Therefore, we get the first isomorphism

j�s0 : Rs
0ð f Þ�bffiR0ðfs0 Þ�bs0 .

For the second isomorphism, induced by ps0 � : SðVðs0ÞÞ
�bs
0 ffi SðVðsÞÞ�bs (see Sec-

tion 1), it is enough to show that J0ðfs0 Þ is mapped onto the ideal J0ðfsÞ in SðVðsÞÞ.
This can be easily achieved by the argument in the previous paragraph.

(ii) By the construction of the maps j�s0 and ps0 �, we get the commutative diagram:

Rs
0ð f Þ�b ffi R0ðfs0 Þ�bs0 ffi R0ðfsÞ�bs

!

Q
rk 6�s

xk !

Q
g0 xg0 !

Q
g yg

Rs
1ð f Þ�b�b0þb

s
1 !

R1ðfs0 Þ�bs0�bs00 ! R1ðfsÞ�bs�bs0 ;

where the vertical arrows are injections, induced by the multiplication. To show that

the bottom arrows are isomorphisms it suffices to check that the images of the spaces

from the bottom into the spaces on the top correspond to each other under the iso-

morphisms of part (i). Note that these images are the ideals generated by
Q

rk 6�s
xk,Q

g0 xg0 and
Q

g yg, respectively. By the explicit description of the maps j�s0 and ps0 �,
one can see that these are mapped onto each other. &

Finally, we can put all of the above together and generalize equation (3), describ-

ing the middle cohomology of a big and nef nondegenerate hypersurface.

THEOREM 6.7. Let X � PS be a d-semiample nondegenerate hypersurface defined

by f 2 Sb, d ¼ dimPS. Then there is a natural isomorphism, for p ¼ d� 1� q:

Hp;qðX Þ ffi R1ð f Þðqþ1Þb�b0

M M
s2SXð2Þ

ðRs
1ð f Þqb�b0þb

s
1
Þ
nðsÞ

 !M
H

p;q
toricðX Þ

M
C;

where C ¼
P

t2Sð2Þ jt!H
p�2;q�2
res ðX \ VðtÞÞ (the Gysin maps jt! are induced by the inclu-

sions jt : X \ VðtÞ � X), and the graded pieces of R1ð f Þ and Rs
1ð f Þ are embedded by

the maps ½o � and oi for all ri =2SX contained in some s 2 SXð2Þ (nðsÞ is the number of

such cones). Moreover, Rs
1ð f Þqb�b0þb

s
1
¼ 0 for q ¼ 0; d� 1, and the cup product of any

two elements from the distinct summands of the above decomposition vanishes.

Proof. Theorem 4.4 in [M] combined with the diagram (14) gives an isomorphism:

Hd�1�q;qðX Þ ffi R1ð f Þðqþ1Þb�b0

M
H

d�1�q;q
toric ðX Þ

MXn

i¼1

ji!H
d�2�q;q�1
res ðX \DiÞ;
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where ji! are the Gysin maps induced by the inclusions. Applying (14) to the hyper-

surface X \Di in Di, we get an exact sequenceM
ri�t2Sð2Þ

Hd�5
res ðX \ VðtÞÞ ! PHd�3ðX \DiÞ ! GrW

d�3PHd�3ðX \ Tri
Þ: ð19Þ

The space GrW
d�3PHd�3ðX \ Tri

Þ vanishes, by Equation (11), unless X \Di is a

ðd� 2Þ-semiample hypersurface in Di. By Proposition 1.6, the latter happens only

when ri =2SX lies in some s 2 SXð2Þ. In this case, there is s0 2 Sð2Þ such that

ri � s0 � s, and, by equation (12), we have isomorphisms

GrW
d�3H

d�3ðX \ Tri
Þ ffi GrW

d�3H
d�3ðpðX Þ \ TsÞ ffi GrW

d�3H
d�3ðX \ Ts0 Þ

induced by the morphism p : PS! PSx
. The hypersurface X \ Vðs0Þ in Vðs0Þ is

ðd� 2Þ-semiample (big and nef). So, we can apply Theorem 4.4 in [M] to deduce that

the composition

R1ðfs0 Þqbs0�bs00
�!
Res

Hd�2�q;q�1
res ðX \ Vðs0ÞÞ ! Hd�2�q;q�1 PHd�3ðX \ Ts0 Þ

�  
is an isomorphism. Using Propositions 6.4 and 6.6, we get that another composition

Rs
1ð f Þqb�b0þb

s
1
�!
~oi

! Hd�2�q;q�1
res ðX \DiÞ ! Hd�2�q;q�1 PHd�3ðX \ Tri

Þ
�  

is also an isomorphism. Hence, by Equation (19),

Hd�2�q;q�1
res ðX \DiÞ ffi Rs

1ð f Þqb�b0þb
s
1

M X
ri�t2Sð2Þ

ji
t!H

d�3�q;q�2
res ðX \ VðtÞÞ

for ri =2SX contained in some s 2 SXð2Þ, and

Hd�2�q;q�1
res ðX \DiÞ ffi

X
ri�t2Sð2Þ

ji
t!H

d�3�q;q�2
res ðX \ VðtÞÞ

for all other ri (here, ji
t : X \ VðtÞ � X \Di is the inclusion). From (14) we have an

exact sequenceM
t2Sð2Þ

Hd�5
res ðX \ VðtÞÞ !

Mn

i¼1

Hd�3
res ðX \DiÞ ! Hd�1

res ðX Þ

which shows that the kernel of the right arrow is included into the parts complemen-

tary to Rs
1ð f Þqb�b0þb

s
1

in Hd�3
res ðX \DiÞ. The direct sum decomposition of the middle

cohomology follows.

The fact Rs
1ð f Þ�b0þb

s
1
¼ 0 is obvious, while Rs

1ð f Þðd�1Þb�b0þb
s
1
¼ 0 is implied by the

isomorphism of Proposition 6.6 and by a dimension argument using the proof of

Theorem 11.5 in [BC] and Theorems 2.11, 4.8(v) with Corollary 3.14 in [B1]. From

Section 5 we know that H�resðX Þ [H�toricðX Þ � H�resðX Þ. But since H2d�2
res ðX Þ ¼ 0, the

toric part Hd�1
toricðX Þ is orthogonal to all other summands in the middle cohomology.
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Theorem 4.4 in [M] shows that R1ð f Þðqþ1Þb�b0
is orthogonal to all other summands as

well. The proof of Lemma 6.9 below shows that oi
A [ o

j
B ¼ 0 if ri; rj =2SX lie in two

distinct two-dimensional cones of SXð2Þ. Finally, the projection formula gives:

oi
A [ jt!H

d�5
res ðX \ VðtÞÞ ¼ jt!ðj

�
to

i
A [Hd�5

res ðX \ VðtÞÞ:

But it can be seen directly that the restriction j�t of the �Cech cocycle ðoi
AÞI is a

coboundary. The theorem is proved. &

Remark 6:8: The direct summand C in the above theorem vanishes when

q ¼ 0; 1; d� 1; d� 2. Therefore, we have a complete description of the middle

cohomology in the corresponding Hodge degrees.

Lemma 4.13 tells us that the cup product gi
A [ o

j
B vanishes in certain cases. Now

we show that this is true in more cases.

LEMMA 6.9. Let X � PS be a d-semiample nondegenerate hypersurface defined by

f 2 Sb. Then the cup product gi
A [ o

j
B ¼ 0, for A 2 Sðp�1Þbþb s

1
and B 2 Sðq�1Þbþb s

1
, if

ri; rj =2SXð1Þ lie in two distinct two-dimensional cones of SXð2Þ.

Proof. We use the description of the middle cohomology in Equation (3) and the

Poincaré nondegenerate pairing to show that gi
A [ o

j
B ¼ 0 for ri and rj lying in two

distinct two-dimensional cones s1 and s2 of SX. Because of this, it is enough to check

that the cup product of gi
A [ o

j
B with all elements in (3) vanishes.

Take ½oC� 2 Hd�1ðX Þ, corresponding to C 2 Sðd�p�1Þb�b0
, in the Hodge component

complementary to the one of gi
A [ o

j
B. Then

gi
A [ o

j
B [ ½oC� ¼ "oi

AC [ o
j
B ¼ "ji! ~o

i
AC [ jj! ~o

j
B ¼ "jj!ððj

�
j ji! ~o

i
ACÞ [ ~oj

BÞ;

where we use Theorem 4.11, Proposition 6.3 and the projection formula for Gysin

homomorphisms. By Lemma 5.4 in [M], there is a commutative diagram:

Hd�3ðX \DiÞ !
ji! Hd�1ðX Þ

j�ij

! j�j

!

Hd�3ðX \Di \DjÞ !
a�jji! Hd�1ðX \DjÞ;

where jij: X \Di \Dj ,! X \Di is the inclusion map and a is some constant. On the

other hand, j�ij ~o
i
AC vanishes, because the cocycle representing ~oi

AC has a multiple of

dxj or xj in each term of the form O. Therefore, gi
A [ o

j
B [ ½oC� ¼ 0.

The rest of the elements, which span the middle cohomology, have the form jl!ðaÞ

for some a 2 Hd�3ðX \DlÞ. The projection formula gives gi
A [ o

j
B [ jl!ðaÞ

¼ jl!ðj
�
l ðg

i
A [ o

j
BÞ [ aÞ. Hence, it suffices to show that j�l ðg

i
A [ o

j
BÞ ¼ 0. In further

calculations, for simplicity, we assume that A 2 S
bs

1

1

and B 2 S
b�b0þb

s2

1

. We will need

to use a refinement ~U of the cover U, by the open sets ~Uk ¼ fx 2 PS : xkfkðxÞ 6¼ 0g for
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k ¼ 1; . . . ; n. Since X is nondegenerate, these sets cover the toric variety PS. In this

case, the cup product gi
A [ o

j
B is represented by the �Cech cocycle

ð�1ÞdAB

ð
Q

rk�s1 xkÞð
Q

rk�s2 xkÞ

ui
i1; j1

fi1
�

ui
i0; j0

fi0

 !

o Ki2 ð@
j
k2

o

OÞ

fi2
�

Ki1ð@
j
k1

o

OÞ

fi1

0@ 1A8<:
9=;

I

;

where the index set I ¼ fði0; j0; k0Þ; ði1; j1; k1Þ; ði2; j2; k2Þg corresponds to the refine-

ment of ~U, Us1

and Us2

, and where ui
it; jt

denotes h@it ^ @i
jt
; df i. Note that

h@i0 ^ @i
j0
; df i

fi0

oKi1ð@
j
k1

o

OÞ

fi1
¼

Ki1ð@
j
k1

o

@i
j0

o

OÞ

fi1
þ
h@i

j0
; df iKi1Ki0 ð@

j
k1

o

OÞ

fi0 fi1
:

For rl, not lying in the cones s1 and s2, the restriction j�l of the above cocycle van-

ishes: if i is among fi0; i1; i2g, then ~Ui \Di is empty; if i =2 fi0; i1; i2g, each term of the

cocycle is multiple of xl or dxl coming from O. We are left to consider rl � s1 [ s2.

For rl � s1, we will show that the restriction j�l of the cocycle is a �Cech coboundary;

the other case is similar. Compute

ui
i1; j1

fi1
�

ui
i0; j0

fi0

 !
o Ki2ð@

j
k2

o

OÞ

fi2
�

Ki1 ð@
j
k1

o

OÞ

fi1

 !

¼
X

~I¼I nfðis; js;ksÞg

ð�1Þs
K~i1
ð@j

~k1

o

ð@i
~j0
� @i

~j1
Þ

o

OÞ

f~i1
þ
h@i

~j0
; df iK~i1

K~i0
ð@j

~k0

o

OÞ

f~i0f~i1

 !
:

Using this, we can see that the restriction j�l ðg
i
A [ o

j
BÞ is represented by a

�Cech coboundary because of the following observations. The polynomial h@i
~j0
; df i

is divisible by xl. If rl 6� s1
jt
, then the restricted open set Us1

jt
\Dl is empty. If

s1
~j0

and s1
~j1

contain rl, then K~i1
ð@i

~j0
� @i

~j1
Þ

o

O is either 0 or divisible by xl because of

Equation (7). Thus, the restriction j�l ðg
i
A [ o

j
BÞ ¼ 0, and the result follows. &

At this point, let us summarize our calculations of the cup products H�ðX;^�T X Þ

with the middle cohomology H�ðX;Od�1��
X Þ for d-semiample nondegenerate hyper-

surfaces. We have the elements in H�ðX;^�T X Þ represented by g , gi (with ri lying

in some s 2 SXð2Þ such that ri =2SX), and the corresponding elements in

H�ðX;Od�1��
X Þ represented by o , oi . Theorem 3.4 provides gA [ oB ¼ oAB, while

Theorems 4.11 and 4.12 have gA [ o
i
B ¼ oi

AB and gi
A [ oB ¼ oi

AB. Lemmas 4.13

and 6.9 tell us that the cup product gi
A [ o

j
B ¼ 0, for i 6¼ j, unless ri and rj span a

2-dimensional cone of S. Thus, for the constructed elements in H�ðX;^�T X Þ and

H�ðX;Od�1��
X Þ, we are missing only the cup products gi

A [ o
j
B when ri and rj (i may

be equal to j) span a cone of S contained in some 2-dimensional cone of SX.

First, we consider the nontrivial cup products gi
A [ o

j
B lying in Hd�1ðX;OX Þ, which

is isomorphic to R1ð f Þdb�b0
, by Theorem 6.7. We note here that the inclusion
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m : R1ð f Þdb�b0 !

Qn

k¼1
xk

R0ð f Þdb ð20Þ

induced by the multiplication is an isomorphism because the dimensions of the

spaces is the same number (of the interior integral points of a polytope D corre-

sponding to b) by the isomorphism R1ð f Þdb�b0
¼ H0;d�1ðHd�1ðX \ TÞÞ of [M, Theo-

rem 4.4], by [DK, Section 5.8], and by [BC, Theorem 11.5] with [B2, Corollary 3.14].

The cup product should be represented by a polynomial in the above spaces.

PROPOSITION 6.10. Let X � PS be a d-semiample nondegenerate hypersurface

defined by f 2 Sb, and denote

Gsð f Þ :¼
xsfsxtft

Q
rk 6�s

xk

multðsÞ
Q

rk�s
xk
2 S2bþb0�2bs1

for s 2 SXð2Þ spanned by rs and rt. Given A 2 Sðp�1Þbþbs1 , B 2 Sðd�1�pÞb�b0þb
s
1
, then

ðiÞ for ri ¼ rlk
=2SX, as in ð6Þ, contained in s 2 SXð2Þ:

gi
A [ o

i
B ¼

multðsk þ skþ1Þ½om�1ðABGsð f ÞÞ�

multðskÞmultðskþ1Þ
in Hd�1ðX;OX Þ;

ðiiÞ for ri; rj =2SX which span a two-dimensional cone s0 2 S contained in s 2 SXð2Þ:

gi
A [ o

j
B ¼ �

½om�1ðABGsð f ÞÞ�

multðs0Þ
in Hd�1ðX;OX Þ:

Proof. To simplify the proof we assume that p ¼ 1.

ðiÞ After a simple modification it follows that the cup product gi
A [ o

i
B is represented

by the cocycle

ð�1Þdþððd�3Þ2=2ÞAB

ð
Q

rk�s
xkÞ

2

X
~I¼Infðik; jkÞg

ð�1Þk
h@~i0
^ @i

~j0
; df i

f~i0

oK~id�2
� � �K~i1

ð@i
~j1

o

OÞ

f~i1 � � � f~id�2

8<:
9=;

I

;

where I ¼ fði0; j0Þ; . . . ; ðid�1; jd�1Þg is the index set corresponding to the open sets ~Uik

(defined in Lemma 6.9) and Usjk
. Note that

AB

ð
Q

rk�s
xkÞ

2

h@~i0
^ @i

~j0
; df i

f~i0

oK~id�2
� � �K~i1

ð@i
~j1

o

OÞ

f~i1 � � � f~id�2

¼
ð�1Þd�1AB

ð
Q

rk�s
xkÞ

2
h@i

~j0
; df i

K~id�2
� � �K~i0

ð@i
~j1

o

OÞ

f~i0 � � � f~id�2

þ
K~id�2
� � �K~i1

ð@i
~j1

o

@i
~j0

o

OÞ

f~i1 � � � f~id�2

 !
:

The first summand is well defined on the corresponding open set: if i 2 f~i0; . . . ; ~id�2g,

then xi 6¼ 0 on the open set; otherwise, h@i
~j0
; df iK~id�2

� � �K~i0
ð@i

~j1

o

OÞ is a multiple of
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ðxiÞ
2. Therefore, the corresponding sum in the above cocycle forms a �Cech cobound-

ary, and gi
A [ o

i
B is represented by

ð�1Þ1þððd�3Þ2=2ÞAB

ð
Q

rk�s
xkÞ

2

X
~I¼Infðik; jkÞg

ð�1Þk
K~id�2
� � �K~i1

ð@i
~j1

o

@i
~j0

oOÞ

f~i1 � � � f~id�2

8<:
9=;

I

:

By Proposition 5.3 in [C2], the polynomials xr0
fr0
; . . . ; xrd�1

frd�1
do not vanish

simultaneously on X if er0
; . . . ; erd�1

are linearly independent. We can always find such

generators so that er0
¼ el0 and er1

¼ elnðsÞþ1
as in (6). Since the open sets

fx 2 PS : xrk
frk
6¼ 0g cover the toric variety, we can assume that the first index in I

takes only the ordered values r0; . . . ; rd�1. In this case, it is not difficult to check that

the above cocycle is different by a coboundary from

ð�1Þ1þððd�3Þ2=2ÞAB

ð
Q

rk�s
xkÞ

2

X
~I¼I nfðik; jkÞg

ð�1Þka ~I

K~id�2
� � �K~i1

ð@lkþ1

o

@lk�1

o

OÞ

f~i1 � � � f~id�2
multðskÞmultðskþ1Þ

8<:
9=;

I

;

where

a ~I ¼

�1 if ~i0 ¼ ~i1 ¼ r2; ~j0 4 k < kþ 14 ~j1;
�1 if ~i0 ¼ r1; ~i1 ¼ r2; ~j1 5 kþ 1;

1 if ~i0 ¼ r0; ~i1 ¼ r2; ~j1 4 k;
0 in all other cases:

8>><>>:
Using the Euler identities in the proof of Proposition 6.3, the last cocycle converts to

multðsk þ skþ1Þ

multðskÞmultðskþ1Þ

ð�1Þðd�3Þ2=2ABxl0 fl0xlnðsÞþ1
flnðsÞþ1

multðsÞð
Q

rk�s
xkÞ

2

Kid�1
� � �Ki0O

fi0 � � � fid�1

( )
I

:

This cocycle represents

multðsk þ skþ1Þ½om�1ðABGsð f ÞÞ�

multðskÞmultðskþ1Þ

in Hd�1ðX;OX Þ.

ðiiÞ Similar to the proof of the previous part and Lemma 6.9, the cup product

gi
A [ o

j
B is represented by the following cocycle:

ð�1Þ1þððd�3Þ2=2ÞAB

ð
Q

rk�s
xkÞ

2

X
~I¼I nfðik; jkÞg

ð�1Þk
K~id�2
� � �K~i1

ð@j
~j1

o

ð@i
~j0
� @i

~j1
Þ

o

OÞ

f~i1 � � � f~id�2

8<:
9=;

I

:
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The one-dimensional cones ri and rj span one of the 2-dimensional cones sk � s
as in (6). The cocycle differs by a coboundary from

ð�1Þ1þððd�3Þ2=2ÞAB

ð
Q

rk�s
xkÞ

2

X
~I¼Infðik; jkÞg

ð�1Þka ~I

�K~id�2
� � �K~i1

ð@lk

o

@lk�1

o

OÞ

f~i1 � � � f~id�2
multðskÞ

2

8<:
9=;

I

;

where a ~I is the same as in part (i). The Euler identities show that this represents

�
½om�1ðABGsð f ÞÞ�

multðskÞ
2 Hd�1ðX;OX Þ: &

The restriction maps j�l , induced by the inclusions jl : X \Dl ,! X, give some

information about the nontrivial cup products gi
A [ o

i
B in Hd�1ðX Þ. We will use this

in Section 7 to calculate nontrivial triple products on the chiral ring of anticanonical

hypersurfaces.

PROPOSITION 6.11. Let X � PS be a d-semiample nondegenerate hypersurface

defined by f 2 Sb, and let, as in (6), ri ¼ rlk
=2SX be in some s 2 SXð2Þ. Then, for

A 2 Spbþbs1 and B 2 Sqb�b0þb
s
1
,

ðiÞ j�lk"1
ðgi

A [ o
i
BÞ ¼ "j

�
lk"1
ðoi

ABHs
i;"1
ð f ÞÞ, where Hs

i;"1ð f Þ is a polynomial in Sb�bs1 equal

to
ffiffiffiffiffiffiffi
�1
p

xlk"1
flk"1

=ðmultðsk;k"1Þ
Q

rk�s
xkÞ at xlk ¼ 0 and xlk"1

¼ 0, where ss;t

denotes the cone spanned by rls
and rlt

.

ðiiÞ j�i ðg
i
A [ o

i
BÞ ¼ j�i

�
oi

ABHs
i
ð f Þ

�
, where Hs

i ð f Þ is a polynomial in Sb�bs1 equal toffiffiffiffiffiffiffi
�1
p

xlkþ1
flkþ1

multðsk;kþ1Þ
Q

rk�s
xk
�

ffiffiffiffiffiffiffi
�1
p

xlk�1
flk�1

multðsk�1;kÞ
Q

rk�s
xk

with xi ¼ xlk�1
¼ xlkþ1

¼ 0.

Proof. For simplicity, we assume that A 2 Sbs1 and B 2 Sb�b0þb
s
1
. The cup product

gi
A [ o

i
B is represented by the �Cech cocycle:

ð�1ÞdAB

ð
Q

rk�s
xkÞ

2

ui
i1; j1

fi1
�

ui
i0; j0

fi0

 !

o Ki2 ð@
j
k2

o

OÞ
fi2

�

Ki1 ð@
j
k1

o

OÞ
fi1

0@ 1A8<:
9=;

I

;

where ui
ik; jk

denotes h@ik ^ @i
jk
; df i, and I ¼ fði0; j0Þ; ði1; j1Þ; ði2; j2Þg is the index set.

Compute

h@i0 ^ @i
j0
; df i

fi0

oKi1 ð@
i
j1

o

OÞ

fi1

¼
Ki1 ð@

i
j1

o

@i
j0

o

OÞ

fi1
þ
h@i

j0
; df iKi1Ki0ð@

i
j1

o

OÞ

fi0 fi1
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¼
Ki0 ð@

i
j1

o

@i
j0

o

OÞ

fi0
þ
h@i

j1
; df iKi1Ki0ð@

i
j0

o

OÞ

fi0 fi1
þ

Ki1Ki0ð@
i
j1

o

@i
j0
Þ

o

ðdf ^ OÞ

fi0 fi1

 
Ki0 ð@

i
j1

o

@i
j0

o

OÞ

fi0
þ
h@i

j1
; df iKi1Ki0ð@

i
j0

o

OÞ

fi0 fi1
;

where, as in Lemma 4.10, we used df ^ O  0 modulo multiples of f. Hence, the cup

product gi
A [ o

i
B is represented by the �Cech cocycle

ð�1ÞdAB

ð
Q

rk�s
xkÞ

2

X
~I¼Infðis; jsÞg

ð�1Þs
K~i0
ð@i

~j1

o

@i
~j0

o

OÞ

f~i0
þ
h@i

~j1
; df iK~i1

K~i0
ð@i

~j0

o

OÞ

f~i0 f~i1

 !8<:
9=;

I

:

For part (i), consider the restriction j�lk"1
of this cocycle. Note that the open set

Usj
\Dlk"1

is empty, if sj does not contain rlk"1
, and that @i

j ¼ 0, if the corresponding

cone sj does not contain ri. Using this and @i
j ^ @i

j ¼ 0, we get that the restriction

j�lk"1
of gi

A [ o
i
B is represented by

"
ffiffiffiffiffiffiffi
�1
p ð�1Þdþð1=2ÞAB

ð
Q

rk�s
xkÞ

2

X
~I¼Infðis; jsÞg

ð�1Þs
xlk"1

flk"1

multðsk;k"1Þ

K~i1
K~i0
ð@i

~j0

o

OÞ

f~i0f~i1

8<:
9=;

I

;

where the index set I corresponds to the restricted open cover UsjX\Dlk"1
, and where

sk;k"1 is the cone generated by elk and elk"1
. Notice that this cocycle is similar to the

restriction j�lk"1
ðoi

CÞ for some polynomial C. The problem here is that xlk"1
flk"1

is not

necessarily divisible by
Q

rk�s
xk. So some work is required to get the correct poly-

nomial. Let X be linearly equivalent to a torus invariant divisor D ¼
Pn

k¼1 bkDk with

the associated polytope D ¼ DD given by the conditions bl þ hm; eli5 0 . Then we

can write f ¼
P

m2D\M amxDðmÞ, where xDðmÞ denotes
Qn

l¼1 xblþhm;eli

l . Note that

xlk"1
flk"1
¼

X
m2D\M

amðblk"1
þ hm; elk"1

iÞxDðmÞ:

If blk"1
þ hm; elk"1

i ¼ 0, then the corresponding monomial xDðmÞ is not present in

xlk"1
flk"1

. On the other hand, if blk"1
þ hm; elk"1

i > 1, then the multiple of the

corresponding monomial xDðmÞ in (22) vanishes, since @i
~j0
¼ #xlk"1

@lk"1
or 0. By the

argument in the proof of Lemma 4.2, blk"1
þ hm; elk"1

i ¼ 1 implies that

bl þ hm; eli > 0 for all rl � s such that rl =2SXð1Þ. If bi þ hm; eii > 1, the multiple

of the monomial xDðmÞ in (22) forms a coboundary. Therefore, only the monomials

xDðmÞ in xlk"1
flk"1

, satisfying blk"1
þ hm; elk"1

i ¼ 1 and bi þ hm; eii ¼ 1, have a nontrivial

contribution in the �Cech cocycle (22). For all such monomials, it follows from the

relations of the cone generators in the proof of Proposition 6.3 that

bs þ hm; esi > 0 with s ¼ l0; lnðsÞþ1. Hence, the monomials are divisible by
Q

rk�s
xk.
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Thus, j�lk"1
ðgi

A [ o
i
BÞ ¼ "j

�
lk"1

�
oi

ABHs
i;"1
ð f Þ

�
, where Hs

i;"1ð f Þ is the polynomial

X
m

ffiffiffiffiffiffiffi
�1
p P

m amxDðmÞ

multðsk;k"1Þ
Q

rk�s
xk

with the sum over all m 2 D \M, satisfying the equalities blk"1
þ hm; elk"1

i ¼ 1 and

bi þ hm; eii ¼ 1. This is the same as
ffiffiffiffiffiffiffi
�1
p

xlk"1
flk"1

=ðmultðsk;k"1Þ
Q

rk�s
xkÞ evaluated

at xi ¼ 0 and xlk"1
¼ 0.

In part (ii), we will need to use the refinement ~U of the cover U defined in Lemma

6.9. From (21) we get that the cup product gi
A [ o

i
B is represented by the �Cech cocycle

ð�1ÞdAB

ð
Q

rk�s
xkÞ

2

X
~I¼Infðis; jsÞg

ð�1Þs
K~i1
ð@i

~j1

o

@i
~j0

o

OÞ

f~i1
þ
h@i

~j0
; df iK~i1

K~i0
ð@i

~j1

o

OÞ

f~i0 f~i1

 !8<:
9=;

I

;

where the index set I ¼ fði0; j0Þ; ði1; j1Þ; ði2; j2Þg corresponds to the refinement of ~U
and UsjX. Notice

Ki1 ð@
i
j1

o

@i
j0

o

OÞ

fi1
�

Ki2 ð@
i
j1

o

@i
j0

o

OÞ

fi2

¼
h@i

j0
; df iKi2Ki1ð@

i
j1

o

OÞ

fi1 fi2
�
h@i

j1
; df iKi2Ki1 ð@

i
j0

o

OÞ

fi1 fi2
�

Ki2Ki1 ð@
i
j1

o

@i
j0
Þ

o

ðdf ^ OÞ

fi1 fi2

 
h@i

j0
; df iKi2Ki1ð@

i
j1

o

OÞ

fi1 fi2
�
h@i

j1
; df iKi2Ki1 ð@

i
j0

o

OÞ

fi1 fi2
;

since df ^ O  0 modulo multiples of f. Using this, we compute

AB

ð
Q

rk�s
xkÞ

2

X
~I¼Infðis; jsÞg

ð�1Þs
K~i1
ð@i

~j1

o

@i
~j0

o

OÞ

f~i1
þ
h@i

~j0
; df iK~i1

K~i0
ð@i

~j1

o

OÞ

f~i0f~i1

 !

¼
X

~I¼Infðis; jsÞg

ð�1Þs
ABh@i

~j0
; df iK~i1

K~i0
ðð@i

~j1
� @i

~j0
Þ

o

OÞ

ð
Q

rk�s
xkÞ

2f~i0 f~i1
þ

þ
ABKi2 ðð@

i
j0
^ @i

j1
� @i

j0
^ @i

j2
þ @i

j1
^ @i

j2
Þ

o

OÞ

ð
Q

rk�s
xkÞ

2 fi2þ

þ
ABh@i

j1
; df i

ð
Q

rk�s
xkÞ

2

Ki2Ki0 ð@
i
j0

o

OÞ

fi0 fi2
�

Ki1Ki0 ð@
i
j0

o

OÞ

fi0 fi1
�

Ki2Ki1 ð@
i
j0

o

OÞ

fi1 fi2

 !
þ

þ
ABðh@i

j0
; df i þ h@i

j1
; df iÞ

ð
Q

rk�s
xkÞ

2

X
~I¼Infðis; jsÞg

ð�1Þs
K~i1

K~i0
ð@i

~j0

o

OÞ

f~i0 f~i1

0@ 1A:
It is not difficult to see that the first summand produces a coboundary. The open set

Usj
\Di is empty unless sj contains ri. Therefore, applying the restriction j�i , we can
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assume that the second component of the index ði0; j0Þ takes only values lk�1 or lkþ1.

In this case, @i
j0
^ @i

j1
� @i

j0
^ @i

j2
þ @i

j1
^ @i

j2
(and the corresponding summand in the

cocycle) vanishes. The third summand also ends up contributing zero:

ABh@i
j1
; df i

ð
Q

rk�s
xkÞ

2

Ki2Ki0 ð@
i
j0

o

OÞ

fi0 fi2
�

Ki1Ki0 ð@
i
j0

o

OÞ

fi0 fi1
�

Ki2Ki1 ð@
i
j0

o

OÞ

fi1 fi2

 !

¼
ABh@i

j1
; df i

ð
Q

rk�s
xkÞ

2

h@i
j0
; df iKi2Ki1Ki0O

fi0 fi1 fi2
þ

Ki2Ki1Ki0@
i
j0

o

ðdf ^ OÞ

fi0 fi1 fi2

 !

 
ABh@i

j0
; df ih@i

j1
; df i

ð
Q

rk�s
xkÞ

2

Ki2Ki1Ki0O
fi0 fi1 fi2

:

If i is among fi0; i1; i2g, then this restricts to an empty set since ~Ui \Di is empty. In

the opposite case, this gives 0 under the restriction since xi or dxi is present in each

term of O. Thus, the restriction j�i ðg
i
A [ o

i
BÞ is represented by the cocycle

ð�1ÞdABðh@i
j0
; df i þ h@i

j1
; df iÞ

ð
Q

rk�s
xkÞ

2

X
~I¼Infðis; jsÞg

ð�1Þs
K~i1

K~i0
ð@i

~j0

o

OÞ

f~i0 f~i1

8<:
9=;

I

;

where the index set I now corresponds to the open cover UsjX\Di
. However, the last

calculation shows that if j0 coincides with j1, then the expression in the above cocycle

vanishes on the given open set. Hence, this cocycle is the same as

ð�1ÞdAB

ð
Q

rk�s
xkÞ

2

xlk�1
flk�1

multðskÞ
�

xlkþ1
flkþ1

multðskþ1Þ

� � X
~I¼Infðis; jsÞg

ð�1Þs
K~i1

K~i0
ð@i

~j0

o

OÞ

f~i0 f~i1

8<:
9=;

I

:

By the arguments similar to part (i), one can show that this coincides with the

restriction j�i
�
oi

ABHs
i
ð f Þ

�
, where Hs

i ð f Þ is equal toffiffiffiffiffiffiffi
�1
p

xlkþ1
flkþ1

multðsk;kþ1Þ
Q

rk�s
xk
�

ffiffiffiffiffiffiffi
�1
p

xlk�1
flk�1

multðsk�1;kÞ
Q

rk�s
xk

at xlk ¼ xlk�1
¼ xlkþ1

¼ 0. &

Remark 6:12: In the anticanonical case b ¼ b0 the polynomials Hs
i;"1ð f Þ, Hs

i ð f Þ of

the above proposition can be written in a simpler form. Let D ¼
Pn

k¼1 Dk be the

anticanonical divisor with the associated polytope D :¼ DD. For f ¼
P

m2D\M amxDðmÞ

and s 2 SXð2Þ, denote

Hsð f Þ :¼
ffiffiffiffiffiffiffi
�1
p X

m2s?\D\M

am
xDðmÞQ
rk�s

xk
:
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Then Hs
i;"1ð f Þ ¼ Hsð f Þ=multðsk;k"1Þ and

Hs
i ð f Þ ¼

1

multðskþ1Þ
�

1

multðskÞ

� �
Hsð f Þ:

7. The Chiral Ring for Anticanonical Hypersurfaces

Here, we will apply the results of the previous sections to explicitly describe a subring

of the chiral ring H�ðX;^�T X Þ, coming from the graded pieces of R1ð f Þ and Rs
1ð f Þ,

for semiample anticanonical nondegenerate hypersurfaces. By Proposition 2.6, such

hypersurfaces are Calabi–Yau. The description of the chiral ring is complete for

Calabi–Yau threefolds.

Let PS be a complete simplicial toric variety, and let X � PS be a big and nef non-

degenerate hypersurface defined by f 2 Sb. From Theorem 6.7, we know the follow-

ing part of the middle cohomology of X:

½o �
M M

i

oi

 !
: R1ð f Þð�þ1Þb�b0

M M
s2SXð2Þ

Rs
1ð f Þ�b�b0þb

s
1

� �nðsÞ
 !

,!Hd�1��;� ðX Þ:

Now suppose that b is the anticanonical degree b0. In this case, the isomorphism

(5) and Theorems 3.4, 4.11 give us:

THEOREM 7.1. Let X � PS be a semiample anticanonical nondegenerate hypersur-

face defined by f 2 Sb. Then there is a natural inclusion

g
M M

i

gi

 !
: R1ð f Þ�b

M M
s2SXð2Þ

Rs
1ð f Þð��1Þbþbs1

� �nðsÞ
 !

,!H�ðX;^�T X Þ;

where the sum
L

i g
i is over ri � s 2 SXð2Þ such that ri =2SX and nðsÞ is the number of

such cones. Also, Rs
1ð f Þðq�1Þbþbs1

¼ 0 for q ¼ 0; d� 1.

Remark 7:2: The map given by g
L
ð
L

i g
i Þ is an isomorphism onto HqðX;^qT X Þ

if q ¼ 0; 1; d� 2; d� 1 and d 6¼ 1; 3. In particular, for semiample anticanonical

nondegenerate hypersurfaces of dimension 3, we get a complete description of the

chiral ring.

We claim that the part of H�ðX;^�T X Þ given in the above theorem is a subring.

Let us describe the product structure on this part. First, note that the ringL
p HpðX;^pT X Þ is commutative. Theorems 3.3, 4.7, Lemmas 4.8, 6.9 and Equation

(5) give us all information about the ring structure except for the products gi
A [ g

j
B

when ri and rj span a cone of S contained in some two-dimensional cone s 2 SX.

For such ri and rj, we first show that gi
A [ o

j
B is in the part of the middle cohomo-

logy represented by ½o �
L
ð
L

k o
kÞ. It is easy to see that gi

A 2 H�ðX;^�T X Þ can be

‘lifted’ to g in H�ðPS;^
�T PS Þ with respect to the maps of the following lemma.

LEMMA 7.3. Let i : L! K be a morphism of orbifolds, and let a 2 HpðK;^qT KÞ be
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such that ei�a ¼ Z� ~a for some ~a under the maps

HpðK;^qT KÞ �!
~i�

HpðL; i� ^q T KÞ �
Z�

HpðL;^qT LÞ:

Then i�ða [ bÞ ¼ ~a [ i�b for b 2 HrðK;Os
KÞ.

Proof. First, note that we have natural maps between the sheaves:

i�O�K ! O�L and ^� T L ! i� ^� T K:

The corresponding maps in cohomology of L with coefficients in the sheaves are

denoted by Z� and Z�, respectively. Then the restriction map i� : H�ðK;O�KÞ !
H�ðL;O�LÞ decomposes as

H�ðK;O�KÞ �!
ei�

H�ðL; i�O�KÞ �!
Z�

H�ðL;O�LÞ:

Therefore,

i�ða [ bÞ ¼ Z� ~i�ða [ bÞ ¼ Z�ð ~i�a [ ~i�bÞ ¼ Z�ðZ
� ~a [ ~i�bÞ ¼ ~a [ Z� ~i�b ¼ ~a [ i�b;

where we use the projection formula. &

Using the above lemma, for h 2 Hd�1ðPSÞ, we have

gi
A [ o

j
B [ i�h ¼ "gi

A [ i�h [ oj
B ¼ "i�ðg [ hÞ [ oj

B ¼ 0

since the toric part is orthogonal to the residue part in the middle cohomology. Simi-

larly, fj�tgi
A ¼ Z� egi

A for a corresponding egi
A 2 H�ðX \ VðtÞ;^�T X\VðtÞÞ, t 2 Sð2Þ.

Therefore, for h0 2 Hd�5ðX \ VðtÞÞ,

gi
A [ o

j
B [ jt!h

0 ¼ jt!ðj
�
t ðg

i
A [ o

j
BÞ [ h0 ¼ jt!ð

egi
A [ j

�
to

j
B [ h0Þ

¼ "jt!ð
egi
A [ h0Þ [ oj

B ¼ 0

where we use the projection formula for Gysin homomorphisms and Theorem 6.7.

Hence, by the same Theorem and because of the nondegenerate pairing on the mid-

dle cohomology, the cup product gi
A [ o

j
B lies in the space given by ½o �

L
ð
L

k o
kÞ.

By the isomorphism (5), the cup product gi
A [ g

j
B is in the part of the chiral ring

described in Theorem 7.1. Thus, this part is a subring of H�ðX;^�T X Þ.

Since X is Calabi–Yau, we have natural isomorphisms

Hd�1ðX;^d�1T X Þ ffi Hd�1ðX;OX Þ ffi H0ðX;Od�1
X Þ ffi C:

The cup product on the middle cohomology induces a nondegenerate pairing on the

chiral ring and its subring represented by g
L
ð
L

k g
kÞ. Therefore, one can recover

the product structure of the subring, knowing the triple products on this subring.

Because of Lemmas 4.8 and 6.9 it suffices to consider the product of three elements

gi
A [ g

j
B [ g

l
C 2 Hd�1ðX;^d�1T X Þ in the cases i ¼ j ¼ l and i ¼ j with l such that ri, rl
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span a 2-dimensional cone of S contained in some s 2 SXð2Þ. For this, compute

ðgi
A [ g

i
B [ g

i
C [ ½o1�Þ [ ½o1�

¼ egi
A [o

i
B [o

i
C ¼ egi

A [o
i
B [ji! ~o

i
C

¼ eji!ðj
�
i ðg

i
A [o

i
BÞ [ ~oi

CÞ ¼ eji!ððj
�
i o

i
ABHs

i
ð f ÞÞ [ ~oi

CÞ

¼ eoi
ABHs

i
ð f Þ [ji! ~o

i
C ¼ eoi

ABHs
i
ð f Þ [o

i
C

¼ ðgi
ABHs

i
ð f Þ [o

i
CÞ [ ½o1�

¼
multðskþ skþ1Þ½om�1ðABCHs

i ð f ÞG
sð f ÞÞ� [ ½o1�

multðskÞmultðskþ1Þ
;

where we used Propositions 6.3, 6.11, 6.10 and the projection formula for Gysin

homomorphisms, and where e is a sign depending on the degree of C. Similarly, in

the other case (as in (6), ri ¼ rlk
):

ðgi
A [ g

i
B [ g

lk"1

C [ ½o1�Þ [ ½o1�

¼ egi
A [ o

i
B [ o

lk"1

C ¼ egi
A [ o

i
B [ jlk"1 !

~olk"1

C

¼ ejlk"1 !
ðj�lk"1

ðgi
A [ o

i
BÞ [ ~olk"1

C Þ ¼ "ejlk"1 !
ððj�lk"1

oi
ABHs

i;"1
ð f ÞÞ [ ~olk"1

C Þ

¼ "eoi
ABHs

i;"1
ð f Þ [ o

lk"1

C ¼ "ðgi
ABHs

i;"1
ð f Þ [ o

lk"1

C Þ [ ½o1�

¼ #
½om�1ðABCHs

i;"1
ð f ÞGsð f ÞÞ� [ ½o1�

multðsk;k"1Þ
:

Since there is an isomorphism [½o1� : Hd�1ðX;OX Þ ffi Hd�1ðX;Od�1
X Þ, from the

above calculation we get an explicit product structure on the chiral ring.

THEOREM 7.4. Let X � PS be a semiample anticanonical nondegenerate hypersur-

face defined by f 2 Sb. Then, under the identifications of Theorem 7:1, we have

ðiÞ gA [ gB ¼ gAB,

ðiiÞ gA [ g
i
B ¼ gi

AB,

ðiiiÞ gi
A [ g

j
B ¼ 0, i 6¼ j, unless ri and rj span a cone of S contained in a two-dimensional

cone of SX,

ðivÞ for ri ¼ rlk
=2SX, as in ð6Þ, contained in s 2 SXð2Þ and A;B 2 Rs

1ð f Þð��1Þbþbs1
such

that AB 2 Rs
1ð f Þðd�3Þbþ2bs1

,

gi
A [ g

i
B ¼

multðsk þ skþ1Þgm�1ðABGsð f ÞÞ

multðskÞmultðskþ1Þ
in Hd�1ðX;^d�1T X Þ;

where the map m and Gsð f Þ 2 S3b�2bs1 are defined in ð20Þ and Proposition 6:10,

ðvÞ for ri; rj =2SX which span a 2-dimensional cone s0 2 S contained in s 2 SXð2Þ and

A;B as in ðivÞ,
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gi
A [ g

j
B ¼ �

gm�1ðABGsð f ÞÞ

multðs0Þ
in Hd�1ðX;^d�1T X Þ;

ðviÞ for ri ¼ rlk
as in ð6Þ and A;B;C 2 Rs

1ð f Þð��1Þbþbs1
such that ABC 2

Rs
1ð f Þðd�4Þbþ3bs1

,

gi
A [ g

i
B [ g

i
C ¼
ðmultðskÞ �multðskþ1ÞÞmultðsk þ skþ1Þgm�1ðABCHsð f ÞGsð f ÞÞ

ðmultðskÞmultðskþ1ÞÞ
2

;

where Hsð f Þ 2 Sb�bs1 is defined in Remark 6:12,

ðviiÞ for ri ¼ rlk
as in ð6Þ and A;B;C as in ðviÞ,

gi
A [ g

i
B [ g

lk"1

C ¼ #
gm�1ðABCHsð f ÞGsð f ÞÞ

multðsk;k"1Þ
2

;

where sk;k"1 denotes the cone spanned by ri and rlk"1
.

Remark 7:5: If the multiplicities of the two-dimensional cones of the fan S, lying

inside a cone of SXð2Þ, are equal to 1, then gi
A [ g

i
B [ g

i
C ¼ 0 in part (vi) of the above

theorem. In particular, this holds for the minimal Calabi–Yau hypersurfaces in

[B2]. &
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