
2 Monotone Operators and Base Splitting Schemes

In this chapter, we present the basic notion ofmonotone operators and the base splitting
schemes. Throughout this book, we use this machinery to derive and analyze a wide
variety of classical and modern algorithms in a unified and streamlined manner. The
approach is to first pose the problem at hand as a monotone inclusion problem, then
use one of the base splitting schemes to encode the solution as a fixed point of a related
operator, and finally find the solution with a fixed-point iteration.

2.1 SET-VALUED OPERATORS

We say � is a (set-valued) operator, point-to-set mapping, set-valued mapping, multi-
valued function, or correspondence on Rn if �maps a point in Rn to a (possibly empty)
subset of Rn. We denote this as� : Rn ⇒ Rn. So,�(x) ⊆ Rn for all x ∈ Rn. For notational
simplicity, we write �x = �(x).

If �x is a singleton or empty for all x, then � is a function or is single-valued with
domain {x | �(x) , ∅}. In this case, we mix function and operator notation and write
�x = y (function notation) although �x = {y} (operator notation) would be strictly
correct.
We define the graph of an operator as

Gra� = {(x,u) | u ∈ �x} ⊆ Rn × Rn.

An operator and its graph are mathematically equivalent. In other words, we can view
� : Rn ⇒ Rn as a point-to-set mapping and as a subset of Rn × Rn. In this book, we will
often not distinguish the operator itself and its graph; we will often write � when we
really mean Gra�.
We extend many notions for functions to operators. For example, the domain and

range of an operator � are defined as

dom� = {x | �x , ∅}, range� = {y | y ∈ �x, x ∈ Rn}.

If C ⊆ Rn, we write �(C) = ∪c∈C�(c) for the image of C under �. If � and � are
operators, we define the composition as

� ◦ �x = ��x = �(�(x))
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24 Monotone Operator Methods

and the sum as

(� + �)x = �(x) + �(x),

where �(x) + �(x) is the Minkowski sum. Alternate equivalent definitions that use the
graph are

�� = {(x,z) | ∃ y (x,y) ∈ �, (y,z) ∈ �},
� + � = {(x,y + z) | (x,y) ∈ �, (x,z) ∈ �}.

We write � and for the identity and zero operators

� = {(x,x) | x ∈ Rn}, = {(x,0) | x ∈ Rn}.

So, for any operator �, we have � + = �, �� = �, and �� = �.
For an L > 0, we say an operator � is L-Lipschitz if

‖u − v‖ ≤ L‖x − y‖ ∀ (x,u), (y,v) ∈ �,

or, more concisely, if

‖�x − �y‖ ≤ L‖x − y‖ ∀x,y ∈ dom�.

If � is L-Lipschitz, it is single-valued; if �x is not a singleton, then we have a contra-
diction by setting y = x. (This generalizes the previous definition of §1, as it allows
dom� , Rn.)
The inverse operator of � is defined as

�
−1 = {(y,x) | (x,y) ∈ �}.

Since�−1 can bemulti-valued, it is always well defined. It is easy to see that (�−1)−1 = �
and dom�−1 = range�. As a note of caution, the inverse operator is not an inverse
in the usual sense, as we can have �−1� , �. The zero operator is such an exam-
ple. However, we do have �−1�x = x when �−1 is single-valued and x ∈ dom�. See
Exercise 2.1.

Example 2.1 The inverse of an operator � always exists since we do not require it to be
single-valued.

When 0 ∈ �(x), we say that x is a zero of �. We write the zero set of an operator � as

Zer� = {x | 0 ∈ �x} = �−1(0).

Wewill see thatmany interesting problems can be posed as finding zeros of an operator.
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2 Monotone Operators and Base Splitting Schemes 25

Subdifferential
Let f be a convex function on Rn. Then ∂f is a set-valued operator, and

argmin f = Zer ∂f,

that is, 0 ∈ ∂f (x) if and only if x minimizes f. When f is known or assumed to be differ-
entiable, we write ∇f instead of ∂f. As an aside, dom ∂f ⊆ dom f, and it is possible to
have dom ∂f , dom f. Example 1.7 is one such example.

When f is CCP, we have the elegant formula

(∂f )−1 = ∂f ∗, (2.1)

which is known as Fenchel’s identity. This follows from

u ∈ ∂f (x) ⇔ 0 ∈ ∂f (x) − u
⇔ x ∈ argmin

z
{ f (z) − u⊺z}

⇔ −f (x) + u⊺x = f ∗(u)
⇔ f (x) + f ∗(u) = u⊺x
⇔ f ∗∗(x) + f ∗(u) = u⊺x
⇔ x ∈ ∂f ∗(u),

where the second-to-last step uses the fact that f ∗∗ = f when f is CCP, as discussed in
§1.3.8, and the last step takes the whole argument backward.
Consider g(y) = f ∗(A⊺y), where f is CCP. If R(A⊺) ∩ ri dom f ∗ , ∅, we have

u ∈ ∂g(y) ⇔ u ∈ A∂f ∗(A⊺y)
⇔ u = Ax, x ∈ ∂f ∗(A⊺y)
⇔ u = Ax, ∂f (x) 3 A⊺y (2.2)

⇔ u = Ax, 0 ∈ ∂f (x) −A⊺y

⇔ u = Ax, x ∈ argmin
z

{ f (z) − 〈y,Az〉} .

This means we can find an element of ∂g by solving a minimization problem.

2.2 MONOTONE OPERATORS

An operator � on Rn is said to be monotone if

〈u − v,x − y〉 ≥ 0 ∀ (x,u), (y,v) ∈ �.

Equivalently and more concisely, we can express monotonicity as

〈�x − �y,x − y〉 ≥ 0 ∀x,y ∈ Rn.

To clarify, 〈�x−�y,x−y〉 is a subset ofR and the inequalitymeans the subset is contained
in [0,∞). When x < dom� or y < dom�, then 〈�x − �y,x − y〉 = ∅ and the inequality is
vacuous.
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26 Monotone Operator Methods

An operator � is maximal monotone if there is no other monotone operator � such
that Gra� ⊂ Gra� properly. In other words, if the monotone operator � is not maxi-
mal, then there exists (x,u) < � such that � ∪ {(x,u)} is still monotone. Maximality is a
technical but fundamental detail.

Example 2.2 The Heaviside step function u : R→ R defined as

u(x) =
{

0 for x ≤ 0
1 for x > 0

is monotone but not maximal. The operator U : R⇒ R defined as

U(x) =


{0} for x < 0
[0,1] for x = 0
{1} for x > 0

is maximal monotone.

Subdifferential
If f is convex and proper, then ∂f is a monotone operator. If f is CCP, then ∂f is maximal
monotone. To prove monotonicity, add the inequalities

f (y) ≥ f (x) + 〈∂f (x),y − x〉, f (x) ≥ f (y) + 〈∂f (y),x − y〉,

which hold by the definition of subdifferentials, to get

〈∂f (x) − ∂f (y),x − y〉 ≥ 0.

We prove maximality later in §10. See Exercise 2.2 for an example where ∂f is not
maximal.
Not all maximal monotone operators are subdifferential operators. Subdifferential

operators of CCP functions form a subclass of monotone operators that enjoy certain
nice properties that general maximal monotone operators do not.

2.2.1 Stronger Monotonicity Properties

An operator � : Rn ⇒ Rn is µ-strongly monotone or µ-coercive if µ > 0 and

〈u − v,x − y〉 ≥ µ‖x − y‖2 ∀ (x,u), (y,v) ∈ �.

We say � is strongly monotone if it is µ-strongly monotone for some unspecified µ ∈
(0,∞). An operator � is β-cocoercive or β-inverse strongly monotone if β > 0 and

〈u − v,x − y〉 ≥ β‖u − v‖2 ∀ (x,u), (y,v) ∈ �.
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2 Monotone Operators and Base Splitting Schemes 27

We say � is cocoercive if it is β-cocoercive for some unspecified β ∈ (0,∞). Coco-
ercivity is the dual property of strong monotonicity; � is β-cocoercive if and only if
�−1 is β-strongly monotone. Clearly, strongly monotone and cocoercive operators are
monotone.

We can more concisely express µ-strong monotonicity as

〈�x −�y,x − y〉 ≥ µ‖x − y‖2 ∀x,y ∈ Rn,

and, when � is a priori known or assumed to be single-valued, express β-cocoercivity
as

〈�x −�y,x − y〉 ≥ β‖�x −�y‖2 ∀x,y ∈ Rn.

When � is β-cocoercive, the Cauchy–Schwartz inequality tells us

(1/β)‖x − y‖ ≥ ‖�x −�y‖ ∀x,y ∈ Rn.

that is, � is (1/β)-Lipschitz. Therefore, cocoercive operators are single-valued. The
converse is not true. The single-valued operator � : R2 → R2 defined as

�(x1,x2) =
[
0 1
−1 0

] [
x1
x2

]
=

[
x2
−x1

]
is an example of an operator that is maximal monotone and Lipschitz, but not cocoer-
cive since 〈�x −�y,x − y〉 = 0, ∀x,y ∈ Rn.
We say � is maximal µ-strongly monotone if there is no other µ-strongly monotone

operator � such that Gra� ⊂ Gra� properly. We say � is maximal β-cocoercive if
there is no other β-cocoercive operator � such that Gra� ⊂ Gra� properly. Max-
imal cocoercivity is the dual property of maximal strong monotonicity; � is maximal
β-cocoercive if and only if�−1 is maximal β-strongly monotone. A β-cocoercive opera-
tor� is maximal if and only if dom� = Rn. (We show this fact in §10.3 as Theorem 15.)
Since a β-cocoercive operator is single-valued, the statement “� : Rn → Rn is β-
cocoercive” is equivalent to “� : Rn ⇒ Rn is maximal β-cocoercive” since the notation
� : Rn → Rn implicitly assumes dom� = Rn. For further discussion, see §10 and
Exercises 10.11 and 10.12.
Assume f is CCP. Then f is µ-strongly convex if and only if ∂f is µ-strongly monotone,

and f is L-smooth if and only if ∂f is (1/L)-cocoercive. Since ∂f is µ-strongly monotone
if and only if (∂f)−1 = ∂f ∗ is µ-cocoercive, f is µ-strongly convex if and only if f ∗ is
(1/µ)-smooth.
The notion of Lipschitz continuity and cocoercivity coincide for subdifferential oper-

ators of convex functions: ∂f is L-Lipschitz if and only if ∂f is (1/L)-cocoercive. This
result is known as the Baillon–Haddad theorem.

Example 2.3 An operator on R is monotone if its graph is a nondecreasing curve in R2. If
it has vertical portions, the operator is multi-valued. If it is continuous with no end points,
then it is maximal. If its slope is at least µ everywhere, then it is µ-strongly monotone. If its
slope is never more than L, then it is L-Lipschitz. The notion of Lipschitz continuity and
cocoercivity coincide for operators on R.
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28 Monotone Operator Methods

2.2.2 Operations Preserving (Maximal) Monotonicity

If � is (maximal) monotone, then �(x) = y + α�(x + z) for any α > 0 and y,z ∈ Rn is
(maximal) monotone. If � is (maximal) monotone, then �−1 is (maximal) monotone.
If � and � are monotone, then � + � is monotone. If � and � are maximal monotone
and if dom� ∩ int dom � , ∅, then � + � is maximal monotone. If � : Rn ⇒ Rn is
monotone andM ∈ Rn×m, thenM⊺�M is a monotone operator on Rm. If � is maximal
and R(M) ∩ int dom� , ∅, thenM⊺�M is maximal. See §10 for proofs of maximality.

If �: Rn ⇒ Rn and � : Rm ⇒ Rm, then the operator � : Rn+m ⇒ Rn+m defined by

�(x,y) = {(u,v) | u ∈ �x, v ∈ �y}

is (maximal) monotone if � and � are. We call � the concatenation of � and � and use
the notation

� =

[
�

�

]
, �(x,y) =

[
�x
�y

]
.

If � is µ-strongly monotone and � is monotone, then � + � is µ-strongly monotone
and α� is (αµ)-strongly monotone for α > 0. If � : Rn ⇒ Rn is µ-strongly monotone
andM ∈ Rn×m has rankm (so n ≥ m), thenM⊺�M is (µσ2

min(M))-strongly monotone. If
� : Rn → Rn is L-Lipschitz andM ∈ Rn×m, thenM⊺�M is (Lσ2

max(M))-Lipschitz.

2.2.3 Examples

Affine Operators
An affine operator �(x) = Ax + b is maximal monotone if and only if A + A⊺ � 0. It
is a subdifferential operator of a CCP function if and only if A = A⊺ and A � 0. It is
λmin(A +A⊺)/2-strongly monotone and σmax(A)-Lipschitz.
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2 Monotone Operators and Base Splitting Schemes 29

Continuous Operators
We say an operator � : Rn ⇒ Rn is continuous if dom� = Rn, � is single-valued, and
� is continuous as a function. A continuous monotone operator � : Rn → Rn is maxi-
mal. See Exercise 2.4 for a proof. Therefore maximality comes into question only with
discontinuous or set-valued operators.

Differentiable Operators
We say anoperator is differentiable if it is single-valued, continuous, and differentiable.
A differentiable operator � : Rn → Rn is monotone if and only if D�(x) +D�(x)⊺ � 0
for all x ∈ Rn, where D�(x) is the n × n Jacobian matrix evaluated at x. It is µ-strongly
monotone if and only ifD�(x)+D�(x)⊺ � 2µI for all x, and it is L-Lipschitz if and only
if σmax(D�(x)) ≤ L for all x. See Exercises 2.7 and 2.8 for proofs.

If a monotone operator � is differentiable with continuousD�, then � is a subdiffer-
ential operator of a CCP function if and only ifD�(x) is symmetric for all x ∈ Rn. When
n = 3, this condition is equivalent to the so-called curl-less (or irrotational) condition
discussed in the context of electromagnetic potentials.

Saddle Subdifferential
Let L : Rn × Rm → R ∪ {±∞} be a convex-concave saddle function, that is, L(x,u) is
convex in x for fixed u and concave in u for fixed x. The saddle subdifferential operator
∂L : Rn × Rm ⇒ Rn × Rm is defined as

∂L(x,u) =
[

∂xL(x,u)
∂u(−L(x,u))

]
. (2.3)

To clarify, ∂x and ∂u respectively denote the subgradients with respect to x and u. To
clarify, ∂L(x,u) is nonempty if both ∂xL(x,u) and ∂u(−L(x,u)) are nonempty. Zer ∂L is
the set of saddle points of L, that is, 0 ∈ ∂L(x⋆,u⋆) if and only if (x⋆,u⋆) is a saddle point
of L.
Formost well-behaved convex-concave saddle functions, their saddle subdifferentials

are maximal monotone. Specifically, “closed proper” convex-concave saddle functions
have maximal monotone saddle subdifferentials. (See the bibliographical notes sec-
tion.) In this book, we avoid this notion, as it is usually straightforward to verify the
maximality of saddle subdifferentials on a case-by-case basis.

As a technical note, we adopt the convention +∞ − ∞ = −∞ + ∞ = −∞ in saddle
functions. We do encounter +∞ − ∞ in certain cases such as the Lagrangians for DRS
(2.17), PDHG (1.8), and Condat–Vũ (3.12). The specific value that we ascribe to +∞−∞
does not matter, but we define it for concreteness.

KKT Operator
Consider the problem

minimize
x

f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . ,p,
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30 Monotone Operator Methods

where f0, . . . , fm are CCP and h1, . . . ,hp are affine. The associated Lagrangian

L(x,λ, ν) = f0(x) +
m∑
i=1

λifi(x) +
p∑
i=1

νihi(x) − δRm+ (λ),

where Rm+ denotes the nonnegative orthant, is a convex-concave saddle function, and
we define the Karush–Kuhn–Tucker (KKT) operator as

�(x,λ, ν) =


∂xL(x,λ, ν)
−�(x) +�Rm+ (λ)

−�(x)

 =

∂xL(x,λ, ν)

∂λ(−L(x,λ, ν))
∂ν(−L(x,λ, ν))

 ,
where

�(x) =

f1(x)
...

fm(x)

 , �(x) =

h1(x)
...

hp(x)

 .
� is monotone, since it is a special case of the saddle subdifferential. Arguments based
on total duality tell us that 0 ∈ �(x⋆,λ⋆, ν⋆) if and only if x⋆ solves the primal problem,
(λ⋆, ν⋆) solves the dual problem, and strong duality holds.

2.2.4 Monotone Inclusion Problem

Monotone inclusion problems are problems of the form

find
x∈Rn

0 ∈ �x,

where� ismonotone.Many interesting problems can be formulated asmonotone inclu-
sion problems. For example, minimizing a convex function f is equivalent to finding a
zero of ∂f.

2.3 NONEXPANSIVE AND AVERAGED OPERATORS

Nonexpansive and Contractive Operators
We say an operator � is nonexpansive if

‖�x − �y‖ ≤ ‖x − y‖ ∀x,y ∈ dom�.

In other words, � is nonexpansive if it is 1-Lipschitz. We say � is a contraction if it
is L-Lipschitz with L < 1. Mapping a pair of points by a contraction reduces the dis-
tance between them; mapping them by a nonexpansive operator does not increase the
distance between them.
If � and � are nonexpansive, then �� is nonexpansive. If � or � is furthermore con-

tractive, then �� is contractive. If � and � are nonexpansive, then θ� + (1 − θ)� with
θ ∈ [0,1], a convex combination, is nonexpansive. If � is furthermore contractive and
θ ∈ (0,1], then θ� + (1 − θ)� is contractive.
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2 Monotone Operators and Base Splitting Schemes 31

Figure 2.1 Illustration of classes of contractive, averaged, and nonexpansive operators. The figure illustrates
the relationship: contractive ⊂ averaged ⊂ nonexpansive. The precise meaning of these figures will be defined
in §13.

Averaged Operators
For θ ∈ (0,1), we say an operator� is θ-averaged if� = (1− θ)�+ θ� for some nonexpan-
sive operator �. We say an operator is averaged if it is θ-averaged for some unspecified
θ ∈ (0,1). In other words, taking a weighted average (convex combination) of � and a
nonexpansive operator gives an averaged operator. We say an operator is firmly non-
expansive if it is (1/2)-averaged. See Figure 2.1. When operators � and � are averaged,
the composition �� is averaged. We prove this as Theorem 27 later in §13.
Averagedness is the central notion in establishing convergence for many splitting

methods. In fact, Theorems 1, 2, and 3, the main convergence theorems of Part I, are
based on the notion of averagedness.

2.4 FIXED-POINT ITERATION

We now discuss the first meta-algorithm of this book: the fixed-point iteration. Using
the fixed-point iteration involves two steps. First, find a suitable operator whose fixed
points are solutions to a monotone inclusion problem of interest. Second, show that the
iteration converges to a fixed point.

2.4.1 Fixed Points

We say x is a fixed point of � if x = �x, and write

Fix� = {x | x = �x} = (� − �)−1(0)

for the set of fixed points of�. If� is nonexpansive and dom� = Rn, then its set of fixed
points is closed and convex. Certainly, Fix� can be empty (for example, �x = x + 1 on
R) or contain many points (for example, �x = |x| on R).
Let us show Fix� is closed and convex when � : Rn → Rn is nonexpansive. That

Fix� is closed follows from the fact that � − � is a continuous function. Now suppose
x, y ∈ Fix� and θ ∈ [0,1]. We will show that z = θx + (1 − θ)y ∈ Fix�. Since � is
nonexpansive, we have

‖�z − x‖ ≤ ‖z − x‖ = (1 − θ)‖y − x‖,
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32 Monotone Operator Methods

and similarly, we have

‖�z − y‖ ≤ θ‖y − x‖.

So, the triangle inequality

‖x − y‖ ≤ ‖�z − x‖ + ‖�z − y‖

holds with equality, which means the previous inequalities hold with equality and �z
is on the line segment between x and y. From ‖�z − y‖ = θ‖y − x‖, we conclude that
�z = θx + (1 − θ)y = z. Thus z ∈ Fix�.

2.4.2 Fixed-Point Iteration

The algorithm fixed-point iteration (FPI), also called the Picard iteration, is

xk+1 = �xk

for k = 0,1, . . . , where x0 ∈ Rn is some starting point and � : Rn → Rn is single-valued.
The FPI is used to find a fixed point of �. Clearly, the algorithm stays at a fixed point if
it starts at a fixed point. For the sake of brevity, we will usually omit stating that x0 ∈ Rn
is some starting point and that k = 0,1, . . . when we write an FPI.

In general, an FPI need not converge, even if we assume� is nonexpansive. For exam-
ple, this is the case when � is a rotation about some line or a reflection through a plane.
We provide two conditions that guarantee convergence, although these are not the only
possible approaches.

Contractive Operators
Suppose that � : Rn → Rn is a contraction with Lipschitz constant L < 1. In this setting,
FPI is also called the contraction mapping algorithm. For x⋆ ∈ Fix�, we have

‖xk − x⋆‖ ≤ L‖xk−1 − x⋆‖ ≤ · · · ≤ Lk‖x0 − x⋆‖.

This is the basis of the classic Banach fixed-point theorem; see Exercise 2.14.
So, when � is a contraction, the convergence analysis is very simple. In many optimi-

zation setups, however, a contraction is too much to ask for, and we need an approach
to establish convergence under weaker assumptions.

Averaged Operators
Suppose � : Rn → Rn is averaged. In this setting, FPI is also called the averaged or
Krasnosel’skiı̆–Mann iteration, and it converges to a solution if one exists.
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Theorem 1 Assume � : Rn → Rn is θ-averaged with θ ∈ (0,1) and Fix� , ∅. Then
xk+1 = �xk with any starting point x0 ∈ Rn converges to one fixed point, that is,

xk → x⋆

for some x⋆ ∈ Fix�. The quantities dist(xk,Fix�), ‖xk+1 − xk‖, and ‖xk − x⋆‖ for
any x⋆ ∈ Fix� are monotonically nonincreasing with k. Finally, we have

dist(xk,Fix�) → 0

and

‖xk+1 − xk‖2 ≤ θ

(k + 1)(1 − θ)dist
2(x0,Fix�).

To find a fixed point of a nonexpansive operator� that is not necessarily averaged, we
can perform FPI on the averaged operator (1−θ)�+θ�with θ ∈ (0,1).� and (1−θ)�+θ�
share the same set of fixed points, that is, Fix� = Fix ((1 − θ)� + θ�). This ensures the
iteration converges, with essentially no additional computational cost.

Example 2.4 Consider � : R2 → R2 defined as

�x =
[
−0.5 0
0 1

]
x =

(
3
4

[
−1 0
0 1

]
+
1
4

[
1 0
0 1

] )
x.

This is a (3/4)-averaged operator with Fix� = {(0,z) | z ∈ R}.

We can see that FPI with respect to � converges to one of the fixed points and that the limit
depends on the starting point x0.

Proof of Theorem 1. Before we begin the proof in earnest, we summarize the core idea
of the proof. Assume we have nonnegative scalar sequences V0,V1, . . . and S0,S1, . . . .
(To clarify, the superscripts denote iteration count, not exponents.) Say we establish the
inequality

Vk+1 ≤ Vk − Sk

for k = 0,1,2, . . . . Such an inequality has two useful consequences. The first is that Vk

is monotonically nonincreasing, although there is no guarantee that Vk decreases to 0.
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34 Monotone Operator Methods

The second is that Sk → 0. To see why, sum both sides from 0 to k to get

k∑
i=0

Si ≤ V0 − Vk+1 ≤ V0.

Taking k → ∞ gives us
∞∑
i=0

Si ≤ V0 < ∞,

andwe say the sequence S0,S1, . . . is summable. Nonnegative summable sequences con-
verge to 0, so Sk → 0. If, furthermore, we can show that S0,S1, . . . is nonincreasing,
then

(k + 1)Sk ≤
k∑
i=0

Si ≤ V0,

and hence Sk ≤ 1
k+1V

0. As an aside, we call Vk the Lyapunov function and Sk the
summable term.

The proof technique of showing that a Lyapunov function produces a summable term,
which converges to zero, is called the summability argument.

Stage 1 Note

‖(1 − θ)x + θy‖2 = (1 − θ)‖x‖2 + θ‖y‖2 − θ(1 − θ)‖x − y‖2,

for all θ ∈ R, x,y ∈ Rn. Verifying the identity is a matter of expanding both sides.
Write � = (1 − θ)� + θ�, where � is nonexpansive. Write the FPI as

xk+1 = �xk = (1 − θ)xk + θ�xk.

For any x⋆ ∈ Fix�, we use the previous identity to get

‖xk+1 − x⋆‖2 = (1 − θ)‖xk − x⋆‖2 + θ‖�(xk) − x⋆‖2 − θ(1 − θ)‖�(xk) − xk‖2

≤ (1 − θ)‖xk − x⋆‖2 + θ‖xk − x⋆‖2 − θ(1 − θ)‖�(xk) − xk‖2

= ‖xk − x⋆‖2︸       ︷︷       ︸
=Vk

− θ(1 − θ)‖�(xk) − xk‖2︸                      ︷︷                      ︸
=Sk

, (2.4)

where we used nonexpansiveness of � in the second line.
We now establish the monotonic decreases. The core inequality (2.4) tells us

‖xk+1 − x⋆‖ ≤ ‖xk − x⋆‖

for any x⋆ ∈ Fix�, that is, the distance of the iterates to any fixed point is monotonically
nonincreasing. Minimizing both sides with respect to x⋆ ∈ Fix� gives us

dist(xk+1,Fix�) ≤ dist(xk,Fix�),

that is, the distance of the iterates to the set of fixed points is monotonically nonincreas-
ing. As another aside, an algorithm is said to be Fejér monotone if the distance of the
iterates to the solution set is monotonically nonincreasing.
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We call �(xk) −xk = xk+1 −xk the fixed-point residual. If �(xk) −xk = 0, the FPI is at a
fixed point, and the iteration stops, so one can use ‖�(xk)−xk‖ as a measure of progress
of the FPI. Since � is nonexpansive, we have

‖xk+1 − xk‖ = ‖�xk − �xk−1‖ ≤ ‖xk − xk−1‖,

that is, the magnitude of the fixed-point residual is monotonically nonincreasing.
Using the monotonic decrease of ‖xk+1 − xk‖, we obtain a rate of convergence for

‖xk+1 − xk‖ → 0. Summing the inequality (2.4) from 0 to k gives us

‖xk+1 − x⋆‖2 ≤ ‖x0 − x⋆‖2 − 1 − θ
θ

k∑
j=0

‖�xj − xj‖2.

Reorganizing, we get

k∑
j=0

‖�xj − xj‖2 ≤ θ

1 − θ ‖x
0 − x⋆‖2 − θ

1 − θ ‖x
k+1 − x⋆‖2.

With the monotonic decrease of ‖xk+1 − xk‖ we get

(k + 1)‖xk+1 − xk‖2 ≤
k∑
j=0

‖xj+1 − xj‖2 ≤ θ

1 − θ ‖x
0 − x⋆‖2,

and we conclude that

‖xk+1 − xk‖2 ≤ θ

(k + 1)(1 − θ) ‖x
0 − x⋆‖2.

Minimizing the right-hand side with respect to x⋆ ∈ Fix�, we get

‖xk+1 − xk‖2 ≤ θ

(k + 1)(1 − θ)dist
2(x0,Fix�).

Stage 2 We now show xk → x⋆ for some x⋆ ∈ Fix�. Consider any x̃⋆ ∈ Fix�. Then
(2.4) tells us that x0,x1, . . . lie within the compact set {x | ‖x − x̃⋆‖ ≤ ‖x0 − x̃⋆‖}, and
x0,x1, . . . has an accumulation point x⋆. Let xkj be a subsequence such that xkj → x⋆.
Then (� − �)(xk) → 0 implies (� − �)(xkj ) → 0. Since � − � is continuous, xkj → x⋆ and
(� − �)(xkj ) → 0 implies (� − �)(x⋆) = 0. In other words, x⋆ ∈ Fix�. Finally, applying
(2.4) to this accumulation point x⋆ ∈ Fix�, we conclude that ‖xk − x⋆‖ monotonically
decreases to 0, that is, the entire sequence converges to x⋆.

Termination Criterion
Although we avoid the discussion of termination criterion throughout this book for the
sake of simplicity, detecting when an iterate is a sufficiently accurate approximation
of the solution is essential for a practical iterative method. We simply point out that
‖xk+1 − xk‖ < ε for some small ε > 0 can generally be used as a termination criterion.
Specific setups may have other termination criteria that better capture the particular
goals of the setup.
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2.4.3 Methods

Gradient Descent
Consider the problem

minimize
x∈Rn

f (x).

Assume f is CCP and differentiable. Then x is a solution if and only if

0 = ∇f (x) ⇔ x = (� − α∇f )(x)

for any nonzero α ∈ R. In other words, x is a solution if and only if it is a fixed point of
the operator � − α∇f.

The FPI for this setup is

xk+1 = xk − α∇f (xk).

This algorithm is called the gradient method or gradient descent, and α is called the
stepsize.

Now assume f is L-smooth. By the cocoercivity inequality,

‖(� − (2/L)∇f )x − (� − (2/L)∇f)y‖2

= ‖x − y‖2 − 4
L

(
〈x − y,∇f (x) − ∇f (y)〉 − 1

L
‖∇f (x) − ∇f (y)‖2

)
≤ ‖x − y‖2.

Therefore, � − α∇f is averaged for α ∈ (0,2/L) since

� − α∇f = (1 − θ)� + θ(� − (2/L)∇f ),

where θ = αL/2 < 1. Consequently, xk → x⋆ for some solution x⋆, if one exists, with
rate

‖∇f (xk)‖2 = O(1/k),

for any

α ∈ (0,2/L). (2.5)

If we furthermore assume f is strongly convex, we can show the iteration is a
contraction.

Forward Step Method
Consider the problem

find
x∈Rn

0 = �(x),

where � : Rn → Rn.
By the same argument as for gradient descent, x is a solution if and only if it is a fixed

point of � − α� for any nonzero α ∈ R. The FPI for this setup is

xk+1 = xk − α�xk,

which we call the forward step method.
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The forward step method converges if � is β-cocoercive and α ∈ (0,2β). The forward
step iteration is a contraction for small enough α > 0 if � is strongly monotone and
Lipschitz.
However, the method does not necessarily converge if � is merely monotone and

Lipschitz. The operator

�(x,y) =
[
0 1
−1 0

] [
x
y

]
is such an example, since the 2×2 matrix representing �−α� has singular values strictly
greater than 1 for any α , 0. (This operator arises as, say, the KKT operator of the
problem of minimizing x subject to x = 0.) The scaled relative graphs of §13 will provide
the geometric intuition of this counterexample.

Dual Ascent
Consider the primal-dual problem pair (1.6) and (1.7),

minimize
x∈Rn

f (x)
subject to Ax = b,

maximize
u∈Rm

−f ∗(−A⊺u) − b⊺u,

generated by the Lagrangian (1.5)

L(x,u) = f (x) + 〈u,Ax − b〉.

Define g(u) = f ∗(−A⊺u) + b⊺u. By the discussion of §1.3.8, if f is µ-strongly convex,
then f ∗ is differentiable and ∇f ∗ is (1/µ)-Lipschitz. By the discussion of §2.2.2,

∇g(u) = −A∇f ∗(−A⊺u) + b

is Lipschitz with parameters σ2
max(A)/µ.

Using (2.2), write the gradient method applied to g, the FPI on � − α∇g, as

xk+1 = argmin
x

L(x,uk)

uk+1 = uk + α(Axk+1 − b).

The first step is minimizing the Lagrangian, and the second is a multiplier update. This
method is called theUzawamethod or dual ascent. If f is µ-strongly convex, total duality
holds, and 0 < α < 2µ/σ2

max(A), then xk → x⋆ and uk → u⋆. See Exercise 2.17.

2.5 RESOLVENTS

The resolvent of an operator � is defined as

�� = (� +�)−1.

The reflected resolvent, also called the Cayley operator or the reflection operator, of �
is defined as

�� = 2�� − �.

Often, we will use �α� and �α� with α > 0. If � is maximal monotone, �� is a
nonexpansive (single-valued) with dom�� = Rn, and �� is a (1/2)-averaged with
dom �� = Rn.
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38 Monotone Operator Methods

Let us prove nonexpansiveness. Assume we have (x,u), (y,v) ∈ ��. By definition of
resolvents, we have

x ∈ u +�u, y ∈ v +�v.

By monotonicity of �,

〈(x − u) − (y − v),u − v〉 ≥ 0

and

‖(2u − x) − (2v − y)‖2 = ‖x − y‖2 − 4〈(x − u) − (y − v),u − v〉
≤ ‖x − y‖2.

This proves�� is nonexpansive and therefore single-valued, and �� = (1/2)�+ (1/2)��
is (1/2)-averaged.

TheMinty surjectivity theorem states that dom �� = Rn when� ismaximalmonotone.
This result is easy to intuitively see in 1D but is nontrivial in higher dimensions. We
prove this in §10.

Zero Set of a Maximal Monotone Operator
Using resolvents, we can quickly show Zer� is a closed convex set when� is maximal
monotone. Since

0 ∈ �x ⇔ x ∈ x +�x ⇔ ��x = x,

we have Zer� = Fix ��. Since �� is nonexpansive, Fix �� is a closed convex set. Note
that this proof relies on maximality through the condition dom �� = Rn.

Example 2.5 When� is a monotone linear operator represented by a symmetric matrix, it is
easier to see why �� and �� are nonexpansive. In this case,� has eigenvalues in [0,∞) and
�� = (� +�)−1 has eigenvalues in (0,1]. The reflected resolvent,

�� = 2�� − � = (� −�)(� +�)−1 = (� +�)−1(� −�),

also called the Cayley transform of �, has eigenvalues in (−1,1].

Example 2.6 Let z ∈ C be a complex number. We can identify z with a linear operator from
C to C defined by multiplication, that is, we can view z as the operator that maps x 7→ zx for
any x ∈ C. We equip the set of complex numbers with the inner product 〈x,y〉 = Re xy for
any x,y ∈ C, where y is the complex conjugate of y. Then z ∈ C is a monotone operator if
and only if Re z ≥ 0.
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So a monotone z is a complex number on the right half-plane, and its resolvent (1 + z)−1 is
a complex number within the disk with center 1/2 and radius 1/2 except for the origin.

2.5.1 Examples

Subdifferential
When f is CCP and α > 0, we have

�α∂f = Proxαf.

This follows from

z = (I + α∂f )−1(x) ⇔ z + α∂f (z) 3 x

⇔ 0 ∈ ∂z
(
αf (z) + 1

2
‖z − x‖2

)
⇔ z = argmin

z

{
αf (z) + 1

2
‖z − x‖2

}
⇔ z = Proxαf(x).

Subdifferential of Conjugate
Let g(u) = f ∗(A⊺u), and assume f is CCP and ri dom f ∗ ∩ R(A⊺) , ∅. Then

v = Proxαg(u) ⇔ x ∈ argminx
{
f (x) − 〈u,Ax〉 + α

2 ‖Ax‖2
}

v = u − αAx. (2.6)

This follows from

v = (I + α∂g)−1(u) ⇔ v + αA∂f ∗(A⊺v) 3 u
⇔ v + αAx = u, x ∈ ∂f ∗(A⊺v)
⇔ v = u − αAx, ∂f (x) 3 A⊺v

⇔ v = u − αAx, ∂f (x) 3 A⊺(u − αAx)

⇔ v = u − αAx, x ∈ argmin
x

{
f (x) − 〈u,Ax〉 + α

2
‖Ax‖2

}
.

Projection
LetC ⊂ Rn be a nonempty closed convex set. Remember from §1 that δC is the indicator
function of C, �C is the normal cone operator of C, and ΠC is the projection onto C.
These satisfy the following properties: δC = αδC and �C = α�C for any α > 0; ∂δC =
�C; and ��C = ProxδC = ΠC.

KKT Operator for Linearly Constrained Problems
Consider the Lagrangian

L(x,u) = f (x) + 〈u,Ax − b〉,
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which generates the primal problem

minimize
x∈Rn

f (x)
subject to Ax = b.

We can compute its resolvent with

�α∂L(x,u) = (y,v) ⇔ y = argminz
{
Lα(z,u) + 1

2α ‖z − x‖2
}

v = u + α(Ay − b), (2.7)

where Lα = f (x) + 〈u,Ax − b〉 + α
2 ‖Ax − b‖2 is the augmented Lagrangian of (1.11).

Let us show this. For any α > 0, we have

�α∂L(x,u) = (y,v) ⇔
[
x
u

]
∈

[
y
v

]
+ α

[
∂f (y) +A⊺v
b −Ay

]
⇔

[
x
u

]
∈ α

[
∂f (y)
b

]
+

[
I αA⊺

−αA I

] [
y
v

]
.

We left-multiply the invertible matrix[
I −αA⊺

0 I

]
to get

⇔
[
x − αA⊺u

u

]
∈ α

[
∂f (y) − αA⊺b

b

]
+

[
I + α2A⊺A 0

−αA I

] [
y
v

]
.

We call this the Gaussian elimination technique and discuss it in more detail in §3.4.
Now that the first line of the inclusion is independent of v, we can compute y first and
then compute v. Reorganizing, we get

0 ∈ ∂f (y) +A⊺u + αA⊺(Ay − b) + (1/α)(y − x)
v = u + α(Ay − b),

and we have the formula

y = argmin
z

{
f (z) + 〈u,Az − b〉 + α

2
‖Az − b‖2 + 1

2α
‖z − x‖2

}
v = u + α(Ay − b).

2.5.2 Basic Identities

Resolvent Identities
If � is maximal monotone, α > 0, and �(x) = �(x) + t, then

�α�(u) = �α�(u − αt). (2.8)

This follows from

�α�u = v ⇔ u ∈ v + α�v
⇔ u − αt ∈ v + α�v
⇔ v = �α�(u − αt).
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With similar calculations, one can show that if � is maximal monotone, α > 0, and
�(x) = �(x − t), then

�α�(u) = �α�(u − t) + t, (2.9)

and if � is maximal monotone, α > 0, and �(x) = −�(t − x), then

�α�(u) = t − �α�(t − u). (2.10)

The inverse resolvent identity states

�α−1�(x) + α−1
�α�−1 (αx) = x, (2.11)

for maximal monotone � and α > 0. This follows from

x − �α−1�x = y ⇔ x ∈ x − y + α−1
�(x − y)

⇔ αy ∈ �(x − y)
⇔ �

−1(αy) 3 x − y
⇔ (� + α�−1)(αy) 3 αx
⇔ y = (1/α)�α�−1 (αx).

When α = 1, we get the further elegant formula

�� + ��−1 = �.

TheMoreau identity, a special case, states that for any CCP f,

Proxf + Proxf ∗ = �,

or more generally,

Proxα−1f(x) + α−1Proxαf ∗ (αx) = x. (2.12)

An important practical consequence of the Moreau identity is that Proxαf and Proxαf ∗
require essentially the same computational cost. In other words, if you can compute
Proxαf, then you can compute Proxαf ∗ , and vice versa.

Reflected Resolvent Identities
If � is maximal monotone and single-valued and α > 0, we have

�α� = (� − α�)(� + α�)−1.

This follows from

�α� = 2(� + α�)−1 − �
= 2(� + α�)−1 − (� + α�)(� + α�)−1

= (� − α�)(� + α�)−1,

where we used the result of Exercise 2.1 in the second equality.
If � is maximal monotone (but not necessarily single-valued) and α > 0, we have

�α�(� + α�) = � − α�. (2.13)

Let us prove this. Since (� + α�)−1 is single-valued, for any x ∈ dom� we have

�α�(� + α�)(x) = 2(� + α�)−1(� + α�)(x) − (� + α�)(x)
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= 2�(x) − (� + α�)(x)
= (� − α�)(x),

where we used the result of Exercise 2.1 in the second equality. For any x < dom�,
both sides are empty sets.

2.6 PROXIMAL POINT METHOD

Consider the problem

find
x∈Rn

0 ∈ �x,

where � is maximal monotone. This problem is equivalent to finding a fixed point of
�α�, since Zer� = Fix �α� for any α > 0. The FPI

xk+1 = �α�(xk),

called the proximal point method (PPM) or proximal minimization, converges to a
solution if one exists, since �α� is averaged.

2.6.1 Methods of Multipliers

Consider the primal-dual problem pair,

minimize
x∈Rn

f (x)
subject to Ax = b,

maximize
u∈Rm

−f ∗(−A⊺u) − b⊺u,

of (1.6) and (1.7) generated by the LagrangianL(x,u) = f (x)+ 〈u,Ax−b〉. The associated
augmented Lagrangian discussed in Example 1.11 is

Lα(x,u) = f (x) + 〈u,Ax − b〉 + α
2
‖Ax − b‖2.

Method of Multipliers
Assume R(A⊺)∩ri dom f ∗ , ∅. Write g(u) = f ∗(−A⊺u)+b⊺u for the dual function. Using
(2.6) and (2.8), we can write the FPI uk+1 = �α∂g(uk) with α > 0 as

xk+1 ∈ argmin
x

Lα(x,uk)

uk+1 = uk + α(Axk+1 − b),

which is called the method of multipliers, also known as the augmented Lagrangian
method or ALM. The first step is minimizing the augmented Lagrangian, and the
second is a multiplier update.
If a dual solution exists and α > 0, then uk → u⋆. If we further assume f is strictly

convex, we can show xk → x⋆. See Exercises 2.18 and 10.4.

Proximal Method of Multipliers
Using (2.7), we can write the FPI (xk+1,uk+1) = �α∂L(xk,uk) with α > 0 as

xk+1 = argmin
x

{
Lα(x,uk) +

1
2α

‖x − xk‖2
}

uk+1 = uk + α(Axk+1 − b),
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which is called the proximal method ofmultipliers, also the proximal augmented Lagran-
gian method. The first step is minimizing the augmented Lagrangian with an additional
proximal term, and the second is a multiplier update. If total duality holds and α > 0,
then xk → x⋆ and uk → u⋆.
The proximal method of multipliers becomes useful when it is combined with the

linearization technique. We discuss this in §3.5.

2.7 OPERATOR SPLITTING

Consider themonotone inclusion problems of finding an x ∈ Zer (�+�) or x ∈ Zer (�+
�+�), where�,�, and � are maximal monotone. In this section, we present a few base
splitting schemes, which transform these monotone inclusion problems into fixed-point
equations with averaged operators constructed from �, �, �, and their resolvents.

The key technique is to formulate a given optimization problem as a monotone inclu-
sion problem, apply one of the base splitting schemes, and use the fixed-point iteration
discussed in §2.4.2, or the randomized coordinate or asynchronous variants of §5 and
§6. The main message of Part I of this book is that a wide range of methods can be
derived and analyzed through this unified approach.

2.7.1 Base Splitting Schemes

Forward-Backward and Backward-Forward Splitting
Consider the problem

find
x∈Rn

0 ∈ (� +�)x,

where � and � are maximal monotone and � is single-valued. Then for any α > 0, we
have

0 ∈ (� +�)x ⇔ 0 ∈ (� + α�)x − (� − α�)x
⇔ (� + α�)x 3 (� − α�)x
⇔ x = �α�(� − α�)x.

So, x is a solution if and only if it is a fixed point of �α�(� − α�). This splitting is called
forward-backward splitting (FBS).
Assume � is β-cocoercive and α ∈ (0,2β). Then the forward step � − α� and the

backward step (�+ α�)−1 are averaged. So, the composition �α�(�− α�) is an averaged
operator.
The FPI with FBS

xk+1 = �α�(xk − α�xk)

converges if α ∈ (0,2β) and Zer (� +�) , ∅.
We can also consider a similar splitting with a permuted order:

0 ∈ (� +�)x ⇔ (� + α�)x 3 (� − α�)x
⇔ z = (� − α�)x, z ∈ (� + α�)x
⇔ z = (� − α�)x, �α�z = x
⇔ z = (� − α�)�α�z, �α�z = x.
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So, x is a solution if and only if there is a z ∈ Fix (�−α�)�α� and x = �α�z. This splitting
is called backward-forward splitting (BFS).

The FPI with BFS

xk+1 = �α�zk

zk+1 = xk+1 − α�xk+1

converges if α ∈ (0,2β) and Zer (� +�) , ∅.
Since BFS is FBS with the order permuted, BFS may seem like an unnecessary com-

plication. In fact, the FPIs with FBS andBFS have the same iterates if the starting points
x0 for FBS and z0 for BFS are matched in the sense that x0 = �α�z0. However, we will
later see that BFS can be more natural to work with when using the randomized or
asynchronous coordinate fixed-point iterations of §5 and §6.

Peaceman–Rachford and Douglas–Rachford Splitting
Consider the problem

find
x∈Rn

0 ∈ (� +�)x,

where � and � are maximal monotone.
For any α > 0, we have

0 ∈ (� +�)x ⇔ 0 ∈ (� + α�)x − (� − α�)x
⇔ 0 ∈ (� + α�)x −�α�(� + α�)x
⇔ 0 ∈ (� + α�)x −�α�z, z ∈ (� + α�)x
⇔ �α�z ∈ (� + α�)�α�z, x = �α�z
⇔ �α��α�z = �α�z, x = �α�z

⇔ �α��α�z = z, x = �α�z,

where we have used (2.13). So x is a solution if and only if there is a z ∈ Fix�α��α�
and x = �α�z. This splitting is called Peaceman–Rachford splitting (PRS).

Since the operator �α��α� is merely nonexpansive, the FPI with PRS

zk+1 = �α��α�(zk) (2.14)

is not guaranteed to converge. See Exercise 2.27.
To ensure convergence, we average. For any α > 0, we have

0 ∈ (� +�)x ⇔
(
1
2
� +

1
2
�α��α�

)
(z) = z, x = �α�(z).

This splitting is called Douglas–Rachford splitting (DRS).
The FPI with DRS

xk+1/2 = �α�(zk)
xk+1 = �α�(2xk+1/2 − zk)
zk+1 = zk + xk+1 − xk+1/2

converges for any α > 0 if Zer (� +�) , ∅. See Exercise 2.26.
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We can think of the xk+1/2- and xk+1-iterates as estimates of a solution with different
properties. For example, if �α� is a projection onto a constraint set, xk+1/2-iterates satisfy
these constraints exactly.

Davis–Yin Splitting
Consider the problem

find
x∈Rn

0 ∈ (� +� + �)x,

where �, �, and � are maximal monotone, and � is single-valued.
Then for any α > 0, we have

0 ∈ (� +� + �)x ⇔ 0 ∈ (� + α�)x − (� − α�)x + α�x
⇔ 0 ∈ (� + α�)x −�α�(� + α�)x + α�x
⇔ 0 ∈ (� + α�)x −�α�z + α�x, z ∈ (� + α�)x
⇔ (�α� − α��α�)z ∈ (� + α�)�α�z,

x = �α�z

⇔ �α�(�α� − α��α�)z = �α�z, x = �α�z
⇔ (�α�(�α� − α��α�) − α��α�)z = z,

x = �α�z

⇔ ((1/2)� + (1/2)�)z = z, x = �α�z,
� = �α�(�α� − α��α�) − α��α�.

So, x is a solution if and only if there is a z ∈ Fix ((1/2)� + (1/2)�) and x = �α�z. This
splitting is called Davis–Yin splitting (DYS). We can also write

(1/2)� + (1/2)� = � − �α� + �α�(�α� − α��α�).

Assume � is β-cocoercive and α ∈ (0,2β), then (1/2)�+ (1/2)� is averaged. We prove
this in §13 as Theorem 28. � itself may not be nonexpansive. The FPI with DYS

xk+1/2 = �α�(zk)
xk+1 = �α�(2xk+1/2 − zk − α�xk+1/2)
zk+1 = zk + xk+1 − xk+1/2

converges for α ∈ (0,2β) if Zer (� + � + �) , ∅. Note that DYS reduces to BFS when
� = 0, to FBS when � = 0, and to DRS when � = 0.

2.7.2 Splitting for Convex Optimization and Total Duality

In §3, we combine the base splittings with various techniques to derive a wide range
of methods. In this section, we directly apply the base splittings to convex optimization
problems as is.

Proximal Gradient Method
Consider the problem

minimize
x∈Rn

f (x) + g(x),
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where f and g are CCP functions on Rn and f is differentiable. Then x is a solution if and
only if x ∈ Zer (∇f + ∂g).

The FPI with FBS is

xk+1 = Proxαg(xk − α∇f (xk)),

which is also called the proximal gradient method. Assume a primal solution exists, f is
L-smooth, and α ∈ (0,2/L). Then xk → x⋆.
We can write the proximal gradient method equivalently as

xk+1 = argmin
x

{
f (xk) + 〈∇f (xk),x − xk〉 + g(x) + 1

2α
‖x − xk‖22

}
.

So, the proximal gradient method uses a first-order approximation of f about xk.
When g = δC for some nonempty convex setC, the proximal gradientmethod reduces

to the projected gradient method:

xk+1 = ΠC(xk − α∇f (xk)).

DRS for Convex Optimization and Total Duality
Consider the primal-dual problem pair

minimize
x∈Rn

f (x) + g(x) (2.15)

and

maximize
u∈Rn

−f ∗(−u) − g∗(u) (2.16)

generated by the Lagrangian

L(x,u) = f (x) + 〈x,u〉 − g∗(u), (2.17)

where f and g are CCP functions on Rn.
As we soon prove, the primal problem is equivalent to

find
x∈Rn

0 ∈ (∂f + ∂g)x

when total duality holds. The FPI with DRS is

xk+1/2 = Proxαg(zk)
xk+1 = Proxαf(2xk+1/2 − zk) (2.18)

zk+1 = zk + xk+1 − xk+1/2.

Assume total duality holds and α > 0. Then xk → x⋆ and xk+1/2 → x⋆. In §9, we
furthermore show that fixed points are of the form z⋆ = x⋆ + αu⋆. So, zk → x⋆ + αu⋆.
The FPI withDRS requires f and g to be CCP, and themethod converges for all α > 0.

In contrast, the proximal gradient method furthermore requires f to be L-smooth, and
the parameter α must lie within a specific range. DRS is useful when evaluating Proxαf
and Proxαg is easy but evaluating Proxα( f+g) is not. The proximal gradient method is
useful when evaluating ∇f and Proxαg is easy. The proximal point method is useful when
evaluating Proxα( f+g) is easy.
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Note that although the primal problem (2.15) is symmetric in f and g, the dual prob-
lem (2.16) is not. Swapping the roles of f and g changes the sign of the dual variable.
The algorithm (2.18) is also not symmetric in f and g, and swapping the roles of f and g
changes the sign of the dual variable in zk → x⋆ + αu⋆.

DYS for Convex Optimization and Total Duality
Consider the primal-dual problem pair

minimize
x∈Rn

f (x) + g(x) + h(x)

and

maximize
u∈Rn

−( f + h)∗(−u) − g∗(u)

generated by the Lagrangian

L(x,u) = f (x) + h(x) + 〈x,u〉 − g∗(u).

The FPI with DYS is

xk+1/2 = Proxαg(zk)
xk+1 = Proxαf(2xk+1/2 − zk − α∇h(xk+1/2))
zk+1 = zk + xk+1 − xk+1/2.

Assume total duality holds, h isL-smooth, and α ∈ (0,2/L). Then xk → x⋆ and xk+1/2 →
x⋆. In §9, we furthermore show that fixed points are of the form z⋆ = x⋆ + αu⋆. So,
zk → x⋆ + αu⋆.

Necessity and Sufficiency of Total Duality
The following equivalence summarizes the role of total duality in splitting methods:

argmin( f + g) = Zer (∂f + ∂g) , ∅ ⇔ total duality holds between (2.15) and (2.16).

Therefore, we can write

minimize
x∈Rn

f (x) + g(x) ⇔ find
x∈Rn

0 ∈ (∂f + ∂g)(x)

when total duality holds. This fact explains why total duality is required for the
convergence of so many operator splitting methods.

Let us see why. First, assume that total duality holds. Then x⋆ ∈ argmin( f + g) if and
only if (x⋆,u⋆) is a saddle point of

L(x,u) = f (x) + 〈x,u〉 − g∗(u)

for some u⋆ ∈ Rn, and

(x⋆,u⋆) is a saddle point of L ⇔ 0 ∈ ∂L(x⋆,u⋆)
⇔ 0 ∈ ∂xL(x⋆,u⋆), 0 ∈ ∂u(−L)(x⋆,u⋆)
⇔ − u⋆ ∈ ∂f (x⋆), u⋆ ∈ ∂g(x⋆)
⇔ 0 ∈ (∂f + ∂g)(x⋆).

We conclude that argmin( f + g) = Zer (∂f + ∂g) , ∅.
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Next, assume argmin( f+ g) = Zer (∂f+ ∂g) , ∅. Then any x⋆ ∈ argmin( f+ g) satisfies
0 ∈ (∂f+∂g)(x⋆). By a similar chain of arguments, (x⋆,u⋆) is a saddle point of L for some
u⋆ ∈ Rn, and we conclude that total duality holds.

2.7.3 Discussion

Fixed-Point Encoding
A fixed-point encoding establishes a correspondence between solutions of a monotone
inclusion problem and fixed points of a related operator. The splittings we discussed are
fixed-point encodings.
Upon reading §2.7.1, one may ask why there is no “forward-forward” splitting. A

“forward-forward splitting” of the form � − α(� +�) is an instance of the forward-step
method. A “forward-forward splitting” of the form (� − α�)(� − β�) would not be a
valid fixed-point encoding; that is, we cannot recover a zero ofA+B from a fixed point
of (� − α�)(� − β�). Likewise, a “backward-backward splitting” of the form �α��α� is
not a valid fixed-point encoding. See Exercise 2.28.

Why Use the Resolvent?
The splittings we discuss use resolvents or direct evaluations of single-valued operators.
Why do we not use other operators such as (� − α�)−1? One reason is computational
convenience. The resolvent is often easy to evaluate for many interesting operators,
while evaluating something like (� − α∂f )−1 is often difficult.
Another reason is that only single-valued operators are, in a sense, algorithmically

actionable.On a computer, we can compute and store a vector inRn, but we cannot store
a subset of Rn in most cases. While multi-valued operators are a useful mathematical
concept, single-valued operators, such as resolvents, are more algorithmically useful.

The Role of Maximality
An FPI xk+1 = �xk becomes undefined if its iterates ever escape the domain of �.
In §2.4.2, we implicitly assumed dom� = Rn through stating � : Rn → Rn. When the
operators are maximal monotone, FPIs defined with resolvents do not run into this
issue.

So, we assume maximality out of theoretical necessity, but in practice the non-
maximal monotone operators, such as the gradient operator of a nonconvex function,
are usually ones we cannot efficiently compute the resolvent for anyway. In other
words, there is little need to consider resolvents of non-maximal monotone operators,
theoretically or practically.

Computational Efficiency
These base splitting methods are useful when the operators used in the splitting are
efficient to compute. For example, although the convergence of DRS iteration

zk+1 =
(
1
2
� +

1
2
�α��α�

)
zk

does not depend on the value of α, it is most useful when�α� and�α� can be computed
efficiently.
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For a given optimization problem, there is often more than one applicable method.
The trick is to find a method using computationally efficient split components.

2.7.4 Methods

LASSO and ISTA
Consider the problem

minimize
x∈Rn

1
2
‖Ax − b‖2 + λ‖x‖1,

forA ∈ Rm×n, b ∈ Rm, and λ > 0. This particular optimization problem is called LASSO.
Let S(x; κ) be the soft-thresholding operator of Example 1.12.
The FPI with DRS

xk+1/2 = (I + αA⊺A)−1(zk + αA⊺b)
xk+1 = S(2xk+1/2 − zk;αλ)
zk+1 = zk + xk+1 − xk+1/2

converges for any α > 0.
The FPI with FBS

xk+1 = S(xk − αA⊺(Axk − b);αλ)

converges for 0 < α < 2/λmax(A⊺A). This particular instance of the proximal gradient
method is called the Iterative Shrinkage-Thresholding Algorithm (ISTA).
Note that DRS uses the matrix inverse (I + αA⊺A)−1, while FBS does not. When m

and n are large, computing thematrix inverse can be prohibitively expensive. Therefore,
FBS is the more computationally effective splitting for large-scale LASSO problems.

Consensus Technique
Consider the problem

minimize
x∈Rn

m∑
i=1

gi(x),

where g1, . . . ,gm are CCP functions on Rn. This problem is equivalent to

minimize
x∈Rnm

m∑
i=1

gi(xi)

subject to x ∈ C,

where x = (x1, . . . ,xm) and

C = {(x1, . . . ,xm) ∈ Rnm | x1 = · · · = xm} (2.19)

is the consensus set. In turn, this problem is equivalent to

find
x∈Rnm

0 ∈

∂g1(x1)

...

∂gm(xm)

 +�C(x),

assuming
⋂m
i=1 int dom gi , ∅.

https://doi.org/10.1017/9781009160865.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009160865.003


50 Monotone Operator Methods

The projection onto the consensus set is simple averaging:

ΠCx = x = (x,x, . . . ,x), x =
1
m

m∑
i=1

xi.

Define zk = ΠCzk. The FPI with DRS for this setup

xk+1i = Proxαgi (2z
k − zki − α∇fi(z

k)) for i = 1, . . . ,m,

zk+1 = zk + xk+1 − zk,

converges for any α > 0, if
⋂m
i=1 int dom gi , ∅ and a solution exists. Since Proxαgi for

i = 1, . . . ,m can be evaluated independently, this method is well-suited for parallel and
distributed computing, which we discuss in §4.2.1 and §11.1.
The use of the consensus set (2.19) is called the consensus technique and it can more

generally solve

find
x∈Rn

0 ∈
m∑
i=1

�ix,

where �1, . . . ,�m are maximal monotone. See Exercise 2.36.

Forward-Douglas–Rachford
Consider the problem

minimize
x∈Rn

m∑
i=1

( fi(x) + gi(x)),

where g1, . . . ,gm are CCP and f1, . . . , fm are L-smooth. With the consensus technique,
we can recast the problem into

minimize
x∈Rnm

m∑
i=1

fi(xi) +
m∑
i=1

gi(xi)

subject to x ∈ C,

where we use the same notation as we did for consensus optimization.
The FPI with DYS for this setup

xk+1i = Proxαgi (2z
k − zki ) for i = 1, . . . ,m,

zk+1 = zk + xk+1 − zk

is called generalized forward-backward or forward-Douglas–Rachford. This method
converges if total duality holds,  

⋂m
i=1 int dom gi , ∅, and α ∈ (0,2/L).

2.8 VARIABLE METRIC METHODS

In the theory we have developed so far, the Euclidean norm plays a special role. In the
definition of the proximal operator

Proxf(x) = argmin
z

{
f (z) + 1

2
‖z − x‖2

}
,
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the (1/2)‖z − x‖2 term, called the proximal term, is defined with the Euclidean norm.
Theorem 1 is stated in terms of the Euclidean norm.Variable metricmethods generalize
many of the notions we have discussed so far with theM-norm.
One reason to consider this generalization is preconditioning. A good choice of the

norm ‖·‖M can reduce the number of iterations needed for convergence. Variablemetric
methods are also useful when an operator� has structure and a well-chosenM cancels
certain terms to make (M+�)−1 easy to evaluate.We explore this technique thoroughly
in §3.3.
Despite the name variable metric methods, the generalization works only with M-

norms since they are the norms induced by the inner product 〈x,y〉M = x⊺My. The
analysis of this section does not extend to other metrics, such as the ℓ1-norm.

Variable Metric Proximal Point Method
Let� be maximal monotone andM � 0. ThenM−1/2�M−1/2 is maximal monotone and
the proximal point method

yk+1 = (� +M−1/2
�M−1/2)−1yk

converges.
With the change of variables xk =M−1/2yk, we get

(� +M−1/2
�M−1/2)yk+1 3 yk

(� +M−1
�)xk+1 3 xk.

This gives us

xk+1 = �M−1�x
k

= (M +�)−1Mxk.

We call this the variable metric PPM. The iterates xk inherit the convergence properties
of yk. For example, the fact that ‖yk − y⋆‖ is monotonically nonincreasing translates to
the fact that ‖xk − x⋆‖M is monotonically nonincreasing. Likewise, ‖xk+1 − xk‖M → 0
monotonically at rate O(1/k).
When � = ∂f, then

�M−1∂f(x) = argmin
z∈Rd

{
f (z) + 1

2
‖z − x‖2M

}
.

We can interpret the variable metric PPM as PPM performed with the norm ‖ · ‖M
instead of the Euclidean norm.

Variable Metric Forward-Backward Splitting
Let � and � be maximal monotone and let � be single-valued. Then with the same
reasoning, we can use a change of variables to write the FBS FPI with respect to
M−1/2�M−1/2 andM−1/2�M−1/2 as

xk+1 = (M +�)−1(M −�)xk

= �M−1�(� −M−1
�)xk.
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We call this splitting variable metric FBS. This method converges if � −M−1/2�M−1/2 is
averaged.

When � = ∇f and � = ∂g, then

�M−1∂g(� −M−1∇f )x = argmin
z∈Rd

{
g(z) + 〈∇f (x),z〉 + 1

2
‖z − x‖2M

}
.

We can interpret the variable metric FBS as the proximal gradient method performed
with the norm ‖ · ‖M instead of the Euclidean norm.

If � is β-cocoercive, then M−1/2�M−1/2 is (β/‖M−1‖)-cocoercive. See Exercise 2.9.
Therefore, the FPI with variable metric FBS converges if ‖M−1‖ < 2β.

Averagedness with Respect to ‖ · ‖M
AssumeM � 0. We say � is nonexpansive in ‖ · ‖M if

‖�x − �y‖M ≤ ‖x − y‖M ∀x,y ∈ dom�.

For θ ∈ (0,1), we say � is θ-averaged in ‖ · ‖M if � = (1 − θ)� + θ� for some � that is
nonexpansive in ‖ · ‖M. We say� is averaged in ‖ · ‖M if it is θ-averaged in ‖ · ‖M for some
unspecified θ ∈ (0,1).
The operator M−1/2�M−1/2 is nonexpansive (in ‖ · ‖) if and only if M−1� is nonex-

pansive in ‖ · ‖M. This is easy to verify since

‖M−1/2
�M−1/2x −M−1/2

�M−1/2y‖2 ≤ ‖x − y‖2

is equivalent to

‖M−1
�x̃ −M−1

�ỹ‖2M ≤ ‖x̃ − ỹ‖2M
with the change of variablesM−1/2x = x̃ andM−1/2y = ỹ.

2.9 COMMONLY USED FORMULAS

For later convenience, we list a few commonly used formulas derived in this section.

• If g(y) = f ∗(A⊺y), where f is CCP and R(A⊺) ∩ ri dom f ∗ , ∅, then

u ∈ ∂g(y) ⇔ x ∈ argminz { f (z) − 〈y,Az〉}
u = Ax.

(2.2)

• If g(y) = f ∗(A⊺y), where f is CCP and R(A⊺) ∩ ri dom f ∗ , ∅, then

v = Proxαg(u) ⇔ x ∈ argminx
{
f (x) − 〈u,Ax〉 + α

2 ‖Ax‖2
}

v = u − αAx. (2.6)

• Let L(x,u) = f (x) + 〈u,Ax − b〉 and let Lα be the augmented Lagrangian of (1.11).
Then

�α∂L(x,u) = (y,v) ⇔ y = argminz
{
Lα(z,u) + 1

2α ‖z − x‖2
}

v = u + α(Ay − b). (2.7)

• If �(x) = �(x) + t, where � is maximal monotone and α > 0, then

�α�(u) = �α�(u − αt). (2.8)
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• If �(x) = �(x − t), where � is maximal monotone and α > 0, then

�α�(u) = �α�(u − t) + t. (2.9)

• If �(x) = −�(t − x), where � is maximal monotone and α > 0, then

�α�(u) = t − �α�(t − u). (2.10)

• Inverse resolvent identity: If � is maximal monotone and α > 0, then

�α−1�(x) + α−1
�α�−1 (αx) = x. (2.11)

• Moreau identity: If f is CCP and α > 0, then

Proxα−1f(x) + α−1Proxαf ∗ (αx) = x. (2.12)

BIBLIOGRAPHICAL NOTES

There are many classical and recent review papers based on the core insight that
monotone operators serve as an elegant and unifying abstraction in the analysis of
optimization algorithms: Lemaire and Penot in 1989 [LP89], Iusem in 1999 [Ius99],
Combettes in 2004 [Com04], Combettes and Wajs in 2005 [CW05], Combettes and
Pesquet in 2011[CP11b], Combettes, Condat, Pesquet, and Vũ in 2014 [CCPV14],
Komodakis and Pesquet in 2015 [KP15], Clason and Valkonen in 2020 [CV20], and
Condat, Kitahara, Contreras, and Hirabayashi in 2020 [CKCH22]. This book is largely
influenced by these prior treatments.

Early Development: Basic Notions The notion of monotonicity was first formalized
by Zarantonello in 1960 [Zar60]. The fact that derivatives of convex functions on R
are nondecreasing was established by Jensen in 1906 [Jen06], and this monotonicity
property was extended to gradients of convex functions on higher-dimensional spaces
by Kačurovskĭı in 1960 [Kac60] and Minty in 1962 [Min62]. The notion of maximal
monotonicity was first established by Minty in 1962 [Min62]. Maximal monotonicity
of subdifferentials of CCP functions on Hilbert spaces (and thus on Rn) was estab-
lished by Minty in 1964 [Min64] and Moreau in 1965 [Mor65]. This maximality result
was generalized to convex functions on Banach spaces by Rockafellar [Roc66, Roc70b].

Fenchel’s identity (2.1) was first presented by Fenchel in 1951 in his lectures [Fen53, Sec-
tion 5]. The proximal operator was first introduced byMoreau in 1962 [Mor62, Mor65],
and the Moreau identity was introduced in 1965 [Mor65]. The proof of dom �� = Rn

when� is maximalmonotone, theMinty surjectivity theorem, was established byMinty
in 1962 [Min62]. The (1/2)-averagedness of resolvents was first discussed by Browder
and Petryshyn in 1967 [BP67].

The study of convex-concave saddle functions and their saddle subdifferentials was
pioneered by Rockafellar. His work started in the 1960s [Roc64, Roc68], and the max-
imal monotonicity of “closed proper” saddle subdifferentials was established in 1970
[Roc70a].
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The augmented Lagrangian was used in [Hes69, Pow69] and later studied by Rockafel-
lar in the late 1970s [Roc76b, Roc78].

Early Development: Methods Gradient descent dates back to Cauchy in 1847 [Cau47].
Fixed-point iterations date back to Picard, Lindelöf, and Banach in the late 1800s and
early 1900s [Pic90, Lin94, Ban22]. The proximal point method was first studied in the
1970s [Mar70, Mar72b, Roc76b, BL78], and its convergence rate in terms of function
values was later studied by Güler in 1991 [Gül91]. The method of multipliers was first
presented in 1969 by Hestenes and Powell [Hes69, Pow69] and was interpreted as an
instance of PPM by Rockafellar in 1973 [Roc73]. Dual ascent was first presented by
Uzawa in 1972 [AHU58] and was later further studied by Tseng, Bertsekas, and Tsit-
siklis [TB87, Tse90a]. The projected gradient method was first presented in the 1960s
by Goldstein, Levitin, and Polyak [Gol64, LP66]. The forward step method is due to
Bruck in 1977 [Bru77] and forward-backward splitting in its operator theoretic form
was first presented in the 70s by Bruck and Passty [Bru77, Pas79]. In modern liter-
ature, FBS applied to the sum of two convex functions has been referred to as the
proximal-gradient method [CW05].

Peaceman–Rachford and Douglas–Rachford splitting methods were first presented as
splitting methods to solve the heat equation in 1955 and 1956 [PR55, DR56]. In 1979,
Lions and Mercier generalized the technique to a sum of two maximal monotone
operators [LM79]. The effort of combining Douglas–Rachford and Forward–Backward
splitting schemes was initiated by Raguet, Fadili, and Peyré [RFP13, Rag19], extended
by Briceño-Arias [Bri15], and completed by Davis and Yin [DY17b] as they proved
averagedness in the general case with two maximal monotone operators and one coco-
ercive operator. This splitting method, which we refer to as Davis–Yin splitting, is also
called the Forward-Douglas–Rachford splitting.

As we explore further in §3, many of the splitting methods are intimately connected.
Since the DRS operator is firmly nonexpansive, it is a resolvent of a maximal monotone
operator, and this was first pointed out by Lawrence and Spingarn in 1987 [LS87] and
later by Eckstein and Bertsekas in 1992 [EB92]. That the gradient update can be viewed
as the proximal operator of the function’s first-order approximation, as discussed in
§2.7.2, was first identified by Polyak in 1987 [Pol87].

Fixed-Point Iteration The FPI analyzed in Theorem 1 is also called the Krasnosel’skĭı–
Mann iteration. In 1953, Mann showed that the FPI converges when n = 1, C ⊂ R
is a compact interval, and T : C → C is 1/2-averaged. In 1955, Krasnosel’skĭı estab-
lished convergence when C ⊂ Rn is compact and T : C → C is 1/2-averaged [Kra55].
In 1957, Schaefer extended Krasnosel’skĭı’s result to θ-averaged operators with θ ∈
(0,1) [Sch57]. The general convergence result of Theorem 1 (without any compactness
assumption) is due to Martinet’s 1972 work [Mar72a, Théorème 5.5.2]. A key compo-
nent of our (and Martinet’s) proof is the subsequence convergence argument of Stage
2, which is due to Opial’s 1967 work [Opi67]. In fact, Theorem 1 of [Opi67] captures
this subsequence argument and is known as Opial’s lemma. The notion of averaged
operators was first formally defined in 1978 by Baillon, Bruck, and Reich [BBR78].
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Infinite-Dimensional Analysis Although we focus on finite-dimensional spaces in this
book, much of the monotone operator theory is developed in the infinite-dimensional
setup, where a new set of interesting challenges arise. For example, the convergence
xk → x⋆ of Theorem 1 becomes weak when the underlying space is an infinite-
dimensional Hilbert space instead of Rn. Bauschke and Combette’s textbook [BC17a]
provides a thorough treatment for operators on Hilbert spaces. Works on other
setups include Reich and Shoikhet’s [Rei79, RS98] work studying averaged opera-
tors in Banach spaces and Goebel and Reich’s work [GR84, Rei85] studying averaged
operators on the Hilbert ball with the hyperbolic metric.

Forward and Backward Nomenclature and Gradient-Flow The operators � − α�

and (� + α�)−1 are respectively called forward and backward steps in analogy to the
forward and backward Euler discretizations of Ûx(t) = −�x(t), a continuous-time differ-
ential equation defined for single-valued �. This interpretation is due to Lamaire and
Penot [LP89, Lem92] and Eckstein [Eck89, §3.2.2] in 1989. However, the gradient flow
Ûx(t) = −∇f (x(t)) for functions f itself was studied earlier by Bruck in 1975 [Bru75a] and
Botsaris and Jacobson in 1976 [BJ76].

Consensus Technique The first use of the consensus technique, also called the product
space trick, seems to be due to Pierra in 1984 [Pie84] and Spingarn in 1983 through the
“method of partial inverses” [Spi83, Spi85]. The use of the technique for distributed
optimization andmachine learning was popularized through the works of Boyd, Parikh,
Chu, Peleato, and Eckstein [BPC+11, PB14b, PB14a].

Variable Metric Methods The variable metric proximal point method can be thought
of as a special case of the Bregman proximal point method, which was first pre-
sented by Censor and Zenios for minimizing convex functions [CZ92] and Burachik
and Iusem for monotone inclusions [BI98]. Other early work includes that of Chen
and Teboulle [CT93], Bonnans, Gilbert, Lemaréchal, and Sagastizábal [BGLS95],
Parente, Lotito, and Solodov [PLS08], and He and Yuan [HY12b]. Variable metric
forward-backward splitting was first formalized by Combettes and Vũ [CV14]. A block
coordinate extension was given by Chouzenoux, Pesquet, and Repetti [CPR16]. Liu
and Yin [LY19] used variable metrics to analyze the Davis–Yin splitting for smooth
nonconvex problems. Vũ [Vũ13b] proposed variable metric extensions of Tseng’s
forward-backward-forward splitting. Briceño-Arias and Davis [BD18] proposed var-
iable metric extensions of their forward-backward-half forward splitting. A different
approach to apply variable metrics was introduced by Burke and Qian [BQ99].

LASSO Application LASSO (least absolute shrinkage and selection operator) first
introduced in geophysics literature in 1986 [SS86]. It was later independently rediscov-
ered, popularized, and named LASSO by the statistician Tibshirani in 1996 [Tib96].
LASSO is one of the main models of compressed sensing [Don06, CT05, CT06] when
the sensing is corrupted by noise or the signal to sense is approximately sparse.
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Early work regarding the computation of LASSO includes [EHJT04, FNW07, HYZ08,
YOGD08]. The Nesterov acceleration to the iterative soft thresholding algorithm was
introduced in [BT09].

EXERCISES

2.1 When �−1 is a left-inverse of �. Show that if x ∈ dom� and �−1 is single-valued, then
�−1�x = x.

2.2 Non-maximal subdifferential. Consider the function f on R defined as

f (x) =


∞ for x < 0
1 for x = 0
0 for x > 0.

Show that f is convex and proper but not closed. Show that ∂f is not maximal.
2.3 Monotonicity of saddle subdifferential.Assume L : Rn ×Rm → R and L(x,u) is convex-

concave. Recall ∂L is defined in (2.3). Show that ∂L is monotone.
Hint.Add the four subgradient inequalities that lower bound
l L(x2,u1) with a subgradient of L(·,u1) at x1
l −L(x1,u2) with a subgradient of −L(x1, ·) at u1
l L(x1,u2) with a subgradient of L(·,u2) at x2
l −L(x2,u1) with a subgradient of −L(x2, ·) at u2
to show

〈∂xL(x1,u1) − ∂xL(x2,u2),x1 − x2〉 + 〈∂u(−L(x1,u1)) − ∂u(−L(x2,u2)),u1 − u2〉 ≥ 0.

2.4 Maximality of continuous monotone operators. Show that if� : Rn → Rn is continuous
and monotone, then � is maximal.
Hint.Assume for contradiction that there is a pair (y,v) < � such that

0 ≤ 〈v − �x,y − x〉

for all x ∈ Rn. Plug in x = y − δ and use continuity of � to argue

0 ≤ 〈v − �(y − δ), δ〉 = 〈v − �y, δ〉 + o(‖δ‖)

as δ → 0. Argue that v = �y and draw a contradiction.
2.5 Show that if f is a strictly convex CCP function, then (i) ∂f ∗ is single-valued and (ii) f ∗

is differentiable on int dom f ∗.
Remark. Since f ∗ is CCP, f ∗ is subdifferentiable on int dom f ∗ and ∂f ∗(u) is a singleton
if and only if f ∗ is differentiable at u.

2.6 Recovering a primal solution from a dual solution. Let f be a strictly convex CCP
function on Rn, g a CCP function on Rm, and A ∈ Rm×n. Consider the primal problem

minimize
x∈Rn

f (x) + g(Ax)

and dual problem

maximize
u∈Rm

−f ∗(−A⊺u) − g∗(u)

generated by the Lagrangian

L(x,u) = f (x) + 〈Ax,u〉 − g∗(u).
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Assume total duality holds. Show that ∇f ∗(−A⊺u⋆) is a primal solution.
Hint. Use Exercise 2.5.
Remark. Without the strict convexity, this statement is not true. The setting n = 1,
m = 1, f (x) = 0,A = 1, g(x) = δ{0}(x), and L(x,u) = xu is a counterexample: x⋆ = 0 and
u⋆ = 0 are the unique primal and dual solutions, but ∂f ∗(−u⋆) = R.

2.7 Differentiable monotone operators. Show that a differentiable operator � : Rn → Rn is
monotone if and only if D�(x) +D�(x)⊺ � 0 for all x.
Hint.Assume � is monotone, and use

D�(x)v = lim
h→0

1
h
(�(x + hv) − �(x))

to show v⊺D�(x)v ≥ 0 for all v ∈ Rn. For the other direction, assumeD�(x)+D�(x)⊺ �
0 for all x, define g(t) = 〈x−y,�(tx+ (1− t)y〉, and use the mean value theorem to show

〈x − y,�x − �y〉 = g(1) − g(0) = g′(ξ)

for some ξ ∈ [0,1].
2.8 Differentiable Lipschitz operators. Show that a differentiable operator � : Rn → Rn is

L-Lipschitz if and only if σmax(D�(x)) ≤ L for all x.
Hint. Assume σmax(D�(x)) ≤ L, define g(t) = �(tx + (1 − t)y), and use the mean value
theorem and the Cauchy–Schwartz inequality to get

‖�x − �y‖2 = 〈�x − �y,g(1) − g(0)〉 = 〈�x − �y,g′(ξ)〉 ≤ ‖�x − �y‖‖g′(ξ)‖.

For the other direction, assume � has Lipschitz parameter L and use

‖D�(x)v‖ = lim
h→0

1
h
‖�(x + hv) − �(x)‖ .

2.9 Show that if � : Rn → Rn is β-cocoercive andM ∈ Rn×n is symmetric positive definite,
thenM−1/2�M−1/2 is (β/‖M−1‖)-cocoercive.

2.10 Moreau envelope. Let f be a CCP function on Rn. For β > 0, define the Moreau
envelope of f of parameter β as

βf (x) = inf
z∈Rn

{
f (z) + 1

2β
‖z − x‖2

}
.

Show that
(a) βf (x) is convex and proper,
(b) ∇βf = β−1(� − Proxβf),
(c) βf (x) is closed, and
(d) βf is 1/β-smooth.
Hint. For (a), establish closedness with βf (x) = f (Proxβf(x)) + 1

2β ‖Proxβf(x) − x‖2 and
the fact that Proxβf(x) is well defined. For (b), note that

βf (x) = 1
2β

‖x‖2 − 1
β
sup
z∈Rn

{
〈x,z〉 − βf (z) − 1

2
‖z‖2

}
,

and the supremum can be written as a conjugate. Take the gradient of both sides.
For (c), use the fact that βf is differentiable and therefore continuous. For (d), use the
Moreau identity to show β∇βf is a proximal operator of a convex function.
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2.11 Moreau envelope as a smooth approximation.Let f be a CCP function onRn and β > 0.
Show that limβ→0

βf (x) → f (x) for all x ∈ Rn.
Hint. First show that u ∈ ∂f (x) if and only if f (x) + f ∗(u) = 〈u,x〉. Then argue that for
any x ∈ Rn (possibly x < dom f )

f (x) = sup
u
{−f ∗(u) + 〈x,u〉} = sup

(y,u)∈∂f
{ f (y) + 〈u,x − y〉}.

So there exists a sequence (y0,u0), (y1,u1), . . . in ∂f such that

f (yk) + 〈uk,x − yk〉 → f (x).

Remark. This result, along with the smoothness property of Exercise 2.10 allows us
to view βf as a smooth approximation of f. The interpretation of the Moreau envel-
ope as a smooth, regularized function is due to Attouch [Att77, Lemme 1], [Att84,
Theorem 2.64]. However, the analogous notion for monotone operators, known as
theMoreau–Yosida approximation, was used earlier by Brezis [Bre71, Lemma 3], and
the Moreau envelope itself was presented earlier yet by Moreau [Mor65]. The result
of this problem was first presented by Friedlander, Goodwin, and Hoheisel [FGH21,
Proposition 4].

2.12 PPM is GD. Show that argmin f = argmin βf for any β > 0. Also show that the PPM
with f is equivalent to gradient descent with respect to βf for some β > 0.
Hint. Use Exercise 2.10.
Remark. This problem illustrates that the Moreau envelope is also useful as a concep-
tual tool for drawing connections.

2.13 Projection onto convex sets. Consider the convex feasibility problem

find
x∈Rn

x ∈ C ∩D,

where C and D are nonempty closed convex sets. Assume C ∩D , ∅.
(a) The convex feasibility problem is equivalent to the optimization problem

minimize
x∈Rn

1
2dist

2(x,D)
subject to x ∈ C.

Show that the proximal gradient method with stepsize 1 applied to this
problem is

xk+1 = ΠCΠDxk,

which is called the alternating projections method.
(b) The convex feasibility problem is also equivalent to the optimization problem

minimize
x∈Rn

θ
2dist

2(x,C) + 1−θ
2 dist2(x,D),

where θ ∈ (0,1). Show that the gradient method with stepsize 1 applied to this
problem is

xk+1 = θΠCxk + (1 − θ)ΠDxk,

which is called the parallel projections method.
(c) Show that xk → x⋆ ∈ C ∩D for both methods.
Hint. Note that 1

2dist
2(x,C) is a Moreau envelope of δC.

Remark. See [BB96, BBL97, ER11] for an overview on convex feasibility problems.
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2.14 Banach fixed-point theorem. Let� : Rn → Rn be contractive. Show that� has a unique
fixed point, that is, show that a fixed point of � exists and is unique.
Hint. Consider an FPI and show that x0,x1, . . . is a Cauchy sequence.
Remark. This result is called the Banach fixed-point theorem [Ban22].

2.15 Strong monotonicity and unique zero. Show that if � : Rn ⇒ Rn is maximal µ-strongly
monotone for some µ > 0, then � has exactly one zero.
Hint. Use the Banach fixed-point theorem.

2.16 Contraction factor of gradient descent.Assume f is CCP, µ-strongly convex, L-smooth,
and twice continuously differentiable. Show that I − α∇f is max{|1 − αµ|, |1 − αL|}-
contractive for 0 < α < 2/L.
Hint. The fundamental theorem of calculus tells us

(I − α∇f )(x) − (I − α∇f )(y) =
∫ 1

0
(I − α∇2f (tx + (1 − t)))(x − y)dt.

Use the instance of Jensen’s inequality∫ 1

0
v(t)dt

 ≤
∫ 1

0
‖v(t)‖ dt,

where v(t) ∈ Rn for t ∈ [0,1].
Remark. The result still holds when f is not continuously differentiable. See §13.

2.17 Convergence of dual ascent. Show that dual ascent converges in the sense of xk →
x⋆ and uk → u⋆, where x⋆ and u⋆ are primal and dual solutions, under the stated
conditions.
Hint.Use Theorem 1 to establish uk → u⋆ and write xk as a continuous function of uk.
Remark. The stated conditions are f is CCP and µ-strongly convex, total duality holds,
and 0 < α < 2µ/σ2

max(A).
2.18 Method of multipliers primal solution convergence. Show that the method of multipli-

ers converges in the sense of xk → x⋆ under the stated conditions and strict convexity.
Use the following fact: if h is a CCP function that is differentiable on D ⊆ Rn,
then ∇h : D → Rn is a continuous function, that is, differentiability and continuous
differentiability coincide.
Remark. The stated conditions are f is CCP, R(A⊺) ∩ ri dom f ∗ , ∅, a dual solution
exists, α > 0, and Lα(x,u) = f (x) + 〈u,Ax − b〉 + α

2 ‖Ax − b‖2.
Hint. Consider the primal problem

minimize
u∈Rm , v∈Rn

f ∗(v) + b⊺u
subject to −v −A⊺u = 0

generated by the Lagrangian L̃(v,u,x) = f ∗(v) + b⊺u − 〈x,v + A⊺u〉, and use Slater’s
constraint qualification to show that R(A⊺) ∩ ri dom f ∗ , ∅ implies strong duality and
the existence of a primal solution for the primal-dual problem pair generated by L.
Use Exercise 2.5 to write xk = σ(uk), where σ : Rm → Rn is a continuous function.
Remark. The derivation of (2.6) or Exercise 1.5 establishes argminx Lα(x,uk) , ∅, that
is, xk+1 ∈ argminx Lα(x,uk) is well defined for any uk ∈ Rm.

2.19 Contraction factor of dual ascent.Consider dual ascent. Assume f is µ-strongly convex,
L-smooth, CCP, and 0 < α < 2µ/σ2

max(A). Using Exercise 2.16, show that dual ascent
converges with contraction factor

max{|1 − ασ2
max(A)/µ|, |1 − ασ2

min(A)/L|}.
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2.20 Lyapunov analysis without summability. Let � : Rn → Rn be θ-averaged, and consider
the fixed-point iteration xk+1 = �xk. Consider the Lyapunov function

Vk = k
1 − θ
θ

‖xk − xk−1‖2 + ‖xk − x⋆‖2.

Show that

Vk+1 ≤ Vk

for k = 0,1, . . . . Use this inequality, instead of the summability argument, to prove
Theorem 1.

2.21 When there is no fixed point. Assume � : Rn → Rn is averaged and Fix� = ∅. Prove
that sequence xk+1 = �xk satisfies ‖xk‖ → ∞.
Hint. Assume for contradiction that ‖xk‖ ↛ ∞, which implies, by the Bolzano–
Weierstrass theorem, that there is a subsequence kj → ∞ such that xkj → x̄ for some
limit x̄. Next, show ‖xk+1 − xk‖ → c for some c ≥ 0. Consider the cases c = 0 and
c > 0 separately. In the c > 0 case, show �k+1x̄ − �kx̄ = �kx̄ − �k−1x̄ and argue that
‖�kx̄‖ → ∞, where

�
k = � ◦ · · · ◦ �︸       ︷︷       ︸

k times

.

Remark. Interestingly, this result, first proved by Roehrig and Sine [RS81], does
depend on the finite-dimensionality of Rn. If � : H → H is an averaged operator
on an infinite-dimensional Hilbert space H , Browder and Petryshyn showed that
lim supk→∞ ‖xk‖ = ∞ [BP66], but Edelstein provided a counterexample for which
lim infk→∞ ‖xk‖ = 0 [Ede64, BGMS20].

2.22 FPI with quasi-nonexpansive operators.We say � is quasi-nonexpansive if

‖�x − x⋆‖2 ≤ ‖x − x⋆‖2

for all x⋆ ∈ Fix�. We say � is θ-quasi-averaged if � = (1 − θ)� + θ� for some quasi-
nonexpansive operator �. Assume � : Rn → Rn is continuous and θ-quasi-averaged
with θ ∈ (0,1). Assume Fix� , ∅. Show that xk+1 = �xk with any starting point
x0 ∈ Rn converges to one fixed point, that is,

xk → x⋆

for some x⋆ ∈ Fix�.
2.23 Gradient descent with varying stepsize. Consider the problem of minimizing

minimize
x∈Rn

f (x),

where f is an L-smooth CCP function. Then

xk+1 = xk − αk∇f (xk),

where α0, α1, . . . ∈ R, is called gradient descent with varying stepsize. Assume argmin f ,
∅ and

0 < inf
k=0,1,...

αk ≤ sup
k=0,1,...

αk < 2/L.

Show

xk → x⋆ ∈ argmin f.
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Hint.Adapt the proof of Theorem 1 to fit the current setup.
2.24 Show (2.9) and (2.10).
2.25 Conic programs with DRS. Consider the problem of

minimize
x∈Rn

c⊺x

subject to Ax = b
x ∈ K,

where K ⊂ Rn is a nonempty closed convex set. When K is a nonempty closed convex
cone, the problem is said to be a conic program. Assume A ∈ Rm×n, where A has rank
m and b ∈ Rm. Show that the FPI with DRS is

xk+1/2 = ΠK(zk)
xk+1 = D(2xk+1/2 − zk) + v
zk+1 = zk + xk+1 − xk+1/2,

where D = I −A⊺(AA⊺)−1A and v = A⊺(AA⊺)−1b − αDc.
2.26 Convergence of DRS. Consider the FPI with DRS. Theorem 1 implies zk → z⋆ for

any α > 0, provided that a fixed point exists. Show that this implies xk → x⋆, and
xk+1/2 → x⋆. Is ‖xk+3/2 − xk+1/2‖ → 0 and ‖xk+1 − xk‖ → 0 true?

2.27 When PRS does not converge. Consider the operators� = �{0} and � = 0. Show that
although a fixed point of PRS does correspond to a solution, the FPI with PRS does
not converge. This example also demonstrates that the FPI with the reflected resolvent
need not converge.

2.28 Backward-backward is alternating minimization. Consider the monotone inclusion
problem

find
x∈Rn

0 ∈ (� +�)x.

The backward-backward method is

xk+1 = �α��α�xk,

where α > 0. Show that when � = ∂f and � = ∂g, where f and g are CCP functions,
we have

yk+1 = argmin
y∈Rn

{
f (xk) + g(y) + 1

2α
‖xk − y‖2

}
xk+1 = argmin

x∈Rn

{
f (x) + g(yk+1) + 1

2α
‖x − yk+1‖2

}
.

and that fixed points correspond to minimizers of

minimize
x∈Rn

f (x) + g(y) + 1
2α ‖x − y‖2. (2.20)

Finally, show that the backward-backward method converges.
Remark. This result was first published by Bauschke, Combettes, and Reich [BCR05].

2.29 Consensus + proximable is proximable. Let r be a CCP function on Rn, C be the
consensus set as defined in (2.19), and

g(x1, . . . ,xm) = δC(x1, . . . ,xm) +
m∑
i=1

r(xi).
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Show that we can evaluate Proxαg with

Proxαg(y1, . . . ,ym) = (x, . . . ,x), x = Proxαr

(
1
m

m∑
i=1

yi

)
.

Also, what is the proximal operator of h(x1, . . . ,xm) = δC(x1, . . . ,xm) + r(x1)?
2.30 Let η ∈ (0,1) and consider the monotone inclusion problem

find
x∈Rn

0 ∈ (2(1 − η)� +� +�)x,

where� and � are maximal monotone, and assume� +� is maximal. Show that the
solution can be found through the FPI zk+1 = �zk with

� =
1
2
� +

1
2
(2η�� − �)(2η�� − �).

Hint. Show Zer (2(1 − η)� +� +�) = 1
ηZer (�(η) +�(η)), where �(η) = � ◦ 1

η � +
1−η
η �

and �(η) is defined likewise.
Remark. Since Zer (2(1 − η)� +� + �) = � 1

2(1−η) (�+�)
(0), a unique solution exists. This

method is called the averaged alternating modified reflections (AAMR) [AAC18,
AAC19].

2.31 Further properties of the proximal operator. Let f be a CCP function on Rn. Show:
(a) f (Proxαf(x)) is a nonincreasing function of α ∈ (0,∞) (for a fixed x ∈ Rn).
(b) limα→∞ f (Proxαf(x)) = infx f (x) (including the case infx f (x) = −∞).
(c) f (Proxαf(x)) ≤ f (x) for any α > 0.
(d) limα→0+ f (Proxαf(x)) = f (x) for all x ∈ dom f.
Hint. For (a), argue that

αf
(
Proxαf(x)

)
+
1
2

Proxαf(x) − x2 ≤ αf
(
Proxβf(x)

)
+
1
2

Proxβf(x) − x2
βf

(
Proxβf(x)

)
+
1
2

Proxβf(x) − x2 ≤ βf
(
Proxαf(x)

)
+
1
2

Proxαf(x) − x2
for α, β ∈ R. For (b), let ε > 0 and M > infx f (x). Let xM,ε be a point such that
f (xM,ε) < M + ε/2. Then

f (xM,ε) +
1
2α

‖xM,ε − x‖2 < M + ε

for large enough α. For (d), show

αf (x) ≥ αf (Proxαf(x)) +
1
2
‖Proxαf(x) − x‖2

and let α → 0.
Remark.The result of (d) is not necessarily true when x < dom f. For example, consider
f = δ{0} and x = 1.
Remark. In general, one can show limα→0+ Proxαf(x) = Πdom f(x) [FGH21, Proposi-
tion 5].

2.32 Proximable inequality constraints. Let f be a CCP function on Rn and informally
assume f is proximable. Through the following steps, show that δ{x∈Rn | f (x)≤0} is
proximable. Show:
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(a) For maximal monotone �, α, β ∈ (0,∞),

�α�x = �β�

(
β

α
x +

(
1 − β

α

)
�α�x

)
∀x ∈ Rn,

and

‖�α�x − �β�x‖ ≤
����1 − β

α

���� ‖�α�x − x‖ ∀x ∈ Rn.

(b) For a fixed x ∈ Rn, f (Proxαf(x)) is a nonincreasing continuous function of
α ∈ (0,∞).

(c) Assume that dom f = Rn and that there exists an x ∈ Rn such that f (x) < 0.
Let α⋆ = inf{α > 0 | f (Proxαf(x)) ≤ 0}. Then

Π{x∈Rn | f (x)≤0}(x) =
{
x if f (x) ≤ 0
Proxα⋆f(x) otherwise.

(d) Assume dom f = Rn and f (x) > 0. Also assume l0,u0 ∈ R satisfy f (Proxl0f(x)) >
0 ≥ f (Proxu0f(x)). The iteration

(lk+1,uk+1) =
 (lk, lk+uk2 ) if f

(
Prox lk+uk

2 f
(x)

)
≤ 0

( lk+uk2 ,uk) otherwise

converges in the sense that lk → α⋆ and uk → α⋆.
Hint. Show that (Proxα⋆f(x), α⋆) is a saddle point of

L(z,λ) = 1
2
‖z − x‖2 + λf (z) − δR+ (λ),

which implies that Proxα⋆f(x) is a solution to the primal problem generated by L.
Hint. Use Exercise 2.31.
Remark. The result of this problem was first presented by Friedlander, Goodwin, and
Hoheisel [FGH21, Corollary 13].

2.33 Consider the problem

minimize
x∈Rn

f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m,

where f0, . . . , fm are CCP. Assume all forms of total duality. Show that

xk+1/2 = Proxαf0

(
1
m

m∑
i=1

zki

)
xk+1i = Π{x∈Rn | fi(x)≤0}(2xk+1/2 − zki )
zk+1i = zki + x

k+1
i − xk+1/2 for i = 1, . . . ,m

converges in the sense that xk+1/2 → x⋆ and xk+1i → x⋆ for i = 1, . . . ,m.
Hint. Use Exercise 2.29.

2.34 Indicator function of a subspace. Let V ⊆ Rn be a subspace and

V⊥ = {u ∈ Rn | 〈u,v〉 = 0 ∀v ∈ V}

be its orthogonal complement. Show:
(a) (δV)∗ = δV⊥ ,
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(b) �V(v) = V⊥ for all v ∈ V, and
(c) ΠV + ΠV⊥ = �.

2.35 Indicator function of a convex cone. Let K ⊆ Rn be a nonempty closed convex cone,
that is, K is a nonempty closed set satisfying

x1,x2 ∈ K ⇒ θ1x1 + θ2x2 ∈ K

for all θ1, θ2 ≥ 0. Let

K∗ = {u ∈ Rn | 〈u,x〉 ≥ 0 ∀x ∈ K}

be the dual cone of K. Show:
(a) (δK)∗ = δ−K∗ ,
(b) �K(x) = {u ∈ −K∗ | 〈u,x〉 = 0} for all x ∈ K, and
(c) ΠK + Π−K∗ = �.
Remark. This problem subsumes Exercise 2.34.

2.36 Consensus technique for operators. Show that the problem

find
x∈Rn

0 ∈
m∑
i=1

�ix,

where �1, . . . ,�m are (multi-valued) operators, is equivalent to

find
x1 ,...,xm∈Rn

0 ∈

�1(x1)

...

�m(xm)

 +�C(x1, . . . ,xm),

where C = {(x1, . . . ,xm) ∈ Rnm | x1 = · · · = xm} is the consensus set.
Hint. Show C⊥ = {(u1, . . . ,um) ∈ Rnm | u1 + · · · + um = 0} and use Exercise 2.34.

2.37 Variable metric DRS. Consider the problem

find
x∈Rn

0 ∈ (� +�)x,

where � and � are maximal monotone. Assume Zer (� + �) , ∅. LetM ∈ Rn×n be a
symmetric positive definite matrix. Show that the FPI with variable metric DRS

xk+1/2 = �M−1�(zk)
xk+1 = �M−1�(2xk+1/2 − zk)
zk+1 = zk + xk+1 − xk+1/2

converges.
2.38 PPXA. Consider the problem

minimize
x∈Rn

m∑
i=1

gi(x),

where g1, . . . ,gm are CCP functions on Rn. Let θ1, . . . , θm ∈ R be such that θi > 0 for
i = 1, . . . ,m and θ1 + · · · + θm = 1. Define the weighted average

zkθ = θ1z
k
1 + · · · + θmz

k
m

and denote

zkθ = (zkθ, . . . ,zkθ ) ∈ Rmn.
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The algorithm parallel proximal algorithm (PPXA) is

xk+1i = Prox(1/θi)gi (2z
k
θ − zki ) for i = 1, . . . ,m,

zk+1 = zk + xk+1 − zkθ .

Assume
⋂m
i=1 int dom gi , ∅ and that a solution exists. Show that PPXA converges in

the sense that there exists a solution x⋆ such that

(xk1, . . . ,x
k
m) → (x⋆, . . . ,x⋆).

Hint. Consider the variable metric DRS with

M =


θ1I

. . .

θmI

 ∈ Rmn×mn,

where I ∈ Rn×n is the identity matrix, and use

�M−1∂f(x) = argmin
z∈Rd

{
f (z) + 1

2
‖z − x‖2M

}
.

Remark. PPXA was presented by Combettes and Pesquet [CP08, CP11b].
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