
J. Functional Programming 9 (2): 147–166, March 1999. Printed in the United Kingdom

c© 1999 Cambridge University Press

147

Implementing theorem provers in a purely
functional style

KEITH HANNA

Computing Laboratory, University of Kent, UK

(e-mail: fkh@ukc.ac.uk)

Abstract

This paper discusses the principles of implementing an LCF-style proof assistant using a purely

functional metalanguage. Two approaches are described; in both, signatures are treated as

ordinary values, rather than as mutable components within an abstract datatype. The first

approach treats the object logic as a partial algebra and represents it as a partial datatype, that

is, a datatype in which the domains of the constructors are restricted by predicate functions.

This results in a compact, executable specification of the logic. The second approach uses

an abstract type to allow an efficient representation of the logic, whilst keeping the same

interface. A case study describes how these principles were put into practice in implementing

a fairly complex dependently-sorted logic.

1 Introduction

The Edinburgh LCF approach (Gordon et al., 1979) to implementing a logic is well

known and widely used. It is usually programmed in a functional programming

language that provides imperative features (such as the reference types of ML). In

this paper we describe a way of implementing a logic in a similar style but using

a purely functional programming approach. We will show that adopting such an

approach offers significant benefits and few drawbacks.

This paper is organised as follows. In section 2, we overview the essential features

of an imperative style implementation of a language. In sections 3 and 4, we describe

an alternative, algebraic approach, based on representing a logic as a partial algebra,

that allows a purely functional implementation and serves well as an executable

specification for a logic. In section 5, we describe a modified form of the approach

which allows for an efficient implementation, and in section 6 we discuss experience

gained with a functional implementation of a moderately complex dependently-

sorted logic.

2 Principles of the imperative approach

In the LCF approach, the object-level formalism (typically a logic) is represented by

an abstract datatype (ADT) in a computational metalanguage. The signature of the

object logic is represented as a mutable component of the state of the ADT, and

terms and theorems are represented as values defined relative to this signature.

https://doi.org/10.1017/S095679689900338X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689900338X

148 K. Hanna

σ ::= prop | nat | σ → σ′ | (σ) sorts

ν names

δ ::= ν : σ declarations

Σ ::= empty | δ {; δ}∗ signatures

τ ::= ν | τ τ′ | τ = τ′ | λ δ . τ | (τ) terms

Fig. 1. Definition of the Simple language.

newSig :: String -> ()

newParent :: String -> ()

newConst :: (String, Sort) -> ()

propSort :: Sort

natSort :: Sort

mkFnSort :: (Sort, Sort) -> Sort

mkVar :: (String, Sort) -> Term

mkConst :: String -> Term

mkApp :: (Term, Term) -> Term

mkEq :: (Term, Term) -> Term

mkAbs :: (Term, Term) -> Term

Fig. 2. Constants exported by an LCF-style implementation of Simple. (The corresponding

destructor and test functions are also exported.)

We can illustrate the essential features of the imperative approach (and, afterward,

of the algebraic approach) by constructing terms of a simple language, the typed

λ-calculus named Simple defined in figure 1. A typical Simple signature is

0: nat;

plus: nat → nat → nat;

forall : (nat → prop)→ prop

and a typical term on this signature is forall (λm: nat . plus m 0 = m).

Within the metalanguage, Simple is represented by an ADT that:

• Holds a representation of the current signature (i.e. a set of declarations) of

the object language.

• Exports the abstract types Sort and Term, whose values represent Simple sorts

and terms.

• Exports the set of constants defined1 in figure 2 that allows Simple entities to

be constructed, with the ADT guaranteeing their well-formedness. (Although

several of these constants have a functional type, they are not pure functions;

in addition to returning a value some of them also modify the state of the

ADT.)

1 For uniformity, we have adopted a Haskell-like syntax throughout, even for programs that make use
of ML-like imperative features.

https://doi.org/10.1017/S095679689900338X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689900338X

Functional implementation of theorem provers 149

As an example, consider the construction of the Simple term λm: nat . plus m 0 on

the Simple signature shown above.

• First, a new signature (the current signature) is established. Its name (demo) is

specified by evaluating:

newSig "demo"

and then the three constants are added to it by evaluating:

newConst ("0", natSort)

let st = mkFnSort (natSort, mkFnSort (natSort, natSort))

in newConst("plus", st)

let st = mkFnSort (mkFnSort(natSort, propSort), propSort)

in newConst("forall", st)

The evaluation of the above expression causes (as a side-effect) the signature

component of the state of the ADT to be updated with the new signature.

• Next, the desired term, λm: nat . plus m 0, is constructed. First, values repre-

senting the variable, m, and the body, plus m 0, of the abstraction are formed

by evaluating:

tm1 = mkVar("m", natSort)

tm2 = let c1 = mkConst("0")

c2 = mkConst("plus")

in mkApp(mkApp(c2, tm1), c1)

and then the abstraction is formed:

tm3 = mkAbs(tm1, tm2)

In practice, parser functions (for example, parseTm :: String -> Term) are

provided to provide a convenient user-interface to the system. Such functions (some-

times built into the concrete syntax of the metalanguage) parse the string wrt the

current signature.

The current signature of the system can be enriched at any stage by using

newConst to add further constants or by using newParent to merge the signature

with an already existing (disjoint) signature. It is not, however, possible to regress to

an earlier signature since allowing such an operation would invalidate the integrity

of any term that incorporated constants present only in the current signature.

An extension of the same principles allows a logic, rather than just a language, to

be represented. For this, the ADT also exports:

• an abstract type, Thm, for representing theorems;

• a function, newAxiom, that allows axioms to be added to the signature (which

may now be termed a theory presentation);

• a set of functions, each one corresponding to an inference rule, that allow

values of type Thm to be constructed.

https://doi.org/10.1017/S095679689900338X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689900338X

150 K. Hanna

3 Algebraic approach

The algebraic approach, which we now describe, is an alternative way of representing

a formalism. Its distinguishing features are: (i), that signatures, like terms, are

represented by first-class values of ordinary variables rather than as a mutable

component of the state of an ADT, and (ii) that the object formalism is represented

as a partial algebra.

This approach relies upon an extension to the type structure of the metalanguage2,

which we now describe.

3.1 Partial datatypes

An ordinary datatype represents a free algebra (‘free’ in the sense that a constructed

value may be taken apart to yield, uniquely, the component values from which it

was constructed). A partial datatype is one which represents a partial free algebra,

that is, one where the domains of the operations are not total.

Datatypes are often used to represent abstract types. When doing this, there are

two reason why it may often be useful (for programming in general) to be able to

restrict them to partial datatypes:

• to ensure that each abstract value has a unique (or canonical) concrete repre-

sentation; and

• to exclude the representation of improper abstract values.

For instance, in representing a rational by a pair of integers, one might wish to

exclude both non-canonical representations (where the two integers have a common

factor) and improper ones (where the second integer is zero).

We represent a partial datatype by allowing restrictor predicates to be associated

with the constructors of a datatype according to the syntax:

constructor atype1 . . . atypen . predicate

Each such predicate, which has the same type as its associated constructor, delimits

the domain of its constructor. An attempt to apply a constructor outside the subset

defined by its predicate will fail.

As an example, a partial datatype that represents the set of balanced binary trees

is shown in figure 3. The predicate isBalanced has the same type as the constructor

Node and is true only when its two arguments represent subtrees of equal weight.

3.2 Algebraic approach for a language

Taking Simple as an example, we now describe how a language may be represented

by a partial datatype that closely parallels the usual schematic-style definition of

2 A prototype implementation of a functional language with this extension was carried out. An alterna-
tive, equally valid, approach would be to extend a functional language so as to allow pattern-matching
on abstract types, along the lines described in Burton and Cameron (1993).

https://doi.org/10.1017/S095679689900338X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689900338X

Functional implementation of theorem provers 151

data BTree = Tip Int

| Node BTree BTree . isBalanced

weight (Tip i) = i

weight (Node t1 t2) = weight t1 + weight t2

isBalanced t1 t2 = (weight t1 == weight t2)

Fig. 3. A partial datatype for balanced trees.

data Sort = PropSort

| NatSort

| FnSort Sort Sort

data Dec = Dec Token Sort . isDec

data Sig = Empty

| Ext Dec Sig

data Term = Sym Int Sig . isSym

| App Term Term . isApp

| Eq Term Term . isEq

| Abs Term . isAbs

Fig. 4. A partial datatype representation of Simple.

its formation rules. Such a representation may be seen as providing an executable

specification of the language.

The partial datatype that represents Simple is shown in figure 4.

3.2.1 Sorts

The sorts of Simple are represented by the datatype Sort. The constructors of this

datatype are used to form sorts in exactly the same way as the constructing functions

of the abstract type in the imperative implementation were used. Since there are

no restrictions in the way that function sorts can be built, there are no restrictor

predicates associated with this datatype.

3.2.2 Declarations

Declarations are formed by associating a name with a sort. They are represented

by the datatype Dec. It is convenient to restrict the names to non-empty alphameric

sequences and so a restrictor predicate, isDec, is associated with the constructor to

enforce this.

https://doi.org/10.1017/S095679689900338X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689900338X

152 K. Hanna

3.2.3 Signatures

Signatures are sequences (rather than sets) of declarations. There are no restrictions

associated with the construction of signatures.

There are three auxiliary functions associated with signatures that will be needed

for defining the remaining restrictor predicates. These are

len :: Sig -> Int

lookupSort :: Sig -> Int -> Sort

equivSig :: Sig -> Sig -> Bool

These functions yield the length of a signature, extract the sort component of the

ith declaration in the signature (the most recently added declaration having index

0) and determine whether two signatures are alpha-equivalent, i.e. whether, ignoring

their names, they are identical.

3.2.4 Terms

Terms are defined in such a way that they are context free; i.e. they do not rely upon

referencing a global state. Rather, each term incorporates information from which

a unique signature, called its support signature, can be derived and with respect to

which its free variables are defined.

Terms are represented by the datatype Term. Associated with this type are the

functions

sigOf :: Term -> Sig

sortOf :: Term -> Sort

The first yields the support signature of a term, the second, its sort.

3.2.5 Symbols

Symbol formation is in accordance with the de Bruijn scheme (for example, see

Barendregt (1984)):

νn−1: σn−1; . . . νi: σi; . . . ν0: σ0 ` i

νi: σi

That is, a symbol is represented by an integer, i, specifying the position of its

declaration in the signature. The use of the de Bruijn scheme has much to recommend

it; alpha-equivalence is automatic and problems with capture do not occur. Notice

that there is no sharp distinction between constants and variables; the former are

simply symbols bound early on in a signature, the latter, ones bound nearer its end.

Using the algebraic representation, a symbol is represented by

data Term = Sym Int Sig . isSym

| . . .

The restrictor predicate has only to check that the index is within bounds:

isSym i sg = (i >= 0) && (i < len sg)

https://doi.org/10.1017/S095679689900338X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689900338X

Functional implementation of theorem provers 153

The two auxiliary functions associated with terms have equally trivial definitions:

sigOf (Sym i sg) = sg

sortOf (Sym i sg) = lookupSort sg i

3.2.6 Applications and equalities

The formation rules for applications and equalities are:

τ: σ′ → σ τ′: σ′

τ τ′: σ
and

τ: σ τ′: σ
(τ = τ′): prop

and their datatype representations (see figure 4) are straightforward. The restrictor

predicate, isApp, associated with applications has to check that the support signa-

tures of the two terms are equal (or, an alternative which may be preferred, that

they are alpha-equivalent) and that their sorts are compatible

isApp tm1 tm2 =

((sigOf tm1) == (sigOf tm2)) && (st1a == sortOf tm2)

where FnSort st1a st1b = sortOf tm1

The restrictor predicate, isEq, associated with equalities checks that the two support

signatures are equal and that the two sorts are equal.

The auxiliary functions associated with applications and equalities are simple. For

example, for applications:

sigOf (App tm1 tm2) = sigOf tm1

sortOf (App tm1 tm2) = st1a

where FnSort st1a st1b = sortof tm1

3.2.7 Abstractions

The formation rule for abstraction is:

Σ; δ ` τ

Σ ` λδ. τ

That is, the most recent declaration is taken from the support signature and bound

within the abstraction. Since, in the algebraic representation, the support signature

is an integral part of the term, the constructor takes only a single argument:

data Term = . . .

| Abs Term . isAbs

(contrast this with the binary constructor, mkAbs :: (Term, Term) -> Term in the

imperative approach). The restrictor predicate for abstractions has only to check

that the support signature of the body of the abstraction is non-empty:

isAbs tm = ((sigOf tm) /= Empty)

The definitions of the two auxiliary functions for abstractions are straightforward:

https://doi.org/10.1017/S095679689900338X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689900338X

154 K. Hanna

sigOf (Abs tm) = sg where Ext dc sg = sigOf tm

sortOf (Abs tm) = FnSort st1 (sortOf tm)

where Ext (Dec tk st1) sg = sigOf tm

3.3 Example

As an example of the algebraic approach, consider the construction3 of the same

Simple signature and term that were used as illustrations in section 2.

• First, the new signature, sg :: Sig, is constructed:

sg1 = Ext (Dec "0" NatSort) Empty

sg2 = let st = FnSort NatSort (FnSort NatSort NatSort)

in Ext (Dec "plus" st) sg1

sg = let st = FnSort (FnSort NatSort PropSort) PropSort

in Ext (Dec "forall" st) sg2

• Next, the desired term, λm: nat . plus m 0, is constructed. This is done by first

extending the signature with the declaration of the bound variable:

sg’ = Ext (Dec "m" NatSort) sg

and then constructing the body of the abstraction on this extended signature:

tm = let c1 = Sym 3 sg’ -- the constant "0"

c2 = Sym 2 sg’ -- the constant "plus"

v = Sym 0 sg’ -- the variable "m"

in App (App c2 v) c1

and then forming the abstraction:

tm1 = Abs tm

3.4 Parsing and unparsing

With the algebraic approach, a parsing function takes a signature as one of its

arguments and parses the entity with respect to that signature. For example, a term

parser is a function of type

parseTerm :: Sig -> String -> Term

Such a function is easily written. Names representing symbols are looked up on the

signature, yielding their index. If a binder (such as a λ-abstraction) is encountered,

the signature is extended with the new binding and the body of the term is parsed

3 For clarity, we present the construction in separate stages although, of course, they can be merged to
yield a single term.

https://doi.org/10.1017/S095679689900338X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689900338X

Functional implementation of theorem provers 155

relative to the extended signature. If desired, provision can be made for primed

names to denote hidden instances of multiply bound names, as in a term like

λx: nat → nat . λx: nat . x′ x.

The signature provides a natural location to store syntactic attributes of names.

For instance, variant forms of declaration can allow for:

• anonymous symbols, i.e. symbols that are not given a name and are therefore

denoted by their index number;

• eponymous ordinary names, i.e. symbols given an ordinary alphameric name;

• eponymous operators, i.e. symbols given operator status, along with a fixity,

precedence and direction of associativity;

• eponymous polymorphic operators, i.e. dependently-sorted operators that (as

described in section 6) require elided sorts to be inferred.

Sometimes, antiquotation (which allows metalinguistic expressions to be incorpo-

rated in a string that is being parsed) is useful in a parser. This can be simulated by

a modified version of the above parsing function, of type

parseTerm :: Sig -> String -> [Term] -> Term

that takes, as an additional argument, a list of terms and inserts the ith one wherever

a marker of the form @i is encountered in the string.

Unparsing functions (pretty-printers) are likewise easily written; the signature they

require can be obtained by the sigOf function so it does not need to be passed as

a separate argument.

4 Algebraic approach for a logic

We now show how the algebraic approach developed so far can be extended

to allow the representation of a logic. For this, we exploit the propositions-as-types

principle (Howard, 1969) that treats proofs as explicit objects and draws the following

analogies:

Proof — Term

Theorem (established by a proof) — Sort (of a term)

Proof constructor (or inference rule): — Term constructor:

axiom — symbol

specialisation — application

generalisation — λ-abstraction

We illustrate the approach using the Simple logic, an extension of the Simple

language introduced earlier. The concrete syntax of the logic is shown in Fig. 5; it

contains the following new features (explained in more detail in section 6.3):

• Identification of a class φ of formulae, i.e. terms of sort prop.

• A new kind of declaration, called a proclamation, of the form ν:φ.

• A new class of term, universal quantifications, of the form ∀δ. φ.

• A class π of proofs, containing a representative (but very limited!) selection of

kinds of proof: ν (appeal to an axiom); � π (symmetry of equality); π τ

(specialisation) and γδ. π (generalisation).

https://doi.org/10.1017/S095679689900338X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689900338X

156 K. Hanna

σ ::= prop | nat | σ → σ′ | (σ) sorts

ν names

δ ::= ν : σ | ν : φ declarations

Σ ::= empty | δ {; δ}∗ signatures

τ ::= ν | τ τ′ | τ = τ′ | λ δ . τ | ∀ δ . φ | (τ) terms

φ terms of sort prop (i.e., formulae)

π ::= ν | � π | π τ | γ δ . π | (π) proofs (γ is a binder)

Fig. 5. Definition of the Simple logic.

A typical Simple signature (or, as it is now more properly called, theory presenta-

tion) is:

0 : nat;

suc : nat → nat;

(+): nat → nat → nat;

a1 : ∀n: nat . n+ 0 = n;

a2 : ∀n: nat . ∀m: nat . n+ suc m = suc(n+ m)

This signature has declarations for three symbols (0, suc and +) and proclamations

for two axioms (a1 and a2).

A typical proof on this signature is γm: nat . � (a1 (suc m)), which establishes the

theorem ∀m: nat . suc m = suc m + 0. The component subproofs of a proof can be

read as a set of instructions for establishing intermediate theorems. For example:

Proof Establishes the theorem

a1 (axiom) ` ∀n: nat . n+ 0 = n

a1 (suc m) (specialise) ` suc m+ 0 = suc m

�(a1 (suc m)) (symm. of eq.) ` suc m = suc m+ 0

γm: nat . � (a1 (suc m)) (generalise) ` ∀m: nat suc m = suc m+ 0

4.1 Simple logic as a partial datatype

The partial datatype that represents the abstract syntax of the Simple logic is shown

in figure 6. Compared with the datatype for the Simple language, this one has extra

constructors for proclamations (Proc) and for universal quantification (ForAll), and

a new datatype, Proof, for proofs.

4.1.1 Proclamations

We introduce the term proclamation to describe the assertion of an axiom. Procla-

mations are formed by associating a name with a formula. They behave analogously

to declarations of symbols.

4.1.2 Proofs

Proofs are analogous to terms. Like terms, they incorporate their own support

signature and hence are context free. Functions analogous to the sigOf and sortOf

https://doi.org/10.1017/S095679689900338X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689900338X

Functional implementation of theorem provers 157

data Sort = PropSort

| NatSort

| FnSort Sort Sort

data Dec = Dec Token Sort . isDec

| Proc Token Term . isProc

data Sig = Empty

| Ext Dec Sig

data Term = Sym Int Sig . isSym

| App Term Term . isApp

| Eq Term Term . isEq

| Abs Term . isAbs

| ForAll Term . isForAll

data Proof = Axiom Int Sig . isAxiom

| Symmetry Term Term

| Spec Proof Term . isSpec

| Gen Proof . isGen

Fig. 6. A partial datatype representation of the Simple logic.

functions for terms are defined for proofs in an analogous way. The latter function,

theoremOf :: Proof -> Term, yields the theorem a proof establishes. Just as with

terms, a function for parsing proofs may be defined:

parseProof :: Sig -> String -> Proof

(In practice, parsing tends to be useful only for relatively small proofs; larger ones

are generally constructed algorithmically.)

4.1.3 Axioms

The Axiom constructor is analogous to the Sym constructor for terms. It takes an

index identifying a proclamation in its support signature and yields an atomic proof

establishing the theorem the proclamation asserts.

4.1.4 Symmetry of equality

Symmetry is a typical example of a proof constructor. It corresponds to the inference

rule that describes the symmetry of equality:

π: (τ = τ′)
(� π): (τ′ = τ)

Symmetry

That is, it takes a proof of a theorem of the form τ = τ′ and yields a proof of the

theorem τ′ = τ.

https://doi.org/10.1017/S095679689900338X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689900338X

158 K. Hanna

4.1.5 Specialisation

The Spec constructor is analogous to the App (application) constructor for terms. It

corresponds to the inference rule:

π: (∀ν: σ. φ) τ: σ

(π τ):φ[τ/ν]
∀-Elim

(More precisely, it corresponds to the more general case of the application of a

dependently-sorted function where the sort of the result is dependent upon the term

to which the function is applied.)

4.1.6 Generalisation

The Gen constructor is analogous to the Abs (λ-abstraction) constructor for terms.

It corresponds to the inference rule:

Σ; ν: σ ` π:φ

Σ ` (γν: σ. π): (∀ν: σ. φ)
∀-Intro

5 Efficient representation

5.1 Sources of inefficiency

Whilst the representation of a logic as a partial datatype is ideal as an executable

specification, it is too inefficient for practical use, for the following reasons:

1. The signature of a term is stored, redundantly, within each symbol of a term.

(In practice, these multiple signatures are likely to be stored, internally, as

references to a single instance of the data structure, but this is still inefficient.)

2. Operations that are known to preserve the integrity of a term (such as sub-

stitution of an appropriately-sorted subterm for a free variable inside a term)

will involve redundant evaluation of the restrictor predicates.

3. Every time an application is formed, the sorts of both subterms have to be

computed.

4. Proofs, which are usually generated either entirely automatically or by using

high-level guidance (such as a tree of tactics), tend to be immensely large.

Since, in practice, low-level proofs are scarcely ever required (it is only their

existence which is of interest), generating explicit representations of them is

wasteful.

5. Shifting a term onto an extended instance of its support signature requires

rebuilding the term with the indices of its free symbols appropriately offset.

This shifting operation is usually required whenever substitution, a frequently

used operation, is carried out. For example, consider the following two terms

(shown with their symbols annotated with their indices relative to the signature

[0; suc; (+); a1 ; a2] that was defined earlier):

τ1 = λn: nat . λm: nat . n1 +4 suc5 m0

τ2 = λx: nat . suc4 (suc4 x0)

https://doi.org/10.1017/S095679689900338X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689900338X

Functional implementation of theorem provers 159

and consider the term resulting from the substitution of τ2 for the symbol suc

in τ1:

τ1[τ2/suc] = λn: nat . λm: nat . n1 +4 (λx: nat . suc6 (suc6 x0)) m0

The effect is that the indices of the free symbols in τ2 have had to be offset

by 2 to allow for the two extra levels of binding surrounding the context into

which it was substituted.

5.2 Efficient representation

The various inefficiencies listed above can be ameliorated by adopting an ADT

representation for terms and proofs in place of the concrete one using partial data

types. By doing this:

1. The multiple copies of the support signature occurring in a term or proof can

be factored out and replaced by a single instance of the signature along with

single instances of the signature extensions (i.e. declarations or proclamations)

required for λ-abstractions, generalisations, etc.

2. Operations, such as substitution, that are known to preserve the integrity of a

term, can be implemented within the ADT and hence can bypass the restrictor

predicates (isSym, etc).

3. The sort of each term can be memoised within the adt. For ordinary sorts,

this tends not to produce significant efficiency gains since the sorts of terms

can usually be computed from their immediate constituents. However, for

dependently-sorted languages, such memoisation can be very beneficial.

4. The concrete representation of proofs can be eliminated and just the sort of

each proof (i.e. the theorem it establishes) stored.

5. The inefficiency of substitution can be reduced by adopting the generalised de

Bruijn scheme explained below.

With these changes, terms and proofs for the Simple logic are now implemented as

shown in figure 7. In this scheme:

• A term (type Term) now consists of a preterm (which represents a term less its

support signature), a memoised sort and the support signature for the term.

• A proof (type Proof) now consists only of the sort of the proof (i.e. the

theorem the proof establishes) and its support signature; the proof object itself

is omitted.

• A preterm (type Preterm) is represented by an ordinary datatype. A preterm

is only meaningful with respect to a particular support signature.

• The datatype constructors (Sym, etc.) of the earlier partial datatype are now

replaced by (LCF-like) constructor functions (makeSym, etc.), along with the

corresponding destructor and test functions4.

4 Or, better, with a Views-like extension to the metalanguage, the same role can continue to be performed
using pattern-matching.

https://doi.org/10.1017/S095679689900338X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689900338X

160 K. Hanna

newtype Term = Term (Preterm, Sort, Sig)

newtype Proof = Proof (Term, Sig)

data Preterm = Sym Int

| App Preterm Preterm

| Eq Preterm Preterm

| Abs Dec Preterm

| ForAll Dec Preterm

| Offset Int Int Preterm

makeSym :: Int -> Sig -> Term

makeSym i sg = if isSym i sg then Term (Sym i, lookupSort sg i, sg)

else error "Bad symbol"

isSym :: Int -> Sig -> Bool

isSym i sg = (i >= 0) && (i < len sg)

Fig. 7. Abstract datatype representation for terms and proofs.

5.2.1 Generalised de Bruijn representation

The de Bruijn scheme for representing symbols is ideal from all points of view, save

only the overhead involved in having to rebuild terms whenever they have to be

shifted onto an extension of their original support signature. This inefficiency can

be ameliorated by using what we term a generalised de Bruijn scheme. This involves

introducing an extra term constructor, ↑mn , which has the effect of applying an offset

to the free symbols of a subterm. The integer m defines the amount by which the free

symbols are offset and the integer n defines the position of the boundary between

free and bound symbols (since the latter, of course, should not be shifted).

Let [i] denote an instance of a symbol with a de Bruijn index of i, and let m, n > 0.

Then the meaning of an offset term is recursively defined by:

↑mn [i] ≡ [if i > n then i+ m else i]

↑mn (τ τ′) ≡ (↑mn τ) (↑mn τ′)
↑mn (λδ. τ) ≡ λδ. (↑mn+1 τ)

(with equalities and quantifications similarly defined).

For instance, returning to the earlier example involving the substitution of the

term τ2 for the symbol suc in τ1, the resultant term can now be expressed by using

an offset applied to τ2 (instead of having to rebuild τ2 on an extended signature) as

λn. λm. n1 +4 ↑2
0 (λx. suc4 (suc4 x0)) m0

When scanning this term (for example, when testing it for α-equivalence with

another term), the offset subterm ↑2
0 (λx. suc4 (suc4 x0)) is treated as equivalent to

λx. ↑2
1 (suc4 (suc4 x0)) which, in turn, is equivalent to λx. suc6 (suc6 x0).

The presence of a small number of offsets in a term will not significantly affect

the costs of typical term manipulation operations. If the number of offsets rises to

https://doi.org/10.1017/S095679689900338X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689900338X

Functional implementation of theorem provers 161

a level where it were to become significant, then, and only then, need the term be

rebuilt.

It is also possible to use a negative offset to shift a term onto a shorter signature

but this, however, is a potentially unsafe operation since it may cause some symbols

to go out of scope. A typical operation where it can be guaranteed to be safe is

β-reduction. When a term of the form (λν. τ) τ′ is reduced to τ[τ′/ν], the free symbols

in the original term, τ, need to be offset by −1 to compensate for the shortening of

its support signature due to the loss of the λ binding. The operation is safe since no

instances of the symbol ν will remain in the final term.

Within the ADT, the offset constructor, ↑mn , can be implemented by an Offset

constructor in the preterm datatype (see figure 7). For instance, the two preterms

Abs (Dec "n" NatSort) (App (Sym 4) (Sym 0))

and

Offset 2 0 (Abs (Dec "n" NatSort) (App (Sym 2) (Sym 0)))

are equivalent; both, interpreted relative to the signature [0; suc; (+); a1 ; a2], repre-

sent the term λn. suc n.

6 Case study: the Veritas logic

The Veritas logic5 is a higher-order, dependently-sorted logic that was developed

for exploring the use of dependent sorts in reasoning about digital systems. The

logic (in the form of an LCF-style proof assistant) has been implemented in both

the functional subset of SML and, experimentally, in Haskell (some 13K lines).

The decision to work within a functional framework was a purely pragmatic one,

motivated by the desire to achieve a demonstrably sound implementation, even at

the possible loss of speed of user interaction. In retrospect, this decision turned out

to be fully vindicated.

Many aspects of the implementation follow conventional practice (as, for instance,

described in Gordon and Melham (1993)); here we focus on those aspects that were

particularly influenced by adopting a purely functional approach and/or by treating

signatures as values.

6.1 Signatures

Veritas signatures are implemented as values along the lines described in section 5.

In addition to ordinary declarations and proclamations, a Veritas signature can also

include definitions (a pair consisting of a name and a defining term) and declarations

for algebraic datasorts (trees, etc.).

As well as being able to construct a signature by extending an existing signature

with a declaration, it is also possible to construct one by combining or by sharing

5 An overview of the logic can be found in Hanna et al. (1990), a detailed account in Hanna and Daeche
(1992b) and typical applications in Hanna and Daeche (1992a, 1993).

https://doi.org/10.1017/S095679689900338X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689900338X

162 K. Hanna

existing signatures6. The various auxiliary functions (for example, lookupSort),

when applied to a signature of the form Combine sg1 sg2 treat it as if it were the

signature sg1 appended to the signature sg2.

The use of the de Bruijn representation for symbols has the advantage that any

name clash occurring when signatures are combined is unimportant, but it has the

disadvantage that any common component of a pair of combined signatures will

end up duplicated. (For example, if both signatures are extensions of a signature for

natural numbers, then one would end up with two independent and incompatible

copies of this subsignature.)

Related to signatures, a further type of value, for representing signature morphisms,

is also provided. A signature morphism is constructed from two signatures and a

sort-preserving map between the two. It allows a term or theorem constructed on

the first signature to be mapped to its analogue on the second signature. (Signature

morphisms are invaluable both for making use of generic theories and for the more

mundane task of transferring terms or theorems between differing presentations of

what is essentially the same theory.)

6.2 Terms

The Veritas logic provides dependent sorts (Π and Σ), datasorts and subsorts, and

treats sorts as terms (themselves being of sort U0). The sorts of terms are not

unique; rather, a term-sort combination (a judgment) is well formed if the term can

be inferred to have the specified sort. Since this relation is not decidable, it is now

necessary (previously, it was optional) that the sort of a term be stored explicitly

within the representation of a term.

Atomic terms can be either ordinary symbols or can be constructors of datasorts.

The latter are represented in a similar way to symbols, but with two integers, the

first identifying the datasort declaration in the signature, the second identifying the

constructor in the datasort.

The adoption of the de Bruijn representation for symbols was found in practice

to allow the complex set of auxiliary functions associated with the term, signature

and signature morphism abstract data types to be programmed ‘right-first-time’.

By contrast, it was felt that the adoption of a name-based representation in the

implementation would have been both inefficient and opaque; programming errors

would have been not only inevitable but also would have been difficult to identify

and to correct.

In only one respect was the presence of imperative features in the metalanguage

missed. The term parser allows the sort with which a dependently-sorted operator

is specialised to be omitted provided it can be inferred by unification. For instance,

if the functional composition operator is declared as having the dependent sort

(◦): [r, s, t:U0]→ (s→ t)→ (r → s)→ (r → t)

6 The combine, share and signature morphism operations were motivated by the Clear specification
language (Burstall and Goguen, 1978).

https://doi.org/10.1017/S095679689900338X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689900338X

Functional implementation of theorem provers 163

then the parser will accept an abbreviated term like odd ◦ suc in place of

(◦) (nat , nat , prop) odd suc. An efficient functional implementation of unification

was not found: fortunately, since the terms involved tend to be small, the absence

of imperative assignment in this context did not give rise to significant inefficiency.

6.3 Proofs

Values of type proof (i.e. theorems) are usually constructed using LCF-style tac-

tics. The user interacts with the system via a proof/term editor (since proofs are

sometimes required for constructing terms and since simple proofs can simply be

typed in and parsed, the two types are handled in a virtually identical way). The

proof/term editor, and other tools, are largely driven by point-and-click operations

in a multi-window X-Windows display. The purely functional implementation of the

proof/term editor is interfaced to the operating system and the X Library routines

using stream I/O in conjunction with a simple front-end interpreter written in C.

The handling of user errors within the editor (for instance, selecting an inappropriate

tactic or typing in a badly-sorted term) follows conventional practice and uses Maybe

types.

The regime of lazy evaluation within Haskell (the metalanguage) is an advantage

in that it facilitates purely-functional I/O but, in some other respects, it is a

disadvantage. For instance, within the implementation of the editor it is necessary to

force complete evaluation of all results, whether or not they are needed for display,

simply in order to allow any user errors to be identified at the earliest opportunity.

When using a goal-directed approach, the actual construction of terms and proofs

tends to take very little time; the process is generally perceived by the user as almost

instantaneous. What can take time, however, is the process of discovering how to

construct the object. This often involves an open-ended search within a tactic, as, for

example, in searching for a sequence of inferences to simplify a term or establish a

theorem. The constraint of being limited to using only purely functional algorithms

here is potentially a burden. In many cases, any inefficiency can be, at least partially,

offset by using the (insecure, context-sensitive) preterm type in search algorithms

rather than the more expensive term type.

6.4 Concurrent implementation

A much remarked advantage of a purely functional implementation is that it

allows concurrent evaluation on a multiprocessor machine. One high-level way of

controlling the deployment of the processors is by inserting annotations into the

functional program to indicate subexpressions that are candidates for concurrent

evaluation (if resources allow). The gains that might be realisable in practice from

using this approach to concurrent evaluation for the Veritas system were explored

using the Haskell implementation. Two levels of granularity at which concurrency

might usefully be employed in this program were identified: fine grained (within the

abstract data type that represents Veritas terms) and coarse grained (within tactics).

Within the Term ADT, there is much scope for concurrency; any operation that

https://doi.org/10.1017/S095679689900338X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689900338X

164 K. Hanna

is applied independently to the subterms of a term (substitution being a good

example) can be undertaken concurrently. In order to avoid the overheads of

initiating concurrent evaluation from outweighing the gains, it is necessary to be

selective and avoid initiating trivial tasks. This was done by taking account both of

the complexity of subterms (a count of the number of constructors in all subterms

being memoised) and by preferring to allow concurrency at shallower levels of

recursion than at deeper ones.

Within many tactics, there is likewise much scope for concurrency. In particular,

the ‘or-else’ tactical (which is used in trying one tactic and then, if it fails, an

alternative one) can be replaced by a version which tries both tactics concurrently.

Such a tactical, which can be nested to arbitrary depth, provides the means to

write highly concurrent tactics, such as simplifiers which try a variety of techniques

concurrently to achieve a goal.

The tests of the effectiveness with which concurrency along the above lines could,

in practice, be deployed, were undertaken using a specialised compiler (the HBC-

PP system (Runciman and Wakeling, 1995b)) that takes a Haskell program with

concurrency annotations and yields instrumented code that runs in quasi-parallel

on a single-processor machine. The outcome of these tests was reported in Hanna

and Howells (1995). In brief, it was found that while effective exploitation of fine-

grained concurrency was difficult to achieve, control of coarse-grained concurrency

was comparatively easy to achieve and could result in as much as a tenfold degree

of useful processor parallelism being realised for some tasks.

7 Concluding remarks

In the LCF approach to the implementation of a proof assistant, a signature of the

object logic is treated as a mutable component of the state of the system and a

term or theorem is treated as a value defined relative to this state. In this paper we

have proposed treating signatures as ordinary values and incorporating signatures in

terms and theorems so that they become context-free ordinary values. These changes

bring a number of advantages. They mean that a purely functional implementation

can be adopted (with the increase in clarity and likelihood of correct implementation

that this implies as well as the possibility of concurrent evaluation). They also mean

that Clear-like theory structuring operations (combine, share, signature morphism)

can be incorporated and that the user is not limited to working within a single

theory at at time.

We have explored two approaches to implementing a logic in this style. In the

first, the logic, viewed as a partial algebra, is represented by a partial datatype. The

syntactic categories of the object logic (signatures, terms, etc.) are implemented as

types, the formation rules (for terms and proofs) as constructors, and the conditions

for well-formedness of the rules (sort checking, etc.) as restrictor predicates. The

form of the datatype is directly related to the usual schematic presentation of the

formation rules for a logic and the program serves well as a formal specification of

the logic. It is, however, too inefficient for practical use. The second implementation

is obtained from the first by a series of informal transformations (we speculate that it

https://doi.org/10.1017/S095679689900338X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689900338X

Functional implementation of theorem provers 165

may be possible to formalise this process and derive it by means of a series of formal,

correctness-preserving transformations). It results in an ADT which encapsulates a

reasonably efficient representation (principally, one in which redundant signatures

and explicit proofs are eliminated, and sorts are memoised) while presenting a similar

interface to the algebraic definition. It has the disadvantage that pattern-matching

can no longer be used to split syntactic objects into their constituents; instead,

explicit destructor functions and test functions have to be provided.

Experience gained with the Veritas logic has shown that this approach is viable

for implementing a reasonably complex logic in a relatively transparent manner. In

the future, it is possible that large-scale theorem-proving will a cooperative activity

carried out between geographically dispersed, trusted implementations operating

over a network. In such a setting, the representation of signatures, terms and

theorems as context-free values, and the ability to use signature morphisms to

reshape results built on variant signatures would be an undoubted advantage.

Acknowledgements

Special acknowledgments are due to Neil Daeche and Gareth Howells who worked

with the author in developing the Veritas system and exploring its concurrent

implementation. Thanks also to an anonymous referee for many helpful suggestions.

References

Barendregt, H. P. (1984) The Lambda Calculus. North-Holland.

Burstall, R. M. and Goguen, J. A. (1978) Putting theories together to make specifications.

Proc 5th IJCAI, pp. 1045–1058.

Burton, F. W. and Cameron, R. D. (1993) Pattern matching with abstract data types. J.

Functional Programming, 3(2), 171–190.

Gordon, M. J., Milner, R. and Wadsworth, C. P. (1979) A Mechanised Logic of Computation:

Lecture Notes in Computer Science 78. Springer-Verlag.

Gordon, M. J. C. and Melham, T. F. (eds). (1993) Introduction to HOL. Cambridge University

Press.

Hanna, F. K. and Daeche, N. (1992a) Dependent Types and Formal Synthesis. Phil. Trans.

Royal Soc., 339, 121–135.

Hanna, F. K. and Daeche, N. (1992b) Guide to the Veritas design logic (90pp). Technical

Report, University of Kent.

Hanna, F. K. and Howells, W. G. J. (1995) Parallel theorem proving. In: Runciman, C. and

Wakeling, D. (eds.), Applications of Functional Programming. UCL Press.

Hanna, F. K., Daeche, N. and Longley, M. (1990) Specification and Verification using

Dependent Types. IEEE Trans. Software Eng., 16(9), 949–964.

Hanna, K. and Daeche, N. (1993) Strongly-Typed Theory of Structures and Behaviours.

Correct hardware design and verification methods; IFIP Trans WG10.2, pp. 39–54. Springer-

Verlag.

Howard, W. A. (1969) The formulae-as-types notion of construction. In: Seldin, J. P. and

Hindley, J. R. (eds.), To H. B. Curry: Essays on combinatory logic, lambda calculus and

formalism, pp. 479–490. Academic Press.

https://doi.org/10.1017/S095679689900338X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689900338X

166 K. Hanna

Runciman, C. and Wakeling, D. (eds). (1995a) Applications of Functional Programming. UCL

Press.

Runciman, C. and Wakeling, D. (1995b) A quasi-parallel evaluator. In: Runciman, C. and

Wakeling, D. (eds.), Applications of Functional Programming. UCL Press.

https://doi.org/10.1017/S095679689900338X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689900338X

