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Gamma Factors, Root Numbers, and
Distinction

Nadir Matringe and Omer Oòen

Abstract. We study a relation between distinction and special values of local invariants for represen-
tations of the general linear group over a quadratic extension of p-adic ûelds. We show that the local
Rankin–Selberg root number of any pair of distinguished representation is trivial, and as a corollary
we obtain an analogue for the global root number of any pair of distinguished cuspidal represen-
tations. We further study the extent to which the gamma factor at 1/2 is trivial for distinguished
representations as well as the converse problem.

1 Introduction

_iswork continues to study the relations between distinguished representations and
triviality at 1/2 of the local gamma and epsilon factors in the context of GLn over a
quadratic extension.

Let E/F be a quadratic extension of p-adic ûelds and ûx a non-trivial character
ψ of E that is trivial on F. A (smooth, complex valued) representation of GLn(E) is
called distinguished if it admits a non-zero GLn(F)-invariant linear form.

In his dissertation [Ok97], Y. Ok showed that for n > 1 and an irreducible, cuspidal
representation π of GLn(E) with a central character that is trivial on F×, we have the
following. _e representation π is distinguished if and only if for every irreducible,
unitary, generic, and distinguished representation π′ of GLn−1(E) the local Rankin–
Selberg gamma factor γ(s, π, π′ ,ψ) satisûes

γ(1/2, π, π′ ,ψ) = 1.

Ok suggests that relations of this nature, may hold more generally. _is was further
explored by the second author in [Oò11], a paper that, unfortunately, contains some
mistakes. _e errors occur in the very last part of the paper [Oò11, §7.2], where local
L-values are cancelled out at points where theremay be poles. _e upshot is that the
main result, [Oò11, _eorem 0.1], is partially wrong and even the proof of the parts
that are correct is invalid. _e mistake was recently noted by the ûrst author, which
led to the current collaboration, aiming to correct the mistakes and explore further
the relation between distinction and special values of local factors. We remark that
in addition, the proof of [Oò11, Corollary 7.2] is not valid, although the statement
is correct, and a proof can be found in the recent work of Anandavardhanan and
Matringe [AM17].
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We now summarize our main results. _e ûrst one says that the local Rankin–
Selberg root number attached to a pair of distinguished representations is trivial. _is
was conjectured in [Ana08, Conjecture 5.1]. More explicitly (see _eorem 3.6), we
have the following theorem.

_eorem 1.1 Let π i be an irreducible and distinguished representation of GLn i (E),
i = 1, 2. _en є(1/2, π1 , π2 ,ψ) = 1.

Together with an archimedean analogue carried out in § 6.1, this gives triviality
of the global Rankin–Selberg root number of a pair of distinguished automorphic
cuspidal representations. _is is _eorem 6.6.
For the local gamma factors, we have the following (see_eorem 3.7 for a slightly

more general statement).

_eorem 1.2 Let π i be an irreducible and distinguished representation of GLn i (E),
i = 1, 2. If π1 is unitary and generic and π2 is tempered, then γ(1/2, π1 , π2 ,ψ) = 1.

In Example 3.8 we providemany pairs of distinguished representations for which
gamma at 1/2 is not trivial. (In fact, γ(1/2, π1 , π2 ,ψ) = −1 if π i is the trivial represen-
tation of GLi(E), i = 1, 2.)
Conversely, for essentially square-integrable representations,we show that the triv-

iality of gamma at 1/2 for enough twists by distinguished representations character-
izes distinction. More explicitly, if δ is an irreducible, essentially square integrable
representation of GLn(E) and γ(1/2, δ, π,ψ) = 1 for any distinguished, irreducible
representation π of GLm(E) for all m ≤ n, then δ is distinguished.

In fact, only tempered twists are necessary, and in many cases only for m ≤ n − 2.
_eorem 5.5 is a generalization of the following.

_eorem 1.3 Let δ be an essentially square integrable representation of GLn(E). If
γ(1/2, δ, π,ψ) = 1 for every m ≤ n and every irreducible, tempered, and distinguished
representation π ofGLm(E), then δ is distinguished. If δ is not of the form St2(ρ), then
taking m ≤ n − 2 is enough.

Here, ρ is cuspidal and the generalized Steinberg representation St2(ρ) is the
unique irreducible quotient of the parabolically induced representation ∣det ∣−1/2ρ ×
∣det ∣1/2ρ.
Example 5.6 shows that we cannot expect such a converse theorem for more gen-

eral distinguished representations. For essentially square integrable representations
of the form St2(ρ), we do expect twists up to n − 2 to characterize distinction, but a
proof will require diòerent methods.

We remark that the above relative converse theorem is an analogue of the local
converse theorem ofHenniart [Hen93] or, rather, the improvement by Chen [Che06]
(see [HO15, §2]). We do not explore the extent to which it can be improved in the
direction of [JL15].

Let usnowoutline the structureof thepaper and give the ideasbehind someproofs.
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_eorem 3.6, which is the triviality of the non-archimedean Rankin–Selberg root
number of a pair of irreducible distinguished representations, is proved in Section 3,
using the cuspidal case due to Ok [Ok97] and the classiûcation of distinguished stan-
dardmodules due to Gurevich [Gur15].

Section 4 is devoted to the proof of Proposition 4.5, which is the relative analogue
of thewell known fact that the gamma factors of twists by characters of an irreducible
representation determine its central character [JNS15, Corollary 2.7]. Our result says
that if the gamma factors of the twists of an irreducible representation π by distin-
guished characters are trivial at 1/2, then the central character of π is itself distin-
guished. Our proof is an adaptation of that in [JNS15].

In Section 5, we prove _eorem 5.5, our relative converse theorem for discrete
series representations. Once again the idea is to reduce to Ok’s cuspidal converse the-
orem, or rather its reûnement due to Hakim and the second author [HO15], using
good twists and analytic methods. More precisely, twisting a generalised Steinberg
representation Stk(ρ) by representations of the form ∣det ∣−sρ∨ × ∣det ∣sρσ (see Sec-
tion 2 for undeûned notation) allows us to reduce to conjugate self-dual discrete series
representations, and then use [HO15], where this casewas taken care of. _en we ob-
serve that it is in fact enough to twist by such representations with s ∈ iR, thanks to
extension ofmeromorphic identities, and this allows us to twist only by distinguished
tempered representations.
Finally,_eorem 6.3,which is the archimedean analogue of_eorem 3.6 is a conse-

quence of Kemarsky’s classiûcation of distinguished standardmodules [Kem15]. _e
triviality of the global root numer of a pair of distinguished cuspidal automorphic
representations then follows and is _eorem 6.6.

2 Notation and Preliminaries

Let E be a p-adic ûeld (a ûnite extension ofQp) and let ψ be a non-trivial character of
E. We denote by pE = ϖEoE themaximal ideal of the ring of integers oE of E. Here, ϖE
is a uniformizer of E. Let Gn = GLn(E), and consider the involution g ↦ g ι ∶= t g−1

on Gn .
By a representation ofGn wemean a complex valued, smooth representation. For a

representation π of Gn let π ι be the representation on the space of π given by π ι(g) =
π(g ι) and let π∨ be the smooth dual of π. For representations π i of Gn i , i = 1, . . . , k,
we denote by π1 × ⋅ ⋅ ⋅ × πk the representation of Gn1+⋅⋅⋅+nk obtained from π1 ⊗ ⋅ ⋅ ⋅ ⊗ πk
by normalized parabolic induction. For a representation π and a character χ of Gn ,
let χπ be the representation on the space of π given by (χπ)(g) = χ(g)π(g). Let ν
denote the character ∣det∣ of Gn .

Let Π(n) be the collection of all irreducible representations of Gn . By convention,
we also let Π(0) be the set containing only the trivial representation of the trivial
group G0 and let Π = ⊔∞n=0 Π(n).

If π ∈ Π, then π∨ ≃ π ι [GK75]. More generally, if π i ∈ Π, i = 1, . . . , k, then

(π1 × ⋅ ⋅ ⋅ × πk)ι ≃ π∨k × ⋅ ⋅ ⋅ × π∨1 .

Let Un be the group of upper triangular unipotent matrices in Gn and, by abuse of
notation, letψ also denote the character onUn deûned byψ(u) = ψ(u1,2+⋅ ⋅ ⋅+un−1,n).

https://doi.org/10.4153/CJM-2017-011-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-011-6


686 N. Matringe and O. Oòen

Deûnition 2.1 A representation π of Gn is ofWhittaker type if it is of ûnite length
and dimHomUn(π,ψ) = 1. An irreducible representation ofWhittaker type is called
generic.

We use a lower index to denote special classes of representations in Π as follows:
● Πcusp-cuspidal representations in Π;
● Πsqr-essentially square integrable representations in Π;
● Πtemp-tempered representations in Π;
● Πgen-generic representations in Π;
● Πu−●-unitary representations in the class Π●.
We have Πu-cusp ⊆ Πu-sqr ⊆ Πtemp ⊆ Πu-gen and Πcusp ⊆ Πsqr ⊆ Πgen. Recall that

Πsqr = {Stk(ρ) ∶ ρ ∈ Πcusp , k ∈ N}
where Stk(ρ) is the unique irreducible quotient of ν(1−k)/2ρ×ν(3−k)/2ρ×⋅ ⋅ ⋅×ν(k−1)/2ρ
(see [Zel80,_eorem 9.3]) and Stk(ρ)∨ ≃ Stk(ρ∨) (see [Zel80, Proposition 9.4]).
For δ ∈ Πsqr let e = e(δ) ∈ R be the unique real number such that ν−eδ ∈ Πu-sqr.

A representation of the form

λ = δ1 × ⋅ ⋅ ⋅ × δk where δ1 , . . . , δk ∈ Πsqr , e(δ1) ≥ ⋅ ⋅ ⋅ ≥ e(δk)
is called a standard module. It is ofWhittaker type and admits a unique irreducible
quotient π, the Langlands quotient of λ. _e Langlands classiûcation, is the bijection
λ ↦ π from the set of all standardmodules to Π (see [Sil78]). We denote by λ(π) the
standardmodule with unique irreducible quotient π ∈ Π. Note that

λ(π∨) = λ(π)ι , π ∈ Π.

For δ1, δ2 ∈ Πsqr we say that δ1 precedes δ2 and write δ1 ≺ δ2 if δ i =
Stk i (ρ i), where ρ i ∈ Πcusp, i = 1, 2 are such that ρ2 ≃ ν(k1+k2)/2+1−iρ1 for some
i ∈ {1, . . . ,min(k1 , k2)}. By [Zel80, _eorem 9.7], for δ1 , . . . , δk ∈ Πsqr we have
δ1 × ⋅ ⋅ ⋅ × δk ∈ Π if and only if δ i /≺ δ j for all i /= j and

Πgen = {δ1 × ⋅ ⋅ ⋅ × δk ∶ δ1 , . . . , δk ∈ Πsqr , δ i /≺ δ j , 1 ≤ i /= j ≤ k}.
More generally, if δ1 , . . . , δk is ordered so that δ i /≺ δ j for all 1 ≤ i < j ≤ k, then
λ = δ1 ×⋅ ⋅ ⋅× δk is a standardmodule, independent of any such order. Wewill say that
such a realization δ1 × ⋅ ⋅ ⋅ × δk of λ is in standard form.
For representations π of Gn and τ of Gm of Whittaker type let L(s, π, τ) and

є(s, π, τ,ψ) be the local Rankin–Selberg L and є-factors deûned by [JPSS83] and let

γ(s, π, τ,ψ) = є(s, π, τ,ψ)L(1 − s, π ι , τ ι)
L(s, π, τ) .

For any π, τ ∈ Π the local L, є and γ-factors for the pair (π, τ) are deûned as the
corresponding factors for the pair (λ(π), λ(τ)). In particular, we have

(2.1) γ(s, π, τ,ψ) = є(s, π, τ,ψ)L(1 − s, π∨ , τ∨)
L(s, π, τ) .

We list below some basic properties of the local Rankin–Selberg L and є factors.
_ey are immediate from the deûnitions and will be used freely in the sequel. Let π
and τ be either in Π or ofWhittaker type. _en
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(a) L(s, π, τ) = L(s, τ, π) and є(s, π, τ,ψ) = є(s, τ, π,ψ);
(b) L(s, νtπ, τ) = L(s + t, π, τ) and є(s, νtπ, τ,ψ) = є(s + t, π, τ,ψ);
(c) γ(s, π, τ,ψ)γ(1 − s, π ι , τ ι ,ψ−1) = 1 = є(s, π, τ,ψ)є(1 − s, π ι , τ ι ,ψ−1).

_e following is a consequence of [JPSS83, Proposition 8.1].

Lemma 2.2 Let ρ1, ρ2 ∈ Πcusp. _en L(s, ρ1 , ρ∨2 ) = 1, unless ρ2 = νuρ1 for some
u ∈ C. More generally, themeromorphic function L(s, ρ1 , ρ∨2 ) has at most simple poles.
It has a pole at s = u if and only if ρ2 ≃ νuρ1. In particular, if ρ1 , ρ2 ∈ Πu-cusp, then
L(s, ρ1 , ρ∨2 ) is holomorphic whenever Re(s) /= 0.

Lemma 2.3 Let δ1, δ2 ∈ Πsqr. _en L(s, δ1 , δ∨2 ) has atmost simple poles. It has a pole
at s = u if and only if δ1 ≺ ν1−uδ2. In particular, if δ i ∈ Πu-sqr, i = 1, 2, then L(s, δ1 , δ∨2 )
is holomorphic whenever Re(s) > 0.

Proof Write δ i = Stk i (ρ i) for ρ i ∈ Πcusp and k i ∈ N, i = 1, 2. It follows from
[JPSS83, Proposition 8.2] (and Lemma 2.2) that

L(s, δ1 , δ∨2 ) =
min(k1 ,k2)
∏
i=1

L( s + k1 + k2

2
− i , ρ1 , ρ∨2 ) .

It follows from Lemma 2.2 that at most one factor on the right-hand side can have at
most a simple pole at s = u and that this is the case, if and only if

ρ2 ≃ νu+ k1+k2
2 −iρ1

for some i = 1, . . . ,min(k1 , k2). Equivalently, if and only if

ν1−uρ2 ≃ ν
k1+k2

2 +1−iρ1

for some i = 1, . . . ,min(k1 , k2).
Since ν1−uStk2(ρ2) ≃ Stk2(ν1−uρ2), this is equivalent to the condition δ1 ≺ ν1−uδ2.

Lemma 2.4 We have the following multiplicative properties.
(i) [JPSS83,_eorem 3.1] Let π = π1 × ⋅ ⋅ ⋅ × πk and let τ be ofWhittaker type. _en

γ(s, π, τ,ψ) =
k
∏
i=1

γ(s, π i , τ,ψ).

(ii) [JPSS83, Proposition 9.4] Let λ = δ1 × ⋅ ⋅ ⋅ × δk and ξ = δ′1 × ⋅ ⋅ ⋅ × δ′l be standard
modules in standard form. _en

L(s, λ, ξ) =
k
∏
i=1

l
∏
j=1

L(s, δ i , δ′j)

and consequently,

є(s, λ, ξ,ψ) =
k
∏
i=1

l
∏
j=1

є(s, δ i , δ′j ,ψ).
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Lemma 2.5 For π, τ ∈ Π, the γ-factor γ(s, π, τ,ψ) depends only on the cuspidal
support of π and τ. More explicitly, if τ1 , . . . , τk ∈ Πcusp are such that τ ⊆ τ1 × ⋅ ⋅ ⋅ × τk ,
then

γ(s, π, τ,ψ) =
k
∏
i=1

γ(s, π, τ i ,ψ).

Proof Passing to the standardmodules λ(π) and λ(τ) and applying Lemma 2.4(i),
we can assume that τ ∈ Πsqr. In that case, write τ = Stk(ρ) for ρ ∈ Πcusp. _en the
Whittaker space for τ is contained in that for ν(k−1)/2ρ × ⋅ ⋅ ⋅ × ν(1−k)/2ρ. Since the
gamma factor is a quotient of Rankin–Selberg integrals for any choice ofWhittaker
functions that provide non-zero integrals,

γ(s, π, τ,ψ) = γ(s, π, ν(k−1)/2ρ × ⋅ ⋅ ⋅ × ν(1−k)/2ρ,ψ).

_e lemma now follows by applying Lemma 2.4(i) to the right-hand side.

2.1 Distinguished Representations

Assume from now on that F is a p-adic ûeld, E/F a quadratic extension and ψ∣F = 1.
Let σ denote the associated Galois action. In particular, we have ψσ = ψ−1. It is
furthermore obvious from the deûnitions of the local factors that for π and τ either
in Π or ofWhittaker type we have

(2.2) L(s, π, τ) = L(s, πσ , τσ) and є(s, π, τ,ψ) = є(s, πσ , τσ ,ψσ).

Let ηE/F be the order two character of F× that is trivial on norms from E× to F×

and ûx a character η of E× extending ηE/F . Let Hn = GLn(F).

Deûnition 2.6 A representation π of Gn is distinguished if HomHn(π, 1) /= 0 and
ηE/F-distinguished ifHomHn(π, ηE/F ○ det) /= 0.

Clearly, π is distinguished if and only if ηπ is ηE/F-distinguished. Flicker showed
the following lemma.

Lemma 2.7 ([Fli91, Propositions 11 and 12]) For π ∈ Π(n) we have
(i) dimHomHn(π, 1) ≤ 1;
(ii) if π is distinguished, then πσ ≃ π∨.

We record here some results regarding distinguished representations.

Proposition 2.8 (i) ([AKT04, Corollary 1.6] and [Kab04]) Let δ ∈ Πsqr be such
that δσ ≃ δ∨. _en δ is either distinguished or ηE/F-distinguished but not both.

(ii) ([Ana08, _eorem 1.3]; see [AR05, §4.4] or [Mat09a, Corollary 4.2]) Let δ =
Stk(ρ) ∈ Πsqr. _en δ is distinguished if and only if one of the following two
conditions hold:
● ρ is distinguished and k is odd;
● ρ is ηE/F-distinguished and k is even.
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Proposition 2.9 Let λ be a standard module. _en λ is distinguished if and only
if there exist δ i ∈ Πsqr, i = 1, . . . , t with e(δ1) ≥ ⋅ ⋅ ⋅ ≥ e(δt) ≥ 0 and distinguished
τ j ∈ Πsqr, j = 1, . . . , s such that

(2.3) λ ≃ δσ
1 × ⋅ ⋅ ⋅ × δσ

t × τ1 × ⋅ ⋅ ⋅ × τs × δ∨t × ⋅ ⋅ ⋅ × δ∨1 .

Proof If λ is distinguished, then it follows from [Gur15, Proposition 3.4] that λ can
be realized as λ = δ′1 × ⋅ ⋅ ⋅ × δ′k in standard form, so that there exists an involution
w ∈ Sk such that (δ′i)σ ≃ (δ′w(i))∨ for all i = 1, . . . , k, and δ′i is distinguishedwhenever
w(i) = i. Let k = s + 2t, where s = ∣{i ∶ w(i) = i}∣, {i1 , . . . , is} = {i ∶ w(i) = i}, and
(τ1 , . . . , τs) = (δ′i1 , . . . , δ

′
is). Let

{ j1 , . . . , jt} = { i ∶ w(i) /= i and either e(δ′i) > 0 or e(δ′i) = 0 and i < w(i)}
be ordered in such a way that e(δ′j1) ≥ ⋅ ⋅ ⋅ ≥ e(δ

′
j t) and set

(δ1 , . . . , δt) = ((δ′j1)
σ , . . . , (δ′j t)

σ) .
_en (2.3) holds by the independence of the standard module on a standard form
realization.
Assume now that λ is of the form (2.3). By a standard, closed orbit contribution,

argument τ1 × ⋅ ⋅ ⋅ × τs is distinguished (see e.g., [Oò11, Lemma 6.4]), and it therefore
follows from [Gur15, Proposition 2.3] that λ is distinguished.

3 The Local Root Number of a Distinguished Representation

We ûrst record straightforward consequences of the basic properties of L and є factors
for representations that are isomorphic to the Galois twist of their smooth dual.

Lemma 3.1 Let π, τ ∈ Π satisfy πσ ≃ π∨ and τσ ≃ τ∨. _en we have
(i) L(s, π, τ) = L(s, π∨ , τ∨);
(ii) if L(s, π, τ) is holomorphic at s = 1/2, then γ(1/2, π, τ,ψ) = є(1/2, π, τ,ψ).
(iii) γ(s, π, τ,ψ)γ(1 − s, π, τ,ψ) = 1 = є(s, π, τ,ψ)є(1 − s, π, τ,ψ);
(iv) in particular, є(1/2, π, τ,ψ)2 = 1.

We recall the following result from Ok’s thesis [Ok97].

Lemma 3.2 (Ok) If ρ1 , ρ2 ∈ Πcusp are both distinguished, then γ(1/2, ρ1 , ρ2 ,ψ) = 1.

We therefore also have the following corollary.

Corollary 3.3 If ρ1 , ρ2 ∈ Πcusp are both distinguished, then є(1/2, ρ1 , ρ2 ,ψ) = 1.

Proof It follows fromLemma 2.7(ii) that ρσ
i ≃ ρ∨i and in particular that ρ i ∈ Πu-cusp,

i = 1, 2. It therefore follows from Lemma 2.2 that L(s, ρ1 , ρ2) is holomorphic at s =
1/2 and therefore from Lemma 3.1(ii) that є(1/2, ρ1 , ρ2 ,ψ) = γ(1/2, ρ1 , ρ2 ,ψ). _e
corollary now follows from Lemma 3.2.

Lemma 3.4 Let π be either in Π or of Whittaker type and satisfy πσ ≃ π ι and let
δ ∈ Πsqr be such that e(δ) ≥ 0. _en є(1/2, π, δσ × δ∨ ,ψ) = 1.
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Proof It follows from Lemma 2.4 that

є(1/2, π, δσ × δ∨ ,ψ) = є(1/2, π, δσ ,ψ)є(1/2, π, δ∨ ,ψ).
Applying (2.2), we have

є(1/2, π, δσ ,ψ) = є(1/2, π ι , δ,ψ−1) = є(1/2, π, δ∨ ,ψ)−1 ,

and the lemma follows.

Lemma 3.5 Let δ1 , δ2 ∈ Πsqr be such that δσ
i ≃ δ∨i , i = 1, 2. _en

(i) γ(1/2, δ1 , δ2 ,ψ) = є(1/2, δ1 , δ2 ,ψ);
(ii) if δ1 and δ2 are distinguished, then γ(1/2, δ1 , δ2 ,ψ) = 1.

Proof Note that by the given symmetry δ1, δ2 ∈ Πu-sqr. _e ûrst equality therefore
follows from Lemma 3.1(ii) and Lemma 2.3. Write δ i = Stk i (ρ i), i = 1, 2, where
ρ i ∈ Πu-cusp and k i ∈ N. It follows from Lemma 2.5 that

(3.1) γ(s, δ1 , δ2 ,ψ) =
k1

∏
i1=1

k2
∏
i2=1

γ( s + k1 + k2

2
+ 1 − i1 − i2 , ρ1 , ρ2 ,ψ) .

By Lemma 2.2 for u ∈ R the function γ(s, ρ1 , ρ2 ,ψ) is holomorphic and non-zero at
s = u unless ρ2 ≃ ρ∨1 and u ∈ {0, 1}. By Lemma 3.1(iii) we therefore have that

γ( 1/2 + k1 + k2

2
+ 1 − i1 − i2 , ρ1 , ρ2 ,ψ)×

γ( 1/2 + k1 + k2

2
+ 1 − (k1 + 1 − i1) − (k2 + 1 − i2), ρ1 , ρ2 ,ψ) = 1

whenever either ρ2 /≃ ρ∨1 or (k1 + k2 + 3)/2 − i1 − i2 /∈ {0, 1}.
If δ1 and δ2 are distinguished, then it follows from Proposition 2.8 that k1 ≡ k2

mod 2 and that ρ i is distinguished if and only if k i ≡ 1 mod 2, i = 1, 2. _erefore,
all the terms on the right-hand side of (3.1) cancel out in pairs except for the term
γ(1/2, ρ1 , ρ2 ,ψ) that occurs only if k1 ≡ k2 ≡ 1 mod 2. In addition, if this is the case,
then γ(1/2, ρ1 , ρ2 ,ψ) = 1 by Lemma 3.2. _e lemma follows.

We are now ready to prove [Ana08, Conjecture 5.1].

_eorem 3.6 Let π, τ ∈ Π both be distinguished. _en є( 1
2 , π, τ,ψ) = 1.

Proof If π ∈ Π is distinguished, then λ(π) is also distinguished and by deûnition
є( 1

2 , π, τ,ψ) = є( 1
2 , λ(π), λ(τ),ψ). By Lemma 2.4 and Proposition 2.9 it is enough to

show that:
● є(1/2, δ1 , δ2 ,ψ) = 1 for every distinguished δ1, δ2 ∈ Πsqr;
● є(1/2, δ1 , δσ

2 ×δ∨2 ,ψ) = 1 for every δ1, δ2 ∈ Πsqr with δ1 distinguished and e(δ2) ≥ 0;
● є(1/2, δσ

1 × δ∨1 , δσ
2 × δ∨2 ,ψ) = 1 for every δ1, δ2 ∈ Πsqr with e(δ i) ≥ 0, i = 1, 2.

_e ûrst equality follows from Lemma 3.5. _e last two equalities follow from
Lemma 3.4.

Let
Π< 1

2
= {δ1 × ⋅ ⋅ ⋅ × δk ∶ δ i ∈ Πsqr , ∣e(δ i)∣ < 1/2, i = 1, . . . , k} .
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_en Πu-gen ⊆ Π< 1
2
⊆ Πgen.

_eorem 3.7 Let π, τ ∈ Π both be distinguished. If π ∈ Π< 1
2
and τ ∈ Πtemp, then

γ(1/2, π, τ,ψ) = 1.

Proof If π ∈ Π< 1
2
and τ ∈ Πtemp, then it follows from Lemmas 2.3 and 2.4

that L(s, π, τ) is holomorphic at s = 1/2, from Lemmas 2.7(ii) and 3.1(ii) that
γ(1/2, π, τ,ψ) = є(1/2, π, τ,ψ) and from _eorem 3.6 that є(1/2, π, τ,ψ) = 1. _e
theorem follows.

Example 3.8 Let ρ0 ∈ Πu-cusp be such that ρσ
0 /≃ ρ∨0 and set ρ = ναρ0 for some

α ∈ R. Let π = ν−1/2ρ∨ × ν1/2ρσ and τ = ρ × (ρσ)∨. _en π and τ ∈ Πgen are both
distinguished. It follows as in the above proof that є(1/2, π, τ,ψ) = 1,

γ(1/2, π, τ,ψ) = lim
s→1/2

L(1 − s, π, τ)
L(s, π, τ) ,

and

L(s, π, τ) = L(s−1/2, ρ∨ , ρ)L( s−1/2, ρ∨ , (ρσ)∨)L(s+1/2, ρσ , ρ)L( s+1/2, ρσ , (ρσ)∨) .
By Lemma 2.3 we have that L(s − 1/2, ρ∨ , ρ) has a simple pole at s = 1/2, while

L( s − 1/2, ρ∨ , (ρσ)∨)L(s + 1/2, ρσ , ρ)L( s + 1/2, ρσ , (ρσ)∨) = L( s + 1/2, ρσ , (ρσ)∨)
is holomorphic at s = 1/2, and therefore

lim
s→1/2

L(1 − s, π, τ)
L(s, π, τ) = −1.

_is gives examples of distinguished π, τ ∈ Π such that γ(1/2, π, τ,ψ) = −1. Note that
if α = 0, then π ∈ Πgen and τ ∈ Πtemp, while if −1/2 < α < 0, then π, τ ∈ Π< 1

2
.

For an example where π, τ ∈ Πu-gen, let ρ ∈ Πcusp be such that ρσ ≃ ρ∨ and let
0 < α, β < 1/2 be such that α + β = 1/2. Set π = ναρ × ν−αρ and τ = νβρ∨ × ν−βρ∨ and
note that π, τ ∈ Πu-gen are both distinguished. Also,

L(s, π, τ) = L(s+α+ β, ρ, ρ∨)L(s+α− β, ρ, ρ∨)L(s−α+ β, ρ, ρ∨)L(s−α− β, ρ, ρ∨).
_e ûrst three terms on the right hand-side are holomorphic at s = 1/2, while the last
one has a simple pole at s = 1/2. _erefore,

γ(1/2, π, τ,ψ) = lim
s→1/2

L(1 − s, π, τ)
L(s, π, τ) = −1.

In fact, one can even take τ ∈ Πu-sqr, for example if ρ is cuspidal and distinguished,
choose τ = St3(ρ) and π = ν−3/2ρ × ν3/2ρ.

4 A Local Relative Converse Theorem for Central Characters

_e purpose of this section is to show that if the gamma factor at 1/2 is trivial for twists
by all distinguished characters of E×, then the central character is distinguished. We
begin with some simple observations about additive andmultiplicative characters.
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Lemma 4.1 For every integer m, F+pm
E ⊊ F+pm−1

E if E is unramiûed over F,whereas

F + p2m+1
E = F + p2m

E ⊊ F + p2m−1
E

if E is ramiûed over F.

Proof Note that ϖk
F(F + pm

E ) = F + p
m+ f k
E where f is the degree of the residual ûeld

extension for E/F. _is shows that if the statement is true for somem0, then it is true
for all m.

If F+pE = F+oE , then for u ∈ o×E write u = x+ywith x ∈ F and y ∈ pE . _en clearly
x ∈ o×F and therefore u = x(1 + x−1 y) ∈ o×F(1 + pE). _is shows that o×E = o×F(1 + pE),
i.e., that E/F is ramiûed. _e case where E/F is unramiûed follows.
Assume now that E/F is ramiûed. _en o×E = o×F(1 + pE) ⊆ F + pE , and therefore

oE = pE∪o×E ⊆ F+pE . It follows that F+oE = F+pE . Assume thatϖ−1
E = x+ywith x ∈ F

and y ∈ oE . _en x−1 = (ϖ−1
E − y)−1 is a uniformizer of E that lies in F contradicting

the assumption that the extension ramiûes. It follows that F + oE ⊊ F + p−1
E , and the

lemma follows.

Recall that the conductor of a non-trivial character ξ of E is theminimal integer m
such that ξ is trivial on pm

E . For a ∈ E let ψa(x) = ψ(ax), x ∈ E, so that {ψa ∶ a ∈ E}
is the group of all characters of E.

Lemma 4.2 Let m be an integer.
(i) If E/F is unramiûed, then there exists a character of E trivial on F of conductor

m.
(ii) If E/F is ramiûed, then there exists a character of E trivial on F of conductor

2m. Furthermore, all non-trivial characters of E that are trivial on F have even
conductor.

Proof If E is ramiûed over F, then it follows from the identity F + p2m+1
E = F + p2m

E
of Lemma 4.1 that the conductor of any non-trivial character of E that is trivial on F
must be even.

Note that the set of non-trivial characters of E that are trivial on F is {ψa ∶ a ∈ F×}.
Since the conductor ofψa is c−v,where c is the conductor ofψ and v is the E-valuation
of a, and since the image of F× under the E-valuation is Z if E is unramiûed over F
and 2Z otherwise, the lemma follows.

If A is an abelian locally compact totally disconnected group, we denote by Â its
group of smooth characters.

Recall that the conductor of χ ∈ Ê× is zero if χ is unramiûed (i.e., trivial on o×E)
and is the minimal positive integer m such that χ∣1+pm

E
= 1 otherwise. For m ≥ 0, we

denote by ̂(E×/F×)(m) the subset of Ê× consisting of characters of E× trivial on F×,
and of conductor at most m.

Note that, in fact, ̂(E×/F×)(m) is the group of characters of the ûnite group
E×/F×(1 + pm

E ).
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Lemma 4.3 Let m ≥ 1 be an integer.

(i) If E/F is unramiûed, then ̂(E×/F×)(m− 1) ⊊ ̂(E×/F×)(m), and the natural map
from ̂(E×/F×)(m) to ̂((1 + pE)/(1 + pF + pm

E )) induced by restriction is surjec-
tive.

(ii) If E is ramiûed over F, then

̂(E×/F×)(2m − 1) ⊊ ̂(E×/F×)(2m) = ̂(E×/F×)(2m + 1),

and the natural map from ̂(E×/F×)(2m) to ̂((1 + pE)/(1 + pF + p2m
E )) induced

by restriction is surjective.

Proof Note that (1+pE)∩F×(1+pm
E ) = 1+pF+pm

E . It follows that (1+pE)/(1+pF+pm
E )

imbeds as a subgroup of the ûnite abelian group E×/F×(1+pm
E ), and the surjectivity of

the restriction map follows. Furthermore, the trivial character is the only unramiûed
character of E× that is trivial of F×,while the group F×(1+pE) is strictly contained in
E× if E/F is unramiûed (it consistsof elementsof even E-valuation). In theunramiûed
case, the inequality for m = 1 follows.

To complete the proof of the lemma it is now enough to show the following
● 1 + pF + pm

E ⊊ 1 + pF + pm−1
E if E is unramiûed over F and m > 1;

● 1 + pF + p2m+1
E = 1 + pF + p2m

E ⊊ 1 + pF + p2m−1
E if E is ramiûed over F.

If 1+pF+pm
E = 1+pF+pm−1

E , then it is easy to see that F+pm
E = F+pm−1

E . _e inequalities
are therefore immediate from Lemma 4.1. If E/F is ramiûed, the same lemma shows
that p2m

E ⊆ F + p2m+1
E . Write y ∈ p2m

E as y = a + z with a ∈ F and z ∈ p2m+1
E . _en

a = y − z ∈ F ∩ p2m
E ⊆ pF . _erefore, 1 + pF + p2m

E = 1 + pF + p2m+1
E . _e rest of the

lemma follows.

Corollary 4.4 Assume that ψ has conductor zero and let m ≥ 1 be an integer. For any
c ∈ (F ∩p−2m

E )∖p−2m+1
E , there exists a character χ of E×, trivial on F× and of conductor

2m such that ψ(cx) = χ(1 + x) for all x ∈ pm
E .

Proof Note that ψc is a character of E that is trivial on F and has conductor 2m. It
therefore restricts to a character of pF + pm

E that is trivial on pF + p2m
E . Also, x ↦ 1+ x

deûnes an isomorphism (pF +pm
E )/(pF +p2m

E ) ≃ (1+pF +pm
E )/(1+pF +p2m

E ). _ere is
therefore a unique character ξ of (1+pF+pm

E )/(1+pF+p2m
E ) such thatψ(cx) = ξ(1+x)

for x ∈ pF + pm
E . Since any character on a subgroup of a ûnite abelian group can be

extended to the group, it follows from Lemma 4.3 that there exists χ ∈ ̂(E×/F×)(2m)
such that ψ(cx) = χ(1 + x) for x ∈ pm

E . _is identity also implies that the conductor
of χ equals 2m.

Proposition 4.5 Let n ≥ 1 and π ∈ Π(n). If there is a constant γ such that
γ(1/2, π, χ,ψ) = γ for any distinguished character χ of E×, then γ = 1 and the central
character cπ of π is trivial on F×.

Proof _e proof is an adaptation of [JNS15, Corollary 2.7]. First, since

γ(1/2, π, χ,ψa) = cπ(a)γ(1/2, π, χ,ψ), a ∈ F× ,
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by Lemma 4.2 we can assume that ψ has conductor 0. According to [JS85, (2.7)] (to
whichwe refer directly rather than to [JNS15, Proposition 2.6] as the conductor of the
additive character is 1 in [ibid.], and 0 here as in [JS85]), there is a positive integer
m(π) such that for m ≥ m(π), any character χ′ of E× of conductor m ≥ m(π) and
any c ∈ p−m

E , which satisûes χ′((1 + x)) = ψ(cx) for all x ∈ p⌊(m+1)/2⌋
E , we also have

(4.1) γ(s, π, χ′ ,ψ) = є(s, π, χ′ ,ψ) = cπ(c)−1є(s, 1, χ′ ,ψ)n .

Let m be such that 2m ≥ m(π) and take any c ∈ p−m
F ∖p−m+1

F if E/F is ramiûed and
any c ∈ p−2m

F ∖p−2m+1
F otherwise. _en, c ∈ (F∩p−2m

E )∖p−2m+1
E , and byCorollary 4.4,

the characterψc restricted to pm
E is of the form x ↦ χ(1+x) for χ a character of E×/F×

of conductor 2m.
As є(1/2, 1F× , χ,ψ) = 1 for a distinguished character χ, we deduce from (4.1) with

s = 1/2 and χ′ = χ that cπ(c)−1 = γ. As any element of F× can be expressed as the quo-
tient of two elements of F-valuation at most d, for any ûxed d (take d = −⌊m(π)/2⌋
if E/F is ramiûed and d = −m(π) otherwise), we deduce that cπ ∣F× = 1F× and hence
that γ = 1.

5 The Relative Converse Theorem for Discrete Series

In this section we study the extent to which the property γ(1/2, π, τ,ψ) = 1, for
“enough” distinguished representations τ, implies that π is distinguished.
For a class Π● of representations in Π let Π●(n) = Π● ∩Π(n).
We will build our relative converse theorem for discrete series upon the following

cuspidal relative converse theoremof [HO15],which itself builds upon and reûnes the
results of [Ok97].

_eorem 5.1 ([HO15]) Let n > 2 and ρ ∈ Πcusp(n) have a central character that is
trivial on F×. _en ρ is distinguished if and only if γ(1/2, ρ, τ,ψ) = 1 for any distin-
guished τ ∈ Πu-gen(n − 2).

In fact, it follows fromProposition 4.5 that the assumption on the central character
can be replaced by the further requirement γ(1/2, ρ, τ,ψ) = 1 for any distinguished
character τ ∈ Π(1).

We extend_eorem 5.1 to representations in Πsqr, and furthermore, show that it is
enough to twist by distinguished tempered representations of Gm , m ≤ n − 2, except
for discrete series ofGn of the form St2(ρ)with ρ a cuspidal representation. For these
discrete series we only obtain a weaker result, which says that it is enough to twist by
tempered distinguished representations of Gm for m ≤ n. We focus on the case n > 3,
as for n = 2, 3, it is known by [Hak91] and [HO15] that the converse theorem with
twists by distinguished characters of E× holds for all generic unitary representations
(and in fact for all generic representations when n = 2 by [Mat09b]). When n > 3,
Example 5.6 shows that even for tempered representations, such a converse theorem
cannot hold, so we restrict to discrete series.
For the rest of this section, we assume n > 3. Let cπ denote the central character of

π ∈ Π. Our proof is based on three key observations thatwe ûrst formulate as lemmas.
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_e ûrst is [HO15, Proposition 3.0.3], togetherwith the observation that ⌊n/2⌋ ≤ n−2
for n ≥ 3.

Lemma 5.2 Let δ ∈ Πsqr(n) ∖ Πcusp(n) satisfy δσ ≃ δ∨ and cδ ∣F× = 1. If δ is not
distinguished, then there exists k ≤ n − 2 and a distinguished δ′ ∈ Πsqr(k) such that
γ(1/2, δ, δ′ ,ψ) = −1.

_e following observation will also prove itself useful.

Lemma 5.3 Let ρ ∈ Πu-cusp and k ∈ N. If

lim
s→k/2

γ( 1/2 + s, Stk(ρ), ρσ ,ψ)γ( 1/2 − s, Stk(ρ), ρ∨ ,ψ) = 1

then ρσ ≃ ρ∨, and therefore Stk(ρ)σ ≃ Stk(ρ)∨.

Proof Since, as meromorphic functions of s ∈ C we have

γ( 1/2 − s, Stk(ρ), ρ∨ ,ψ)γ( 1/2 + s, Stk(ρ∨), ρ,ψ−1) = 1,

it follows from the assumption that

(5.1) lim
s→ k+1

2

γ(s, Stk(ρ), ρσ ,ψ)
γ(s, Stk(ρ∨), ρ,ψ−1) = 1.

By Lemma 2.5, we have

γ( s, Stk(ρ), ρσ ,ψ) =
k
∏
i=1

γ( s + k + 1
2

− i , ρ, ρσ ,ψ) ,

γ( s, Stk(ρ∨), ρ,ψ−1) =
k
∏
i=1

γ( s + k + 1
2

− i , ρ∨ , ρ,ψ−1) .

It follows from Lemma 2.2 that γ(s+ k+1
2 − i , ρ, ρσ ,ψ) and γ(s+ k+1

2 − i , ρ∨ , ρ,ψ−1)
are both holomorphic and non-zero at s = k+1

2 for all i = 1, . . . , k − 1, and that
γ(s + 1−k

2 , ρ∨ , ρ,ψ−1) has a simple pole at s = k+1
2 . It therefore follows from (5.1) that

γ(s + 1−k
2 , ρ, ρσ ,ψ) must also have a pole at s = k+1

2 . By Lemma 2.2 we deduce that
ρσ ≃ ρ∨. Since Stk(ρ)σ ≃ Stk(ρσ) and Stk(ρ)∨ ≃ Stk(ρ∨), the lemma follows.

Let Γ≤m be the class of representations τ ∈ ⋃m
k=1 Πtemp(k) that are of one of the

following two forms:
● τ ∈ Πsqr is distinguished or
● τ = δσ × δ∨ where δ ∈ Πu-sqr.
It is a class of distinguished tempered representations.

_e key lemma allowing us to twist only by tempered representations is the fol-
lowing application of holomorphic continuation.

Lemma 5.4 Let π ∈ Π(n) and m ∈ N.
(i) If є(1/2, π, τ,ψ) = 1 for all τ ∈ Γ≤m , then є(1/2, π, τ,ψ) = 1 for every distinguished

τ ∈ ⋃m
k=1 Π(k).
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(ii) If π ∈ Πtemp and γ(1/2, π, τ,ψ) = 1 for all τ ∈ Γ≤m , then γ(1/2, π, τ,ψ) = 1 for
every distinguished τ ∈ ⋃m

k=1 Π< 1
2
(k).

Proof Let δ ∈ Πu-sqr(d),where 2d ≤ m and for s ∈ C let τs = νsδσ ×ν−sδ∨. It follows
from Lemma 2.4(ii) that for Re(s) ≥ 0 we have

є(1/2, π, τs ,ψ) = є(1/2 + s, π, δσ ,ψ)є(1/2 − s, π, δ∨ ,ψ).
_e right-hand side is an entire function of s ∈ C, and by assumption, it equals 1 on the
imaginary axis. By holomorphic continuation, it is therefore the constant function 1.

It follows that

є(1/2, π, δσ × δ∨ ,ψ) = 1, δ ∈ Πsqr , e(δ) ≥ 0.

Assume now in addition that π is tempered. _en by Lemmas 2.3 and 2.4 the function
γ(s, π, τ,ψ) is holomorphic and non-zero at s = 1/2 for all τ ∈ Π< 1

2
. Furthermore, for

∣Re(s)∣ < 1/2 we have
γ(1/2, π, τs ,ψ) = γ(1/2 + s, π, δσ ,ψ)γ(1/2 − s, π, δ∨ ,ψ),

where, by the same lemmas, each factor on the right-hand side is holomorphic for
∣Re(s)∣ < 1/2. By assumption, the right-hand side is identically 1 for all s in the imag-
inary axis and therefore, by holomorphic continuation, also whenever ∣Re(s)∣ < 1/2.
It follows that

γ(1/2, π, δσ × δ∨ ,ψ) = 1, δ ∈ Πsqr , 1/2 > e(δ) ≥ 0.

_e two conclusions of the lemma now follow from Lemma 2.4 and Proposition 2.9.

For discrete series we can now obtain a relative converse theorem with tempered
twists.

_eorem 5.5 Let δ = Stk(ρ) ∈ Πsqr(n). Suppose that k /= 2 and γ(1/2, δ, τ,ψ) = 1
for all τ ∈ Γ≤n−2; then δ is distinguished. If k = 2, and γ(1/2, δ, τ,ψ) = 1 for all τ ∈ Γ≤n ,
then δ is distinguished.

Proof Write δ = Stk(ρ) where ρ ∈ Πcusp. Notice that according to Proposition 4.5,
the central character of δ is trivial on F×, so, in fact, δ ∈ Πu-sqr(n), i.e., ρ ∈ Πu-cusp.
If k = 1, then the statement is that of _eorem 5.1. Assume that k ≥ 3. As n > 3, this
implies that if k = 3, then ρ is a representation of Gm for some m ≥ 2. In particular
νsρσ × ν−sρ∨ is a representation of Gn−(k−2)m for any s, and n − (k − 2)m ≤ n − 2.
Hence by assumption, we have

γ(1/2, δ, νsρσ × ν−sρ∨ ,ψ) = 1, s ∈ iR,

while, by Lemma 2.3,

γ(1/2, δ, νsρσ × ν−sρ∨ ,ψ) = γ(1/2 + s, δ, ρσ ,ψ)γ(1/2 − s, δ, ρ∨ ,ψ), s ∈ iR.

Since the right-hand side is a product of two meromorphic functions for s ∈ C, it
follows by meromorphic continuation that

γ(1/2 + s, δ, ρσ ,ψ)γ(1/2 − s, δ, ρ∨ ,ψ) = 1
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as meromorphic functions of s ∈ C and in particular that

lim
s→k/2

γ(1/2 + s, δ, ρσ ,ψ)γ(1/2 − s, δ, ρ∨ ,ψ) = 1.

It therefore follows from Lemma 5.3 that δσ ≃ δ∨. _e theorem now follows from
Lemma 5.2. _e case k = 2 is in fact the same, but in this case νsρσ × ν−sρ∨ is also a
representation of Gn , hence we are forced to allow twists by Γ≤n .

Example 5.6 For every n ≥ 4wenow exhibit anon-distinguished representation τ ∈
Πtemp(n) so that є(1/2, τ, π,ψ) = 1 for all distinguished π ∈ Π and γ(1/2, τ, π,ψ) = 1
for all distinguished π ∈ Π< 1

2
. Let

τ = St3(η) × η ×
n−4

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
1 × ⋅ ⋅ ⋅ × 1 .

_en τ is not distinguished; e.g., by Proposition 2.9 and for any π ∈ Π, we have

є(1/2, τ, π,ψ) = є(3/2, η, π,ψ)є(−1/2, η, π,ψ)є(1/2, η, π,ψ)2є(1/2, 1, π,ψ)n−4 .

If π is distinguished, it follows from Lemma 3.1(iii) that

є(3/2, η, π,ψ)є(−1/2, η, π,ψ) = 1,

from Lemma 3.1(iv) that є(1/2, η, π,ψ)2 = 1, and from _eorem 3.6 that

є(1/2, 1, π,ψ) = 1.

Since τ is tempered, it further follows from Lemmas 2.3 and 2.4 that L(s, τ, π) is
holomorphic at s = 1/2 whenever π ∈ Π< 1

2
, and therefore that γ(1/2, τ, π,ψ) = 1 by

Lemma 3.1(ii).

6 Triviality of Root Numbers-Archimedean and Global
Complements

Let K be eitherR orC, and in this section only, let Gn = GLn(K). By a representation
of Gn we mean an admissible, smooth Fréchet representation of moderate growth
(see [Wal92, 11.6.8]). Let Π(n) be the set of irreducible representations of Gn and
Π = ⋃∞n=1 Π(n). Fix a non-trivial character ψ and for π, τ ∈ Π, let L(s, π, τ) and
є(s, π, τ) be the archimedean L and є-factors deûned via Langlands parameterization
in terms of representations of theWeil group (see [Sha85]). _e γ-factor γ(s, π, τ,ψ)
is deûned by (2.1) where π∨ is the contragredient of π.

Recall that the subset Πsqr of essentially square integrable representation in Π is
contained in Π(1) if E = C and in Π(1)∪Π(2) if E = R. As in the p-adic case, let ν =
∣det∣ denote the absolute value of the determinant onGn for any n and for π1 , . . . , πk ∈
Π let π1 × ⋅ ⋅ ⋅×πk denote the associated normalized parabolic induction. For δ ∈ Πsqr
let e = e(δ) ∈ R be such that ν−eδ is unitary. By the Langlands classiûcation for any
π ∈ Π, there exist δ1 , . . . , δk ∈ Πsqr such that e(δ1) ≥ ⋅ ⋅ ⋅ ≥ e(δk) and π is the unique
irreducible quotient of the standardmodule

λ(π) = δ1 × ⋅ ⋅ ⋅ × δk .
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If furthermore, τ ∈ Π has associated standard module λ(τ) = δ′1 × ⋅ ⋅ ⋅ × δ′l with
δ′1 , . . . , δ′l ∈ Πsqr then it essentially follows from the deûnitions that

(6.1) L(s, π, τ) =
k
∏
i=1

l
∏
j=1

L(s, δ i , δ′j) and є(s, π, τ,ψ) =
k
∏
i=1

l
∏
j=1

є(s, δ i , δ′j ,ψ).

6.1 Triviality of the Archimedean Root Number for Distinguished Representations

Assume here that E = C, let zσ = z̄, z ∈ C be complex conjugation, and let ∣x + iy∣ =
x2 + y2, x , y ∈ R be the normalized absolute value. Let ψ(z) = e−2π(z−z̄). For a
character ξ ofC× we further denote by L(s, ξ), є(s, ξ,ψ) the local Tate L and є factors
and let

γ(s, ξ,ψ) = є(s, ξ,ψ)L(1 − s, ξ−1)
L(s, ξ) .

We recall the functional equation

(6.2) γ(s, ξ,ψ)γ(1 − s, ξ−1 ,ψ−1) = 1 = є(s, ξ,ψ)є(1 − s, ξ−1 ,ψ−1).
A representation π of Gn is distinguished if there exists a continuous linear form

0 /= ℓ ∈ HomGLn(R)(π, 1).
Every character of C× is of the form

ξu ,m(z) = ∣z∣u ( z
zσ )

m
, u ∈ C, 2m ∈ Z.

_e character ξu ,m is distinguished if and only if u = 0 and m ∈ Z.
Let ρk = ξ0,k , k ∈ Z parameterise all distinguished characters. It follows from the

explicit computations of Tate’s thesis that

(6.3) є(1/2, ρk ,ψ) = γ(1/2, ρk ,ψ) = 1, k ∈ Z.

As in Proposition 2.9, based on the Langlands classiûcation, the following is im-
mediate from [Kem15,_eorem 1.2].

Proposition 6.1 Let λ be a distinguished standard module of Gn . _en there exist
characters ξ1 , . . . , ξt , χ1 , . . . , χs ofC× with e(ξ1) ≥ ⋅ ⋅ ⋅ ≥ e(ξt) ≥ 0 and χ i distinguished
for i = 1, . . . , s such that

λ ≃ ξσ1 × ⋅ ⋅ ⋅ × ξσt × χ1 × ⋅ ⋅ ⋅ × χs × ξ−1
t × ⋅ ⋅ ⋅ × ξ−1

1 .

By the uniqueness of the Langlands data, we have the following corollary as an
immediate consequence (for generic representations, this is [Kem15,_eorem 1.4]).

Corollary 6.2 Let π ∈ Π be distinguished then πσ ≃ π∨.

We can now formulate the triviality of the local root number for distinguished
representations.

_eorem 6.3 Let π, τ ∈ Π be distinguished. _en є(1/2, π, τ,ψ) = 1.

Proof It follows from (6.1), (6.3), and Proposition 6.1 that it is enough to show that

є(1/2, ξσ ,ψ)є(1/2, ξ−1 ,ψ) = 1
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for all characters ξ of C×. Since ψσ = ψ−1, we have є(1/2, ξσ ,ψ) = є(1/2, ξ,ψ−1) and
the required identity follows from (6.2).

Let ΓC(s) = 2(2π)−sΓ(s) where Γ is the standard gamma function. It is a mero-
morphic function of C that is nowhere vanishing, has simple poles at s ∈ Z≤0, and is
holomorphic everywhere else. Recall further from Tate’s thesis that

L(s, ξu ,m) = ΓC(s + u + ∣m∣).

In particular, we have
● L(s, ρk) is holomorphic at s = 1/2 for all k ∈ Z;
● L(s, ξu ,m) has a (simple) pole at s = 1/2 if and only if u + 1/2 + ∣m∣ ∈ Z≤0.
As in the p-adic casewe consider the following classes of representations in Π. _e

tempered representations

Πtemp = {ξ1 × ⋅ ⋅ ⋅ × ξk ∶ ξ i ∈ Π(1), e(ξ i) = 0, i = 1, . . . , k},
Π< 1

2
= {ξ1 × ⋅ ⋅ ⋅ × ξk ∶ ξ i ∈ Π(1), ∣e(ξ i)∣ < 1/2, i = 1, . . . , k},

which is a set of generic irreducible representations containing all unitary, generic
ones. Based on the above, the following is obtained, as in _eorem 3.7. We omit the
proof.

_eorem 6.4 Let π, τ ∈ Π be distinguished representations. If π ∈ Π< 1
2
and τ ∈ Πtemp,

then γ(1/2, π, τ,ψ) = 1.

6.2 The Split Case

Let F be a local ûeld and E = F ⊕ F. Let (x , y)σ = (y, x), x , y ∈ F. Fix a non-trivial
character ψ0 of F and let ψ(x , y) = ψ0(x − y), x , y ∈ F. Set here, Gn = GLn(E) =
GLn(F) × GLn(F), and let Π(n) be the set of irreducible representations of Gn and
Π = ⋃∞n=1 Π(n). A representation π ∈ Π is of the form π = π1 ⊗ π2, where π i are irre-
ducible representations of GLn(F), i = 1, 2. We say that π is distinguished if π2 ≃ π∨1 .
For π = π1 ⊗ π2 , τ = τ1 ⊗ τ2 ∈ Π the local Rankin–Selberg є-factor is deûned by

є(s, π, τ,ψ) = є(s, π1 , τ1 ,ψ0)є(s, π2 , τ2 ,ψ−1
0 ).

As an immediate consequence of the standard functional equation for є-factors
(Lemma 3.1(iii)) we have the following lemma.

Lemma 6.5 Let π, τ ∈ Π be distinguished. _en є(s, π, τ,ψ) = 1.

6.3 Triviality of the Global Root Number for Distinguished Cuspidal Representa-
tions

Let E be a number ûeld and A = AE the ring of adeles of E. Fix a character ψ of A/E
and let VE be the set of places of E. For a pair of irreducible cuspidal automorphic
representations π ≃⊗′

v∈VE πv of GLn(A) and τ ≃⊗′
v∈VE τv of GLm(A), consider the

Rankin–Selberg L and є functions deûned as the meromorphic continuation of the
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products

L(s, π, τ) = ∏
v∈VE

L(s, πv , τv) and є(s, π, τ) = ∏
v∈VE

є(s, πv , τv ,ψv).

_e ûrst converges for Re(s) ≫ 1 and the second converges everywhere to an entire
function, independent of ψ. _ey satisfy the functional equation

L(s, π, τ) = є(s, π, τ)L(1 − s, π∨ , τ∨).
Assumenow that E/F is a quadratic extension ofnumberûelds and letGLn(AF)1 =

{g ∈ GLn(AF) ∶ ∣det g∣ = 1} (where ∣ ⋅ ∣ is the standard absolute value on AF). We say
that π as above is distinguished if there exists a cusp form ϕ in the space of π such that

∫
GLn(F)/GLn(AF)1

ϕ(h) dh /= 0.

For v ∈ VF let Ev = Fv ⊗F E and consider Fv as a subûeld of the algebra Ev via
a ↦ a ⊗ 1. _en A = ∏′

v∈VF Ev and GLn(A) = ∏′
v∈VF GLn(Ev). We can decompose

accordingly, ψ = ∏v∈VF ψv and π ≃ ⊗′
v∈VF πv . If v is inert in E and w ∈ VE is the

unique place above v, then Ev = Ew , GLn(Ev) = GLn(Ew) ψv = ψw and πv = πw . If
v splits in E and w1 , w2 ∈ VE lie above v, then Ev ≃ Ew1 ⊕ Ew2 ≃ Fv ⊕ Fv , GLn(Ev) ≃
GLn(Fv) ×GLn(Fv), ψv = ψw1 ⊗ ψw2 and πv ≃ πw1 ⊗ πw2 accordingly.
Finally, clearly E +AF is strictly contained in AE . Indeed, if σ is the Galois action

for E/F, then x−xσ ∈ E for all x ∈ E+AF . If a ∈ E∖F is such that a2 ∈ F andw0 ∈ VE
lies over a place of F that is split in E let x ∈ AE be such that xw0 = a and xw = 0 for
all w0 /= w ∈ VE . _en x − xσ /∈ E. Consequently, there exists a non-trivial character
of A/E that is trivial on AF .

_eorem 6.6 For a pair of integers n,m and irreducible cuspidal automorphic repre-
sentations π ≃⊗′

v∈VE πv of GLn(A) and τ ≃⊗′
v∈VE τv of GLm(A), if both π and τ are

distinguished, then є(1/2, π, τ) = 1.

Proof Evidently, πv and τv are distinguished for all v ∈ VF . Note that є(1/2, π, τ) =
∏v∈VF є(s, πv , τv ,ψv) for any choice of non-trivial characterψ ofA/E. We can choose
ψ to be trivial on AF , and then ψv is a non-trivial character of Ev that is trivial on
Fv for all v ∈ VF . _e theorem therefore follows from _eorems 3.6 and 6.3 and
Lemma 6.5.
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