Search for molecular gas in XUV disk of M83

Kana Morokuma-Matsui¹, Jin Koda², Tatsuya Takekoshi¹, Masao Saito¹, Hiroyuki Nakanishi³, Samuel Boissier⁴, Barry F. Madore⁵, Alessandro Boselli⁴, Armando Gil de Paz⁶, David Thilker⁷, Masafumi Yagi¹, Kazuo Sorai⁸ and Nario Kuno⁹

¹National Astronomical Observatory of Japan (NAOJ) email: kana.matsui@nao.ac.jp

²Stony Brook University, ³Kagoshima University, ⁴Laboratoire d'Astrophysique de Marseille, ⁵Carnegie Observatories, ⁶Universidad Complutense de Madrid, ⁷Johns Hopkins University, ⁸Hokkaido University, ⁹University of Tsukuba

Abstract. We report a non-detection of CO(J=1-0) emission from one of the brightest H II regions in the extended UV (XUV) disks of M 83 with on-source integration time of 11 hours.

Keywords. ISM: molecules, ISM: clouds, galaxies: individual (M 83), radio lines: ISM

1. Introduction

In extended UV disks (XUV disks), the gas-depletion timescale due to star formation (SF) with HI alone is ~ 10 times the Hubble time (~ 100 Gyr), compared to only 2-3 Gyr in normal galactic disks (Bigiel *et al.* 2010). However, studies of gas content in XUV disks have been limited to atomic gas, and a lack of information on molecular gas prevents us from understanding SF and gas-phase structure in such an extreme environment.

2. Observation and Result

We observed one H II region in the XUV disk of M 83 in CO(J=1-0) using the NRO 45-m telescope† (beam size of $16^{''}$, ~ 350 pc at the distance of M 83). The H II region is located at ~ 3x the optical disk radius $(\frac{D_{25}}{2})$, and its metallicity is 0.3 Z_{\odot} (Bresolin et al. 2009). The stellar mass of an associated young star cluster is expected to be ~ $5 \times 10^3 \text{ M}_{\odot}$ based on our deep optical H α and broadband images taken with Suprime-Cam on the Subaru telescope (Koda et al. 2012). No apparent CO emission was detected after an 10.8-hrs integration. The achieved rms is 21.0 mK in T_{mb} scale over 0.32 km s⁻¹ resolution. The upper limit for M_{mol} (molecular gas mass) is $6.2 \times 10^4 \text{ M}_{\odot}$ assuming the Milky-Way X_{CO} and a Gaussian profile of CO emission with a peak of $2 \times \text{rms}$ and FWHM of 2.3 km s⁻¹. Our result suggests an 8x larger X_{CO} in the XUV disk versus the Milky-Way value if we assume typical galactic disk SFE (= $\frac{M_{\star}}{M_{\star}+M_{mol}}$) of 1%. Otherwise we would be forced to conclude that SFE is elevated in XUV-disks compared to ordinary galactic environments, an unphysical result given the low gas densities.

References

Bigiel, F., Leroy, A., Walter, F., Blitz, L., Brinks, E., de Blok, W. J. G., & Madore, B. 2009, $ApJ,\,140,\,1194$

Bresolin, F., Ryan-Weber, E., Kennicutt, R. C., & Goddard, Q. 2009, $ApJ,\,695,\,580$ Koda, J. et~al. 2012, $ApJ,\,749,\,20$

† The 45-m radio telescope is operated by Nobeyama Radio Observatory, a branch of NAOJ.