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1. Introduction

This paper concerns the completions of partially ordered groups introduced
by Fuchs (1965a) and the author (to appear); the p.o. groups under considera-
tion are, generally, abelian tight Riesz groups, and so, throughout, the word
"group" will refer to an abelian group.

In section 3 we meet the cornerstone of the work, the central product theorem,
by means of which we can interpret the Cauchy completion of a tight Riesz group
in terms of the completion of any of its o-ideals; one particularly important case
arises when the group has a minimal o-ideal. Such a minimal o-ideal is o-simple,
and in section 6 the completion of an isolated o-simple tight Riesz group is shown
to be a tight Riesz real vector space. If the group has no minimal ideal, then we
can consider the possibility that every interval around the zero contains an o-
ideal (e.g., an infinite lexicographic product of fully ordered groups); in such a
case it is shown in section 4 that the completion is o-isomorphic to the projective
limit of the factor groups of the o-ideals. If this possibility does not hold, then we
have some o-ideal in which there are no bounded o-ideals, and a strong unit; so,
by virtue of the central product theorem, in section 5 we look at isolated tight
Riesz groups which have a strong unit and no bounded subgroups. These are
found to be o-isomorphic to groups of bounded real functions and, further, if the
associated order of the group is para-archimedean, then the completion is also
o-isomorphic to a group of bounded real functions, with domain the same as for
those functions representing the original group.

Several unanswered questions arise from the work: In section 5, is it possible
to characterise all positive elements in terms of the domain of the functions? Are
there any tight Riesz groups without pseudozeros having a bounded subgroup but
no bounded o-ideal? In section 6, are all o-simple abelian tight Riesz groups
isolated? Section 7 provides some examples, used both to illustrate theorems and
to contradict certain hypotheses which presented themselves.
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2. Preliminaries

For those terms and concepts in common use the reader is referred to Fuchs
(1963); the only terminological variations are:

(i) the additive notation (A, + ) is used;
(ii) the positive cone P = P(A) = {x eA | x > 0} excludes 0;
(iii) an abelian p.o. group is o-simple if it has no non-trivial o-ideals; or,

equivalently, if for any a,beA with a > 0 there is an integer n such that na > b;
(iv) "Completely integrally closed" becomes "para-archimedean", as in

Ribenboim (1969).
For Riesz groups, o-monomorphisms, denseness, pseudopositives and pseudo-

zeros (cf. pseudoidentities) the reader is referred to Fuchs (1965), whilst the projec-
tive (or inverse) limit is described in Schaefer (1966) and Graetzer (1968).

The tight Riesz (TR (2, 2)) property is: if a, b < d, e in (A, ^ ), then there
is a ceA such that a, b < c < d, e; and the TR(l, 2) property is: if b < d, e in
(A, ^ ) , then there is a ceA such that b < c < d, e. Tight Riesz groups and
77?(1, 2) groups are then directed p.o. groups with the respective properties, whilst
tight Riesz vector spaces are tight Riesz groups which are also real vector spaces,
and such that multiplication by a positive real preserves order.

LEMMA 2.1. The intersection of two non-zero o-ideals of a tight Riesz group
is also a non-zero o-ideal.

PROOF: Let(A, ^ ) be the tight Riesz group, and B and C the non-zero o-ideals.
By Fuchs((1965), proposition 5.4) B n C is an o-ideal; and taking b > 0 in B and
c> 0 in C we find, by the tight Riesz property, an aeA such that b, c> a > 0;
so, by convexity, aeB r\C, and so B n C is non-zero.

COROLLARY 2.2. Any minimal non-zero o-ideal of a tight Riesz group is
the unique minimum non-zero o-ideal of the group.

PROOF. Let M be a minimal non-zero o-ideal of (A, ^ ) , and C any other non-
zero o-ideal; then M n C = M, by the minimality of M, and s o M c C .

Throughout this paper any p.o. group will be considered as having its open
interval topology ^ , and any reference to topological properties or concepts of
a p.o. group will be to this topology.

For further properties of tight Riesz groups, particularly with respect to the
open interval tolopogy thereon, the reader is referred to Loy and Miller (1972);
we note especially that a tight Riesz group is a topological group. We shall call
the pre-ordered group (A, ^ ) , derived from (,4, ^ ) in Loy and Miller (1972), the
associated order of (A, ^ ) ; in effect, x^= 0 if and only i f u > x = > u > 0 . Note
that also that x > 0 => x =̂ 0, and x ^ y > 0 => x > 0. (A, ^=) is a p.o. group if
and only if (A, ^ ) has no pseudozeros; i.e. if only and if (A,^) is Hausdorff.

If (A, %) is a topological group we may form the Cauchy completion (A*, ^ )

https://doi.org/10.1017/S1446788700023545 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700023545


64 B. F. Sherman [3]

(cf. Sherman (to appear)) by taking A* to be the group of round Cauchy O-filters
on <%, and order A* by taking P(A*) = {^eA*\ P(A) e 3F\ . An O-filter & is a
non-empty set of non-empty open subsets of A, which is closed under intersec-
tion, and includes all open supersets of its elements; it is Cauchy if, for any open
set V containing 0, there is an FeJ5" such that F — F £ V; and round if for
any H e J5" there is a G e J^ an,d an open set U containing 0 such that G + U £ H.
For any a e A the neighbourhoods O-filter V (a) is the set of open sets contain-
ing a; the map 6: A->A*, ad = V (a) is called the natural embedding of A in
A*; it is an o-homomorphism, and, if (A, Si) has no pseudozeros, is an o-mono-
morphism. If (A, Si) is a tight Riesz group, then so is (̂ 4*, Si) and A6 is then a
dense subgroup of (A*, Si).

The Fuchs completion of a tight Riesz group (A, Si) is the same group, A*,
with the ordering given by: & > -f~{Q) if and only if for all F e J^, PU) O F
is non empty, (cf. Sherman (to appear), and Fuchs (1965a), page 193). Then the
Fuchs completion (A*, ^ ) in fact the associated order of the Cauchy comple-
tion (A*, Si) (Sherman (to appear), theorem 5). An approximation antilattice
(A, Si) is a tight Riesz group such that for any a,b and ueA, where u > 0, there
is a c e A such that

(i) c < a, b; and
(ii) if x < a, b in A, then x < c + u.

Fuchs (1965a) has shown that the Fuchs completion of an approximation anti-
lattice is lattice-ordered, whilst the author (to appear) has shown that approxi-
mation antilattices are the dense subgroups of tight Riesz groups with lattice-
ordered associated order.

The central product (Reilly, (1972)) of two p.o. (abelian) groups (A, Si) and
{B, ̂ ) amalgamating two o-isomorphic subgroups C s A and C\j/ £ B (where ij/
is the o-isomorphism) is the factor group (A x B)/N, where JV = {(c, —cij/) | c e C]
£ / 4 x B . Note that A is o-isomorphic to (A x {0}) + N, B o-isomorphic to
({0} x B) + N, and C o-isomorphic to (C x {0}) + N = ({0} x Cij/) + N.

3. Structure of the Completion

In this section the connections between the o-ideals of the p.o. group and
those of its completion are investigated. We shall suppose (B, ^ ) to be an o-ideal
of (A, ^ ) , and define the subset B' of A* to be {& e A* | f{b) <F < "T(c) for
some b, ceB}. B' is clearly an o-ideal of A*. Similarly, if (C, S:) is an o-ideal
of A*, then (C c\AQ)d~1, where 8 is the natural embedding, will be an o-ideal
of A; and (B' nAG^'1 = B, whilst [(C n A0)0~* ]' = C.

To distinguish between A and BI shall use (a, b)A = {xeA\a<x<b}, and
(a, b)B = {xeB\a < x <b}; "P'A{a) will denote the neighbourhoods O-filter of a
in A*, whilst ^B(a) will be that in B*.

LEMMA 3.1. (B', Si) is a o-isomorphic to (B*, Si).
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PROOF: The required o-isomorphism is </>, where, for any !F e B', J ^ = {G | G
= F n B for some F e J^}; that J ^ e B* follows from the corresponding prop-
erties of !F, except that we need the fact that J^eB ' to show that each Ge J5"^
is non-empty. Moreover, ^<f> + &<f> = (J5" + ^)0 follows readily from the defi-
nition of addition of O-filters; whilst the fact that P(A) C\B = P{B) shows that
&4> > yB(0) if and only if & > ^ ( 0 ) . 0"1 is given by: if ^ e J1*, then <&$-*
is the 0-filter with {(a, b)A \ a, b e B and (a, b)B e %} as a base. That &</> ~~x is both
round and Cauchy follows from those properties of <$; whilst tFcfxj)'1 = !F, and
^~1(f} = ^ are easily verified.

In fact rA(b)§ = -rB{b) for each beB.

LEMMA 3.2 {A*IB', ̂ ) . is o-isomorphic to (A/B,^).

PROOF: The required o-isomorphism is p: A/B-*-A*lB', where (x + B)p
= f"x(x) + B'. Clearly p is a one to one o-isomorphism. — is also onto; for if
take & + B'eA*/B', then we can take W > -fA{o) in B', so that J5" + We^
+ B'; as A6 is dense in A*, we can find x e /I such that ^ + W > VA(x) > 3F;
and hence f / x ) 6 J r + £'; i.e. ^ ( x ) + B' = & + B'.

This indicates a marked similarity in the structures of A and /!*; in fact
we find

THEOREM 3.3 (Central Product Theorem) If(B, ^ ) is an o-ideal of (A, ^ ) ,
an abelian tight Riesz group without pseudozeros, then the completion (A*, ^ )
is o-isomorphic to the central product of (A, 2i) and (B*, ̂ ) (the completion
of(B, ;>)) amalgamating B and its image B^i, where \fj is the natural embedding
of B in B*.

PROOF: Let D be the group {(b,'fB(- b))\beB}; then the central product
is (A x B*)/D. Then the required o-isomorphism is T: (A x B*)/D-+A*, where
((a,&) + D)x = -VA(d) + ^<f>~1, where 4>: B' -• B* is the same as in Lemma 3.1.

Then x is well defined; for, given be A and J^eB* such that (b, &) +
D = (at9) + D, we know that (b - a, & - f )eZ). So JT - gr = iTB(a - 6),
thus giving J ^ " 1 - ^(/T1 = ^ ( a - o) = ^ ( a ) - ^ ( b ) , and hence "TA(a) +
^ " i = T̂ "A(b) + J^"^"1. Further, as in lemma 3.2, we can represent any
&eA* in the form -f~A(x) + Jff, where x e i and ^ feB ' , and hence also in
the form ~^~A(x) + ^4>~l, where ^eB*. One-to-one-ness follows by a reversal
of the above argument, and so T is an isomorphism.

If a > 0 and 3? > -TB(0), then ^ ( a ) + &<j>-x > ^ ( 0 ) ; whilst if J^ > ^ ( 0 )
in A*, we can find T T e B ' such that J5" > W > -TA(G) (as (^*, ^ ) is a tight Riesz
group) and hence & > £F —if > i^A(0). Thus there is an as A such that &
> ^A(a) >& -W> VM\ s o J f - yA(d) e B', and so <& = (&- -rA(a)) <t>
> ^BCO), a > 0, and J^ = ((a,^) + D)x. Thus T is the required o-isomorphism.
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4. The Completion as a Projective Limit

Under certain circumstances the completion of a tight Riesz group can be
considered as a projective limit of the factor groups of its o-ideals.

The condition we require is
(*) (A, 2i) is a tight Riesz group, without pseudozeros, such that every open

interval around 0 contains some non-zero o-ideal.
A fully ordered group with no minimal non-zero o-ideal is an example of

such a group. Note that if (̂ 4, 2;) satisfies (*) ,then so does its completion (A*,^).
Let (38, 2:) and (f#, 2;) be the sets of non-zero o-ideals of A and A* respect-

ively, each partially ordered by reverse inclusion. From lemma 2.1, we have that,
if B and De&, then so does B n D; and by reverse inclusion we have B n D^ B,
D. Hence (3$, ̂ ) is directed, and, similarly, so is (#, 2t).

We recall that if/: 3d -»<€, Bip = B' is a bijection (cf. §3); it is clear that \ji
preserves the partial orders. This means that the projective limit (Ap, 2;), taken
over (38, 2i) as an index set, of the factor groups of the non-zero o-ideals of
(A,^.), is o-isomorphic to the equivalent limit ((A*)p, 2;) for 04*, 2:); for
the factor groups are o-isomorphic (lemma 3.2.), and the index sets interchange-
able.

LEMMA 4.1. / / (A, 2:) satisfies (*), then the map a: A^AP, aa =
(•••,a + £,•••) is an o-monomorphism.

PROOF: This will be the case as long as 0 is the only element belonging to
every non-zero o-ideal. Take any non-zero g e A; then there is an h > 0 in A
such that either h ^ g or g ^ — h, because there are no pesudozeros. Let B be
a non-zero o-ideal within (— h,h) — B exists by (*) — and then g$B.

THEOREM 4.2. If (A, 2:) satisfies (*), then (Ap, 2;) is o-isomorphic to (A*, 2:).

PROOF: From the discussion preceding lemma 4.1, it is clear that we need
only produce an o-isomorphism from (A*, 2t) to ((A*)p, 2;); and, by applying
the lemma to (A*, 2^), we see that a*: A* ^>(A*)P is an o-monomorphism. So
we need only show that a* is epimorphic.

Takef = (•••,3FC + C, • • •) e (A*)F; form g = {Fe U* | & c + C s F for some
C e ^ } . Then g is a round Cauchy O-filter on (A*, 2t); for:

(i) g is a filter; if N , G e g , then there are C,D e<€ such that &c + C S H,

a n d ^ D +Dz G; but 3FC + C = &CnO+C> a n d ^D + D = ^CnD + D, by

the definition of the projective limit. Thus fCnD + C n D c H n G .

(ii) g is Cauchy; for, given an open set V around ^"(0), we have an o-ideal

C within V . Then {&c + C) - (<FC + c ) = c •
(iii) g is round; for, given F e g , we have an o-ideal C such that ($FC + C)

+ c = J r
c + c s r .

But A* is complete, so that g must converge to a limit J e A * ; so g =

https://doi.org/10.1017/S1446788700023545 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700023545


[6] Abelian tight Riesz groups 67

Hence, for each C e «", &c + Ce g , and so WB^C + C; i.e., J ^ + C = J*" + C
for each C e « , Thus f = (••• , J^ + C,---) =

5. Real Valued Functions

Consider a group of bounded real functions on a set &~, including the func-
tion e(T) = 1 for all T e J . If 5 has a partial order ^ satisfiying the condition:

if/ ^ 0 in B, then /(T) S 0 for all T e J ,
then ^ will be an oc-order if the following holds:

(a) if/(T) > 0 for all TeJT, then/> 0 in B.
If instead we have the condition

0?) if/(T) ^ e > 0 for all Te-T, then/> 0;
then we call Si a border. B will then be called an a-ordered or ^-ordered func-
tion group respectively. Note that an a-ordered function group is also a /?-order-
ed one, but the converse need not hold.

THEOREM 5.1. An isolated abelian p.o. group (A, ;>) is o-isomorphic to an
a-ordered (or ^-ordered) function group if and only if it is archimedean, has
a strong unit, and no pseudozeros.

Suppose (A, ^ ) is abelian, isolated, and archimedean, with strong unit and
no pseudozeros. The proof utilises a theorem of Lorenzen (1939), and Dieudonne
((1941) p. 135), and proceeds as in Ribenboim ((1959), p. 75), with a minor varia-
tion to encompass the extra conditions. Basically, our index set y is the set of
full orderes T of A which contain our positive cone P; in the theorem of Lorenzen
and Dieudonne it is shown that f) {TeJ"} = P. For each Te^~ we form the
o-ideal CT (in the ordering T gives A) maximal with respect to not containing e;
we then consider AT, the factor group of A over CT. AT is fully ordered and
archimedian, and hence o-isomorphic to a subgroup of the reals; in fact, as e + CT

must always be positive in AT, we can arrange that its image in R is 1 by multi-
plying every image by a suitable factor. If we call the ensuing o-isomorphism
cj)T and the image of AT in R under this RT , then the o-isomorphism we seek
i s 4 > : A ^ > n ( R T \ T e F ) , a<j> = (••• , ( a + CT)(j>T, • • • ) .

At this point we depart from Ribenboim's proof. To show that <£ is an iso-
morphism, we need only show that it is one-to-one, as it is clearly a homomorph-
ism. Suppose g<f> = (• ••,(),•••) for some geA; then for each T e J and each
integer n, either positive or negative, we have ng e CT. As T is a full order on A,
and e + CT > CT, we must have e-ng e T for each T; i.e., e-ng e f| (T e^~) = P.
Hence e > ng for each integer n; i.e., {ng | n an integer} is a subgroup bounded
by e, and so is the zero subgroup; thus g = 0. The mapping (f> becomes an
o-isomorphism if we use the induced ordering; thus it remains to show only that
this obeys the conditions given — if a > 0 in A, then a + CT ^ CT for each
T e 9~, and so (a + CT)<j>T ^ 0 for each T e J ; whilst if (a + CT)4>T ^ e > 0 for
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each T e / , then (a + CT)4>T > 0 and so a + CT > CT for each T; thus aeT
for each T e J , and hence ae f]{Te^} = P, i.e., a > 0 . So the function
group is /^-ordered, and a-ordered.

The converse follows easily.
It will be noted that the positive cone for the group of bounded real functions

is not defined, but merely restricted, by the conditions given. It is found to be
helpful if we require of our positive cone that any element which dominates point-
wise a positive element should itself be positive; i.e., if/(T) ^ g(T) for all T e J
and g > 0, then / > 0.

An ordering with this property shall be called proper.

LEMMA 5.2. If (A, ^ ) is an a- or ^-ordered function group, then the order
is proper if only and if the associated order W is para-archimedean.

PROOF: First, suppose the order is proper; then clearly if/(T) ^ 0 for each
Te&~, then /> 0; and if/(T) < 0 for some T e J , then there is some positive
integer n such that nf(T) < - 1; thus nf(T) + e(T) < 0, so that nf+e^0,
and hence nf ^ 0, and thus / =£ 0. Therefore the associated ordering is given
by: / ^ 0 whenever / (T) ^ 0 for each T e J ; this is clearly para-archimedean.

Secondly, suppose the associated ordering is para-archimedean; take any
fe A such that/(T) ^ 0 for each T e J . Then nf(T) ^ 0 > - 1 for each Te^T
and each positive integer n, and so nf > — e for each n; thus nf^ — e for each n,
and therefore/> 0. Hence if/(T) ^ g(T) for all T e J , and g> 0, t h e n / > g
> 0 and so / > 0.

Note that if a /f-order ^ is proper then condition (/?) becomes redundant,
because A is isolated and e> 0.

THEOREM 5.3. / / an abelian tight Riesz group (A, ^ ) is o-isomorphic to
a properly ^-ordered function group on a set OF', then so is its completion (A*, ^ ) .
/ / <t> and \j/ are the respective o-isomorphisms, 9 the natural embedding of A
into A*, and i the inclusion map between the function groups, then \j/9 = i<t>.

PROOF : For any T e F and any fe A define f(T) to be the value taken at T
by/0 in the function group; then for any &eA* we form the real number ^(T)
as follows: —

As (A, ^ ) is a tight Riesz group, for any positive integer n we can find tneA
such that 0 < 2ntn < e, where e(T) = 1 for all Te^"(cf. Loy and Miller (1972),
page 236). We then define hneA recursively 6y the rule 0 < hn < tn, hn_l.

Next, for each positive n, we take FMeJr such that Fn-Fnc (-hn,hn)
(as & is Cauchy), and then choose/neFn n f , . , n--- C\FX. Now {/n(T)} is a
real Cauchy sequence, as 0 ^ hn(T) ^ l/2n for each n, and so for any e > 0 we
can take an integer p > 1/e, so that if m, n 2: p, then fm,fn e Fp, and hence — 2/ip
<fm - / „ < 2hp; thus \fm(T) -UT) | ^ 2hp(T) < s.
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Then #-(T) is the limit of {/n(T)} .
By standard methods it can be shown that J^T) is well defined, that ( -

= - (Sf(T)) and 3?(T) + 8?(T) = (& + &)(T) for each SF^eA*, and, finally,
that -t~(a)(T) = a(T) for each a e A.

We then form \\i\ A* ->B, where B is a group of real functions of &~, by the
rule ^ij/(T) = &(T) for all T e J , for each ^eA*. We give the image the
induced order.

If J5" > 1 (̂0) in A*, then we may choose our sequence {/„} entirely within P,
the positive cone of A, as Pe^" ; so/n(T) g 0 for each n and each T, and hence
•F(T) ^ 0 for each T e J .

Suppose we have TT e,4* such that W(T) ^ 0 for all Te JT. Take 3F > TT
in ,4*; as /I is a tight Riesz group, we have u,veA such that J^ > i^{u) > ^~(v)
> -W. Hence ^(v)(T) ^ W(T) ^ 0 for each T e <?", by the preceding paragraph;
and so v(T) ^ 0 for each T, from which v "^ 0 follows as the representation of A
is proper. Hence, as u > v, we have u > 0, and so 8F > ^(O). Therefore "W ̂  1 (̂0)
in /4*.

Finally, i// is an o-isomorphism; for if we have Wij/ = 0, i.e. W(T) = 0 for
all T e J , then both iT > -T(0) and - W > -)T(O), that iT = oT(0). Hence
(A*, ^ ) is o-isomorphic to a properly /J-ordered function group on &; and

= acf> for each fl e A.
Next we define AT = {f(T)\feA} and y4*r = {S?{T)\&eA*} for each

. Then we have

LEMMA 5.4. / / AT is not a dense subgroup of the reals, then there is an
/ > 0 in A such that f(T) = 0.

PROOF: hn of theorem 5.3, for large enough n, must have hn(T) = 0.

LEMMA 5.5. / / there is anf>0 in A with f(T) = 0, then AT = A*T.

PROOF: Take S?eA*; then there is an Fe& such that F - F s ( - / , / ) . If
geF, then F -g z ( - / , / ) , so that F c (g -f,g+f)- thus (g -f,g
i.e., -T{g _ / ) < # • < r{g + / ) . Thus

g(T) = g(T) -f(T) g P(T) ^ g(T) +f(T) = g(T),

and so g(T) = &(T).

6. o-simple Tight Riesz Groups

In this section we will suppose (A, ^ ) to be an isolated o-simple abelian
tight Riesz group without pseudozeros; the aim of the section will be to extend a
result of Fuchs'((1965a), p. 198) to show that the completion (,4*, ^ ) is in fact an
o-simple tight Riesz vector space. Fuchs' proof may be easily adapted to obtain
the result when (A, ^ ) is divisible; hence it is necessary only to show that (A*,^)
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is divisible, and Fuchs' Result, so modified, can then be applied to (A*, 2;), to
obtain the result; for (A**, 2g) is o-isomorphic to (A*, 2;) (Sherman (to appear)
Thm. 2).

LEMMA 6.1. For any u <v in A there is an re A such that 2re(u,v).

PROOF: AS (A, 2:) is directed we can find z > u, 0 in A, and so 2z > u; and,
as (A, 2;) is o-simple and y — u > 0, there is an integer m such that 2m(v — u)
> 2z — u. Hence u + 2m(v - u) > 2z > u.

Put y = M + 2"~1(v — u); we shall be using induction on n, from m + 1 to 1.
Thus we suppose that u + 2" (v — u) > 2vv > u for some we A. Hence

2y - u = u + 2(y - u) = u + 2"(v -u)>2w>u,

and y > u. Thus we have y — w, w > u — y + w, u — w. As (A, ^ ) is a tight
Riesz group, there is an seA such that y — w, w > s > u — y + w, u — w; so
y — w, w > s, u — s; hence there is a t e A such that y — w, w > t > s, u — s. So

y = y — w + w>t + t>u— s + s = u

i.e., u + 2"~1(v-u)>2t>u.

LEMMA 6.2. For any u <v in A and any integer m there is a we A such
that u < 2mw <v.

P R O O F . (A, 2 : ) i s d e n s e , s o w e c a n find u0, u1,-- ,umeA s u c h t h a t u = u0

<ul<u2---<um = v. S o b y L e m m a 6.1 w e c a n find z 0 , zlt ••• ,zm_t eA s u c h

t h a t u0 < 2z0 <ut < 2 z t < ••• < 2 z m _ 1 < um. A s {A, ^ ) i s i s o l a t e d , z 0 < zx < •••

••• < zn_1; b y i n d u c t i o n , t h e n , w e find w 0 < 2 z 0 < 4f0 < ••• < 2mw < ••• < 2 z m _ t

< um. S o 2 m w e ( M , U) .

LEMMA 6.3 For any v > u > 0 in A there is an integer m and a ye A such
that both 2my and (2m + l)y e (u, v).

PROOF. Loy and Miller ((1972), page 236) showed that, for any x > 0 in A
and any integer n, there is a t > 0 in A such that x > nt. Take we A such that
w > 0 and v — u>2w; sou<u + w<u + 2w<v.

As (A, ^ ) is o-simple, there is an integer m such that 2mw > u + w; by
lemma 6.2 we can find ye A such that u + w > 2my > u > o; so 2mw > 2my > 0.
As {A, 2:) is isolated, then w > y > 0. Hence z; > u + 2w> > 2my + j > u . Thus
u > (2m + \)y >2my>u.

LEMMA 6.4. For any u < v in A an any integer n there is a zeA such that
nz e («, v).

PROOF: If M > 0, take p an integer such that 2" > n, and let w be such that
M < w < v. By lemma 6.2, we find y,teA such that 2" ye(u,w) and 2"te(w,v);
so 0< y < t, by the isolation of (A, 2;), and so, by lemma 6.3 we have seA
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and an integer m such that 2ms and (2m + l)se(y, t) . So s > 0 , and 2m + ps,
(2m + p + l)s, ••• , (2m + p + 2")S€(M,I ; ) ; but there are more that n consecutive integers
from 2m + p to 2m + p + 2P, and so one of them must be of the form nk, where k
is an integer. Putting z = ks, then, we have nz = nkse(u, v).

If u > 0, then choose x,ye A such that 0 < x < y — u and >> < w,0; thus
y — x < y and u — y + x < v — y. Hence (y — x, y) + (u — y + x, v — y) = (u, v),
as (A, ^ ) is a tight Riesz group (cf. Loy and Miller (1972), p. 228), whilst y < 0
and u — y + x > 0. Thus by the previous section we can find s, t e A such
that ns e ( — y, x — y) and nt e (u — y + x, v — y); so n(t — s) £ (M, V).

THEOREM 6.5. The completion (A*, ^ ) is divisible.

PROOF: Let n be an integer; then for any round Cauchy O-filter !FeA* we
form the filter base {(s, t) \(ns,nt)e^}, and from this we generate an O-filter <3.
From Sherman (to appear) we know that for any (a,d)e^r there is a (b,c)e&r

such that a < b < c < d; so, by lemma 6.4 we can find s < t in A such that
a < ns < b < c< nt < d; and so (s,t)e&. It is then easily verified that GeA*,
and n<§ = &.

COROLLARY 1. (A*, ^ ) is an o-simple tight Riesz (real) vector space.

PROOF: It remains only to show that (A*, ^ ) is o-simple. Given !F > f (0)
in A*, and &eA*, we take f,g e A such that & > iT(J) > "T(O) and lT(g) > &;
as (A, ^ ) is o-simple, there is an integer n such that nf > g; so n J5" > IS.

Loy and Miller ((1972), p 236) and Reilly (1971) have shown that tight Riesz
groups with lattice ordered associated order are isolated, and hence so are any sub-
groups of them; thus, by theorem 6 of Sherman (to appear), which states that
approximation antilattices are dense subgroups of such groups, and so are iso-
lated, we can extend Fuchs' result to

COROLLARY 2. / / (A, S; ) is an o-simple approximation antilattice, then
(A*, ]> ), its Fuchs completion, is a real vector lattice.

7. Examples

EXAMPLE 7.1. Consider A = R2 with the positive cone P = {(x,y)\x > 0
and y > 0; or x = 0,y > 0 and yeQ], where Q is the set of rationals. Then
{(x, y) | x = 0, y £ Q} is the minimal non-zero o-ideal; we shall denote it by {0} x Q,
and its completion we can denote by R. Then theorem 3.3 gives us

A* s (R x R) x R/{(0,q,-q)\qeQ}

Note that, in reference to theorem 5.3, A is a jS-ordered function group on a
set 3~ of two elements, but not a proper one; and A* is not o-isomorphic to any
function group on &~.

EXAMPLE 7.2. Consider as A the group of functions from N, the set of positive
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integers to Z, the group pf integers, lexicographically ordered; i .e. , / > 0 in A if
there is an n e N such that /(n) > 0 and f(m) = 0 for all m < n in N. As each Z
is a Riesz group, and the index set has no last element, A must be a tight Riesz
group. Further, it is clear that each interval of the form ( —/,/) around 0 contains
the o-ideal Bn = {geA\g(m) = 0 for all m ^ n}, where / (n) is the first non-
zero component of/. Thus theorem 4.1 applies to A.

Clearly all the o-ideals are of the form of the one given above, and so their
factor groups are all of the form An = {g + Bn \g(m) = 0 for all m > n}. Thus
from theorem 4.1 it can readily be seen that A* will be o-isomorphic to A.

EXAMPLE 7.3. The following example is of an a-ordered function group,
whose completion, considered as a function group on the same set, is not a-ordered.
Thus, in theorem 5.3 "/^-ordered" may not be replaced by "a-ordered".

Consider A to be that subgroup of C(0,1) consisting of all those functions
whose graphs are made up of a finite number of straight line segments; we put
/ > 0 in A iff(x) > 0 for all x e (0,1). In view of the usual methods of approximat-
ing uniformly continuous functions with functions of this kind, it is clear that A* is
o-isomorphic to the group of uniformly continuous functions on (0,1).

It is easily verified that (A, ^ ) is a tight Riesz group without pseudozeros,
and it is clearly also an a-ordered function group on (0,1).

If (A*, jS ) is also to be an a-ordered function group on (0,1), then we would
have to have g: (0,1) -»R, x -> x2 a positive function; as (A, ^ ) is a tight Riesz
group, we should then be able to find an / > 0 in A such that g > / ; but this
would mean that the first segment of/ would have to be along the 0-line, con-
tradicting / > 0. Hence (A*, ^ ) cannot be a-ordered.

EXAMPLE 7.4. In section 6 it is natural to wonder whether any of the con-
ditions may be relaxed. It may be true that any o-simple abelian tight Riesz group
without pseudozeros is isolated; I have neither proven nor disproven it. However,
the following two examples are of an o-simple abelian TR(l, 2) group without
pseudozeros which is not isolated, and an abelian tight Riesz group without
pseudozeros which is not o-simple and also not isolated.

Consider A to be R2 again, with positive cone P = {(x,y)\x > 0,y > 0, and
for each positive integer n for which x + y ^ 2n, we have x — y > 2n — 2}; this
is the set in the first quadrant of the plane bounded by, but not including, the
y-axis and a sawtooth curve starting from (0,0), going straight to (1,1), then to
(2,0), and back up to (3,1), etc.

In this case (A, 2; ) is not isolated, but is an o-simple TR(1,2) group without
pseudozeros. In fact A* is o-isomorphic to A, so that the conclusion of theorem 6.5
corollary 1 does not hold.

EXAMPLE 7.5. This is a non-isolated tight Riesz group, and is very similar to
example 7.1. Consider R2 with a positive cone P = {(x,_y)lx > 0,y > 0; or
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x = 0, and y = m/2", where m and n are positive integers}. Clearly (0,1) > (0,0)
but (0, i) is not, so that A is not isolated; and A can be shown to be a tight Riesz
group without pseudozeros.

EXAMPLE 7.6. Consider the group A of bounded rational-valued functions on
^" = [0,1], with the order /> 0 if /(T)^0 for all Te5", as long a s / ( r ) = 0for
only finitely many T. Then A is a tight Riesz group without pseudozeros, and by
theorem 5.3 and lemma 5.5, A* is o-isomorphic to A.

EXAMPLE 7.7. It is possible for a p.o. group to have a bounded subgroup, but
no bounded o-ideal and no pseudozeros, as the following example shows:

Consider A to be the direct product of Z with the group B of bounded real
functions on R, and order it by putting (/, n) > (0,0) if (i) if n = 0, then/(x) ^ 0
for all xeR, where f(x) = 0 for only finitely many x; or (ii) if n ^ 0, then
f{x) > Oforallxefl.

Clearly {(0,n)\neZ} is a bounded subgroup, but, as any o-ideal contains a
positive element, there is no bounded o-ideal. (A, ^ ) has no pseudozeros; the
only possible pseudozeros are those elements of the form (0, n) where n ^ 0; but
if we take (/, 0) where/(x) > 0 for all x except \, and/(i) = 0, then (/, 0) > (0,0),
but (/, 0) > (0,«). Further, (A, ^ ) is a 77?(1,2) group but not a tight Riesz group.
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