## INVARIANCE THEOREMS FOR FIRST PASSAGE TIME RANDOM VARIABLES

## BY

## A. K. BASU

1. Introduction and summary. Let $X_{1}, X_{2}, \ldots$ be i.i.d. r.v. with $E X=\mu>0$, and $E(X-\mu)^{2}=\sigma^{2}<\infty$.

Let $S_{k}=X_{1}+\cdots+X_{k}$ and $v_{x}=\max \left\{k: S_{k} \leq x\right\}, x \geq 0$ and $v_{x}=0$ if $X_{1}>x$. Billingsley [1] proved if $X_{1} \geq 0$ then

$$
T_{n}(x, \omega)=\frac{v_{n x}(\omega)-(n x / \mu)}{\sigma \mu^{-3 / 2} \sqrt{n}}
$$

converges weakly to the Wiener measure $W$.
Let $\tau_{x}(\omega)=\inf \left\{k \geq 1 \mid S_{k}>x\right\}$. In §2 we prove that

$$
Z_{n}(x, \omega)=\frac{\tau_{n x}(\omega)-(n x / \mu)}{\sigma \mu^{-3 / 2} \sqrt{n}}
$$

converges weakly to the Wiener measure when the $X$ 's may not necessarily be nonnegative. Also we indicate that this result can be extended to the nonidentical case.

In $\S 3$ we prove that certain first passage time random variables of partial sums of i.i.d. r.v. with mean zero (or with positive mean) and finite variance tend to corresponding first passage time r.v. of Brownian motion (or with positive drift).
2. Theorem 1. Let $X_{1}, X_{2}, \ldots$ be i.i.d. r.v. with $\infty>E X=\mu>0, E(X-\mu)^{2}$ $=\sigma^{2}<\infty$. Let $S_{k}=X_{1}+X_{2}+\cdots+X_{k}$. Let

$$
\begin{equation*}
\tau_{t}=\inf \left\{k \geq 1 \mid S_{k}>t\right\}, t>0 \tag{1}
\end{equation*}
$$

## Define

(2)

$$
Z_{n}(t, \omega)=\frac{\tau_{n t}-(n t / \mu)}{\sigma \mu^{-3 / 2} \sqrt{n}}
$$

Then $Z_{n} \xrightarrow{\mathscr{D}} W$, the Wiener measure.
Proof. Without loss of generality we shall assume $\mu>1$.
We first show that

$$
\begin{equation*}
\sup _{0 \leq t \leq 1}\left|\frac{\tau_{t n}}{n}-\frac{t}{\mu}\right| \xrightarrow{P} 0 \quad \text { as } n \rightarrow \infty . \tag{3}
\end{equation*}
$$

$\tau_{t n}=\inf \left(k: S_{k}>t n\right)$ for $k \geq 1$, a fixed $t(0<t \leq 1)$ and $n$ a positive integer tending to $\infty$. Since the $X_{k}$ are not necessarily positive, $S_{k}$ may or may not be greater than Received by the editors March 11, 1971 and, in revised form, June 21, 1971.
$S_{k-1}$ but $\tau_{t n}$ is a step-function with integer-valued jumps at certain values of in depending on the observed $\omega$ (i.e. on the observed set of values $X_{1}, X_{2}, \ldots$ ). For any given $\omega, S_{\tau_{t n}}>t n$ but $S_{\tau_{t n}-1} \leq t n$.

The law of large numbers gives $(\mu-\epsilon) n \leq S_{n} \leq(\mu+\epsilon) n$ for any $\epsilon(0<\epsilon<\mu)$ and for sufficiently large $n$. Therefore

$$
t n<S_{\tau_{t n}} \leq(\mu+\epsilon) \tau_{t n}
$$

and

$$
t n \geq S_{\tau_{t n}-1} \geq(\mu-\epsilon)\left(\tau_{t n}-1\right)
$$

that is

$$
\begin{equation*}
\frac{t}{\mu+\epsilon}<\frac{\tau_{t n}}{n} \leq \frac{t}{\mu-\epsilon}+\frac{1}{n} \text { for } t>0 \text { and } n \rightarrow \infty \tag{4}
\end{equation*}
$$

From (4) it follows that $\tau_{t n} / n \rightarrow t / \mu$ a.e. as $n \rightarrow \infty$. Since $\tau_{t n}$ is everywhere leftcontinuous $\left|\tau_{t n} / n-t / \mu\right| \xrightarrow{P} 0$ as $n \rightarrow \infty$ for any fixed $t>0$. If $t=0, \tau_{0}$ will be a positive integer $m$ ( $>1$ if some negative $X_{i}$ precedes the first positive value), but since $E\left(X_{i}\right)>1$, the probability of large $m$ is vanishingly small, and in any case $E(m)<\infty$. Then

$$
\sup _{0 \leq t \leq 1}\left|\frac{\tau_{t n}}{n}-\frac{t}{\mu}\right| \xrightarrow{P} 0 .
$$

Define

$$
\begin{aligned}
U_{n}(t) & =\tau_{l n} / n & & \text { if } \tau_{t n} \leq t n \\
& =t / \mu & & \text { otherwise }
\end{aligned}
$$

Let $u(t)=t / \mu$, then

$$
\sup _{0 \leq t \leq 1}\left|U_{n}(t)-u(t)\right| \leq \sup _{0 \leq t \leq 1}\left|\frac{\tau_{t n}}{n}-\frac{t}{\mu}\right| \xrightarrow{P} 0 \quad \text { as } n \rightarrow \infty,
$$

so $U_{n}$ converges in probability in the sense of Skorohod topology to $u(t)$ of $C[0,1]$, since $C[0,1]$ is a subspace of $D[0,1]$, with relative topology.
Let

$$
X_{n}(t)=\frac{1}{\sigma \sqrt{n}} \sum_{i=1}^{[n t]}\left(X_{i}-\mu\right)
$$

Therefore by Donsker's theorem [1],

$$
X_{n} \xrightarrow{\mathscr{D}} W, \quad \text { so } \quad X_{n} \circ U_{n} \xrightarrow{\mathscr{D}} W \circ u .
$$

Define

$$
Y_{n}(t)=\frac{1}{\sigma \sqrt{n}} \sum_{i=1}^{\tau_{n t}}\left(X_{i}-\mu\right)
$$

Then by the definition of $\tau_{t n}$,

$$
Y_{n}(t)-X_{\tau_{t n}} / \sigma \sqrt{n} \leq \frac{n t-\mu \tau_{n t}}{\sigma \sqrt{n}}<Y_{n}(t)
$$

With our definition of $U_{n}$,

$$
Y_{n}=X_{n} \circ U_{n} \quad \text { if } \tau_{n} / n \leq 1 .
$$

Since $\max _{i \leq n}\left(\left|X_{i}\right| / \sqrt{n}\right) \xrightarrow{P} 0$, it follows that

$$
\sup _{t \leq 1}\left|X_{\tau_{n} t}\right| / \sigma \sqrt{n} \xrightarrow{P} 0 .
$$

Let $Z_{n}^{*}(t)=\left(n t-\mu \tau_{n t}\right) / \sigma \sqrt{n}$, then

$$
Z_{n}^{*} \xrightarrow{\mathscr{D}} W \circ u .
$$

Therefore

$$
\mu^{1 / 2} Z_{n}^{*} \xrightarrow{\mathscr{D}} W \quad \text { (by scaling property of } W \text { ). }
$$

Therefore $Z_{n} \xrightarrow{\mathscr{D}} W$. Hence the theorem. Q.E.D.
Let $M(x)=\max \left(k \mid S_{k} \leq x\right)$, then

$$
M(x)+1=\tau_{x} .
$$

Corollary (Heyde [2]). Let $X_{1}, X_{2}, \ldots$ be i.i.d. r.v. with $E X=\mu>0$, $\operatorname{var}(X)$ $=\sigma^{2}<\infty$. Then

$$
\lim _{x \rightarrow \infty} \operatorname{Pr}\left\{\frac{M(x)-x \mu^{-1}}{\left(x \sigma^{2} \mu^{-3}\right)^{1 / 2}}<a\right\}=\frac{1}{(2 \Pi)^{1 / 2}} \int_{-\infty}^{a} \exp \left(-1 / 2 u^{2}\right) d u
$$

Remark. Let $X_{1}, X_{2}, \ldots$ be independent r.v. with $E X_{i}=\mu>0$ and $E\left(X_{i}-\mu\right)^{2}$ $=\sigma^{2}<\infty$ for all $i$ and suppose that $\left\{X_{n}\right\}$ obey Lindberg's condition; then $Z_{n} \xrightarrow{\mathscr{D}} W$.
By the classical Kolmogorov's strong law for independent random variables, $S_{n} / n \rightarrow \mu$ a.e.

By Prohorov's functional central limit theorem [3],

$$
X_{n}(t) \xrightarrow{\mathscr{D}} W .
$$

So, as before, $\tau_{t n} / n \rightarrow t / \mu$ a.e. as $n \rightarrow \infty$.
Lindberg's condition implies

$$
\begin{aligned}
P\left(\max _{1 \leq i \leq n}\left|\frac{X_{i}}{\sqrt{n \sigma}}\right| \geq \epsilon\right) & =P\left(\bigcup_{i=1}^{n}\left\{\frac{\left|X_{i}\right|}{\sqrt{n \sigma}} \geq \epsilon\right\}\right) \\
& \leq \sum_{i=1}^{n} P\left(\frac{\left|X_{i}\right|}{\sqrt{n \sigma}} \geq \epsilon\right) \leq \frac{1}{\epsilon^{2} n \sigma^{2}} \sum_{i=1}^{n} \int_{|x| \geq \epsilon \sqrt{n} \bar{\sigma}} x^{2} d F_{i}(x)
\end{aligned}
$$

Therefore

$$
\max _{i \leq n} \frac{\left|X_{i}\right|}{\sqrt{n}} \xrightarrow{P} 0
$$

3. Let $\eta=\eta_{a}=\inf (t \geq 0 \mid W(t)>a), a>0$ where $W(t)$ is the standard Brownian motion.

Let $\tau_{a}=\inf \left\{k>1 \mid S_{k}>a\right\}$ where $S_{k}=X_{1}+\cdots+X_{k}$ and $\left\{X_{k}\right\}$ are independent random variables with $E X_{k}=0$, and $\left\{X_{k}\right\}$ satisfies Lindberg's condition. For simplicity let us assume $E X_{k}^{2}=1$.

Theorem 2. $\tau_{a \sqrt{n}} / n$ converges in distribution to $\eta$.
Proof. By Prohorov's theorem [3], $S_{[n t]} / \sqrt{n} \xrightarrow{\mathscr{D}} W$, the Wiener measure, and also $\sup _{0 \leq t \leq T}\left(S_{[n t]} / \sqrt{n}\right)=\max _{i \leq[n T]}\left(S_{i} / \sqrt{n}\right)$ converges in distribution to $\sup _{0 \leq t \leq T} W(t)$.

It is well known that

$$
\begin{aligned}
P(\eta>T) & =P\left(\sup _{0 \leq t \leq T} W(t)<a\right)=\frac{2}{\sqrt{2 \Pi T}} \int_{0}^{a} e^{-x^{2} / 2 T} d x \\
& =\frac{2}{\sqrt{2 \Pi}} \int_{0}^{a / \sqrt{t}} e^{-x^{2} / 2} d x
\end{aligned}
$$

Now

$$
\begin{aligned}
P\left(\max _{i \leq[n T]} \frac{S_{i}}{\sqrt{n}}<a\right) & =P\left(\max _{i \leq[n T]} S_{i}<a \sqrt{n}\right) \\
& =P\left(\tau_{a \sqrt{n}}>[n T]\right)
\end{aligned}
$$

Therefore $P\left[\left(\tau_{a \sqrt{n}} / n\right)>T\right] \rightarrow P(\eta>T)$ as $n \rightarrow \infty$ if $T$ is a continuity point of the distribution of $\eta$.

Now let $X_{1}, X_{2}, \ldots$ be i.i.d. r.v. with $E X=\delta>0$ and $E X_{i}^{2}=1$.
Let $h$ be a fixed continuous function on $[0, T]$.
Define

$$
\begin{aligned}
F_{h}[f] & =\inf [t \geq 0 \mid f(t) \geq h(t)] & & \text { if this exists, } \\
& =T & & \text { otherwise. }
\end{aligned}
$$

Let $f(t-)=\lim _{s \uparrow t} f(s)$ for each $t \in(0, T]$ and $f(0-)$ be $f(0)$. Then define

$$
\begin{array}{rlrl}
F_{h}^{-}[f] & =\inf [t \geq 0 \mid f(t-) \geq h(t)] \\
& =T & & \text { if this exists, } \\
& & \text { otherwise. }
\end{array}
$$

Lemma. The functional $F_{h}\left[\right.$.] is continuous in $J_{1}$-topology of Skorohod [3] at every $f \in D[0, T]$ for which (i) $F_{h}[f]=T$ or $f\left(t_{n}\right)>h\left(t_{n}\right)$ for a sequence of points $t_{n} \downarrow F_{n}[f]$ and (ii) $F_{n}[f]=F_{n}^{-}[f]$.

Proof. Let $f_{n} \rightarrow f$ in $J_{1}$-topology and let $\lambda_{n}$ be a sequence of homomorphisms of $[0, T]$ onto itself such that $\lambda(0)=0, \lambda(T)=T$.

Let $\rho_{n}=F_{h}\left(f_{n}\right)$, and assume that some subsequence $\left(\rho_{n k}\right)$ of $\left(\rho_{n}\right)$ tends to $\rho_{0}$. Then $f_{n}\left(\rho_{n}\right) \geq h\left(\rho_{n}\right)$ for each $\rho_{n}$, and hence $\lim _{k \rightarrow \infty} f_{n_{k}}\left(\rho_{n_{k}}\right) \geq h\left(\rho_{0}\right)$.

But $\lim _{n \rightarrow \infty}\left|f_{n}\left(\rho_{n}\right)-f\left(\lambda_{n}\left(\rho_{n}\right)\right)\right|=0$. Therefore $\lim _{k \rightarrow \infty} f\left(\lambda_{n_{k}}\left(\rho_{n_{k}}\right)\right) \geq h\left(\rho_{0}\right)$. Since $\lim _{k \rightarrow \infty} \lambda_{n_{k}}\left(\rho_{n_{k}}\right)=\rho_{0}$, it follows that either $f\left(\rho_{0}\right) \geq h\left(\rho_{0}\right)$ or $f\left(\rho_{0}^{-}\right) \geq h\left(\rho_{0}\right)$, so that
$\rho_{0} \geq F_{h}[f]$. Suppose $\rho_{0}>F_{h}[f]$. Then there exists $F_{h}(f)<\rho_{0}^{*}<\rho_{0}$ such that $f\left(\rho_{0}^{*}\right)$ $>h\left(\rho_{0}^{*}\right)$. If $0<\epsilon<\left(\rho_{0}-\rho_{0}^{*}\right) / 2$, then

$$
\begin{aligned}
\varlimsup_{k \rightarrow \infty}\left|f_{n_{k}}\left(\rho_{0}^{*}+\epsilon\right)-f\left(\rho_{0}^{*}+\epsilon\right)\right| & =\varlimsup_{k \rightarrow \infty}\left|f_{n_{k}}\left(\rho_{0}^{*}+\epsilon\right)-f\left(\lambda_{n_{k}}\left(\rho_{0}^{*}+\epsilon\right)\right)\right| \\
& +\varlimsup_{k \rightarrow \infty}\left|f\left(\lambda_{n_{k}}\left(\rho_{0}^{*}+\epsilon\right)\right)-f\left(\rho_{0}^{*}+\epsilon\right)\right| \\
& =\varlimsup_{k \rightarrow \infty}\left|f\left(\lambda_{n_{k}}\left(\rho_{0}^{*}+\epsilon\right)\right)-f\left(\rho_{0}^{*}+\epsilon\right)\right| \\
& \left.\leq \mid f\left(\rho_{0}^{*}+\epsilon\right)-\right)-f\left(\rho_{0}^{*}+\epsilon\right) \mid .
\end{aligned}
$$

By the right continuity of $f$ at $\rho_{0}^{*}$, we can choose $\epsilon$ so small that $f_{n_{k}}\left(\rho_{0}^{*}+\epsilon\right)>h\left(\rho_{0}^{*}+\epsilon\right)$ for $k$ sufficiently large. This means $\rho_{0} \leq \rho_{0}^{*}+\epsilon$ which is a contradiction (since $\epsilon>0$ is arbitrary). Therefore $\rho_{0}=F_{h}(f)$ and hence $F_{h}$ is continuous at $f$. Q.E.D.

Suppose $\delta>0$ and $W_{\delta}=\left\{W_{\delta}(t) ; t \geq 0, W_{\delta}(0)=0\right\}$, be a Wiener process with drift $\delta$ per unit time.
Let

$$
\begin{aligned}
\eta_{\delta}(a) & =\inf \left\{t \geq 0 \mid W_{\delta}(t) \geq a\right\}, \quad a>0, \quad \delta>0 \\
& =\inf \{t \geq 0 \mid W(t) \geq a-\delta t\} .
\end{aligned}
$$

Let $X_{1}, X_{2}, \ldots$ be i.i.d. r.v. with $E X=\delta>0, E(X-\delta)^{2}<\infty$.
Let $\tau_{x}=\inf \left\{k \geq 1 \mid S_{k}>x\right\}$.
Theorem 3. $\tau_{a v \bar{n}+k \delta / n}$ converges in distribution to $\eta_{\delta}(a)$, whose probability density is given by

$$
P_{n_{\delta}}(T)=\left(2 \Pi T^{3}\right)^{-1 / 2} \exp \left(-(a-\delta T)^{2} / 2 T\right)
$$

Proof. Consider $W(t)$ as a random element of $D[0, T]$ with its extended measure as its distribution.
Let $h(t)=a-\delta t$. Then $W$ and $h$ satisfy the conditions of our lemma.
Now again, by Donsker's theorem [1],

$$
f_{n}(t, \omega)=\frac{1}{\sqrt{n}} \sum_{i=1}^{[n t]}\left(X_{i}-\delta\right) \xrightarrow{\mathscr{D}} W
$$

Then by Skorohod's theorem [1] if $F$ is any real-valued functional on $D[0, T]$ which is $J_{1}$-continuous, the distribution of $F\left[f_{n}(., \omega)\right]$ converges to the distribution of $F[W(., t)]$.

It is easy to see

$$
F\left[f_{n}(., \omega)\right] \approx \frac{1}{n} \inf \left\{k \geq 1 \mid S_{k}>a \sqrt{n}+k \delta\right\}=\frac{\tau_{a \sqrt{n}+k \delta}^{n}}{n}
$$

Acknowledgement. Appreciation is extended to National Research Council of Canada for financial support of this work. Thanks to the referee for improvement of this paper.

## References

1. P. Billingsley, Convergence of probability measures, Wiley, New York, 1968.
2. C. C. Heyde, Asymptotic renewal results for a natural generalisation of classical renewal theory, J. Roy. Statist. Soc. Series B, 29 (1967), 141-150.
3. K. R. Parthasarathy, Probability measures on metric spaces, Academic Press, New York, 1967.

Laurentian University, Sudbury, Ontario

