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1. Introduction

Lie algebras and Lie superalgebras play important roles in many mathematical and phys-
ical subjects, e.g. differential geometry, Yang–Baxter equations, etc.

It is well known that a characterization of these algebras can be given in terms of the
root system and Cartan matrix. However, there also exist other ways of constructing
them as follows. First, Benkart and Zelmanov [3] and Benkart and Elduque [2] extended
the classical Tits method (e.g. [17]) for constructions of exceptional Lie superalgebras
D(2, 1; α), G(3) and F (4) in the Kac classification [7]. On the other hand, it is known (see
[8,11,12,20] and references cited therein) that both Lie algebras and Lie superalgebras
can also be constructed from so-called (ε, δ) Jordan triple systems as well as from more
general U(ε, δ) Freudenthal–Kantor triple systems, where ε and δ assume values of +1
and −1. In particular, all finite-dimensional simple Lie algebras have been constructed
in this way (see [1,9]).

In this paper, we will show that we can also construct, in a very natural way, exceptional
Lie superalgebras D(2, 1; α), G(3) and F (4) from a restricted class of U(−1,−1)-balanced
Freudenthal–Kantor triple systems (hereafter abbreviated as U(−1,−1)-BFKTSs). We
note that the results of [1,9] mentioned above are, in contrast, based essentially upon
U(1, 1)-BFKTSs, which are analogues of U(−1,−1)-BFKTSs.
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Our paper is organized as follows. We introduce the notion of the U(−1,−1)-BFKTS
in § 2 and give constructions of exceptional Lie superalgebras D(2, 1; α), G(3) and F (4)
in § 3.

2. U(−1, −1)-balanced Freudenthal–Kantor triple systems

Let V be a finite-dimensional vector space with a symmetric bilinear non-degenerate
form 〈·|·〉 over the field F of characteristic not 2. Suppose that the triple product

V ⊗ V ⊗ V → V

denoted by the juxtaposition xyz for x, y, z ∈ V satisfies

xxy = 〈x|x〉y = xyx, (2.1 a)

uv(xyz) = (uvx)yz − x(vuy)z + xy(uvz). (2.1 b)

We say that the triple system is a U(−1,−1)-BFKTS. Note that the present definition
for 〈·|·〉 differs by a factor of 2 from the one given in [11].

The U(−1,−1)-BFKTS is intimately related to the orthogonal triple system introduced
in [13] as follows. In the same vector space V , we introduce the second triple product by

x · y · z
.= xyz − 〈x|y〉z, (2.2)

which will then satisfy

x · y · z = −y · x · z, (2.3 a)

x · y · z + x · z · y = −2〈y|z〉x + 〈x|z〉y + 〈x|y〉z, (2.3 b)

u · v · (x · y · z) = (u · v · x) · y · z + x · (u · v · y) · z + x · y · (u · v · z). (2.3 c)

Conversely, Equations (2.3) with Equation (2.2) imply Equations (2.1). The left multi-
plication operator �(x, y) defined by

�(x, y)z .= x · y · z = xyz − 〈x|y〉z (2.4)

is then a derivation of x · y · z with Lie relation

�(x, y) = −�(y, x), (2.5 a)

[�(u, v), �(x, y)] = �(�(u, v)x, y) + �(x, �(u, v)y). (2.5 b)

As we will see shortly, this will play a significant role in our construction of Lie super-
algebras D(2, 1; α), G(3) and F (4).

The reason for considering the U(−1,−1)-BFKTS is as follows. We first set

W = V ⊕ V (2.6)

and define a new triple product in W by[(
x1

x2

)
,

(
y1

y2

)
,

(
z1

z2

)]
=

(
w1

w2

)
∈ W, (2.7 a)
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where

w1 = x1y2z1 + y1x2z1 − 2〈x1|y1〉z2, (2.7 b)

w2 = 2〈x2|y2〉z1 − y2x1z2 − x2y1z2, (2.7 c)

for xj , yj , zj ∈ V (j = 1, 2) with

X =

(
x1

x2

)
∈ W,

etc. As a special case of a more general U(ε, δ) Freudenthal–Kantor supertriple system
(see, for example, [8,11,20]), we have

[X, Y, Z] = [Y, X, Z], (2.8 a)

[X, Y, Z] + [Y, Z, X] + [Z, X, Y ] = 0, (2.8 b)

[U, V, [X, Y, Z]] = [[U, V, X], Y, Z] + [X, [U, V, Y ], Z] + [X, Y, [U, V, Z]] (2.8 c)

for X, Y, Z, U, V ∈ W . We can also readily verify the validity of Equations (2.8) directly
from Equations (2.1) and (2.7). In other words, W is an anti-Lie triple system [5] or a
special Lie supertriple system in which the even subspace W0̄ of W is set to be null with
W = W1̄ consisting only of the odd parity space. In any case, we can now construct a Lie
superalgebra from W canonically as follows. First we introduce the left multiplication
operator as

L(X, Y )Z .= [X, Y, Z], (2.9)

which satisfies Lie algebra relations

L(X, Y ) = L(Y, X), (2.10 a)

[L(U, V ), L(X, Y )] = L(L(U, V )X, Y ) + L(X, L(U, V )Y ). (2.10 b)

We now introduce a superspace L by

L = L0̄ ⊕ L1̄, (2.11 a)

L0̄
.= L(W, W ), (2.11 b)

L1̄
.= W = V ⊕ V, (2.11 c)

and define Lie supercommutators in L by Equation (2.10 b) and

[X, Y ] .= L(X, Y ), (2.12 a)

[L(X, Y ), Z] .= −[Z, L(X, Y )] .= [X, Y, Z] (2.12 b)

for X, Y, Z ∈ W . L is then a Lie superalgebra (e.g. [8,16,20]).
As we will demonstrate in the next section, this construction gives Lie superalgebras

D(2, 1; α), G(3) and F (4) naturally from orthogonal triple systems found in [13]. To this
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end, we will study the structure of the Lie superalgebra L in some detail. First of all,

Dim L1̄ = 2 Dim V, (2.13)

is obvious, although DimL0̄ depends upon the nature of the underlying U(−1,−1)-
BFKTS. Next, from Equations (2.7), we find

L

((
x

0

)
,

(
y

0

))
= −2〈x|y〉Q, (2.14 a)

L

((
0
x

)
,

(
0
y

))
= +2〈x|y〉Q̄, (2.14 b)

L

((
x

0

)
,

(
0
y

))
= L

((
0
y

)
,

(
x

0

))
= 〈x|y〉K + Σ(x, y), (2.14 c)

where we have set

Q =

(
0 1
0 0

)
, Q̄ =

(
0 0
1 0

)
, K =

(
1 0
0 −1

)
, (2.15 a)

Σ(x, y) .=

(
�(x, y) 0

0 �(x, y)

)
. (2.15 b)

Here, �(x, y) is defined by Equation (2.4). Noting that Q, Q̄ and K satisfy the su(2)
relations

[K, Q] = 2Q, [K, Q̄] = −2Q̄, [Q, Q̄] = K, (2.16)

and that they commute with Σ(x, y), we see that the Lie algebra L0̄ is isomorphic to

L0̄ = su(2) ⊕ g0, (2.17)

where g0 is the Lie algebra specified by Equations (2.5). The odd parity part L1̄ of L is
a L0̄ module with[

L

((
x

0

)
,

(
y

0

))
,

(
z1

z2

)]
= −2〈x|y〉

(
z2

0

)
, (2.18 a)

[
L

((
0
x

)
,

(
0
y

))
,

(
z1

z2

)]
= 2〈x|y〉

(
0
z1

)
, (2.18 b)

[
L

((
x

0

)
,

(
0
y

))
,

(
z1

z2

)]
= 〈x|y〉

(
z1

−z2

)
+

(
�(x, y)z1

�(x, y)z2

)
. (2.18 c)

Therefore, the problem is reduced to determining the Lie algebra g0 and its action on V .
Concluding this section, we note the following simplicity criteria for L due to Kamiya

[10]. Let us introduce the left and right multiplication operators in V by

L(x, y)z .= xyz, R(x, y)z .= zxy, (2.19)
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and set
γ(x, y) = Tr(R(x, y) + R(y, x) + 1

2 (L(x, y) + L(y, x))). (2.20)

We then have the following proposition [10].

Proposition 2.1.

(i) γ(x, y) = (4 − Dim V )〈x|y〉.

(ii) The resulting Lie superalgebra L is simple if γ(x, y) is non-degenerate.

Remark 2.2. From Proposition 2.1 (i), we see that the case of DimV = 4 is special.
As we will see in the next section, we may indeed have non-simple Lie superalgebras for
Dim V = 4 in some cases.

In [10], an attempt has been made to find U(−1,−1)-BFKTS which may lead to Lie
superalgebras G(3) and F (4). This paper offers such a construction.

3. Constructions of D(2, 1; α), G(3) and F (4)

Let V again be the vector space with a symmetric bilinear non-degenerate form 〈·|·〉 over
a field F of characteristic not 2, and set

N = Dim V. (3.1)

A triple product given by

xyz
.= −〈y|z〉x + 〈x|z〉y + 〈x|y〉z (3.2)

is then a U(−1,−1)-BFKTS, as has already been noted in [11]. Since this U(−1,−1)-
BFKTS will play some role in our construction, it will be instructive to study its resulting
Lie superalgebra L in some detail. First, we see immediately that

�(x, y)z = 〈x|z〉y − 〈y|z〉x,

so that Equation (2.5 b) gives the so(N) Lie algebra relation

[�(u, v), �(x, y)] = 〈u|x〉�(v, y) − 〈v|x〉�(u, y) + 〈u|y〉�(x, v) − 〈v|y〉�(x, u).

It is then easy to see that L is the Lie superalgebra osp(N, 2) in the standard notation
[6,18].

In [13] we considered a triple product [x, y, z] in V , satisfying

[x, y, z] is totally antisymmetric in x, y, z, (3.3 a)

〈w|[x, y, z]〉 is totally antisymmetric in w, x, y, z, (3.3 b)

〈[x, y, z]|[u, v, w]〉 =
∑
P

(−1)P 〈x|u〉〈y|v〉〈z|w〉

+ 1
4β

∑
P

∑
P ′

(−1)P (−1)P ′〈x|u〉〈y|[z, v, w]〉, (3.3 c)
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for a constant β ∈ F , where P and P ′ refer to 3! permutations of x, y, z and of u, v, w,
respectively. In view of Equation (3.3 b), we can rewrite Equation (3.3 c) as

[u, v, [x, y, z]] = {〈y|v〉〈z|u〉 − 〈y|u〉〈z|v〉 − β〈u|[v, y, z]〉}x

+ {〈z|v〉〈x|u〉 − 〈z|u〉〈x|v〉 − β〈u|[v, z, x]〉}y

+ {〈x|v〉〈y|u〉 − 〈x|u〉〈y|v〉 − β〈u|[v, x, y]〉}z

− β{〈x|v〉[u, y, z] + 〈y|v〉[u, z, x] + 〈z|v〉[u, x, y]

+ 〈x|u〉[v, z, y] + 〈y|u〉[v, x, z] + 〈z|u〉[v, y, x]}. (3.4)

We remark that we have set α = 1 here for the parameter α in [13] without loss of
generality. Also, this triple system is intimately related to the one studied by Shaw [19]
as has been noted in [4].

It has been proved in [13] (see also [4]) that Equations (3.3), (3.4) are only possible
for

N = 8 and β = ±1, (3.5 a)

N = 4 and β = 0. (3.5 b)

Moreover, for the case of N = 8 a bilinear product in V defined by

x · y
.= [x, y, e] + 〈x|e〉y + 〈y|e〉x − 〈x|y〉e (3.6)

for any e ∈ V satisfying 〈e|e〉 = 1 defines an octonion algebra with e as its unit element.
Conversely, the original triple product can be expressed as

[x, y, z] = −(x · ȳ) · z + 〈y|z〉x − 〈x|z〉y + 〈x|y〉z (β = −1), (3.7 a)

[x, y, z] = −x · (ȳ · z) + 〈y|z〉x − 〈x|z〉y + 〈x|y〉z (β = +1), (3.7 b)

in terms of the octonionic bilinear products. Also, Equations (3.6) and (3.7) still hold for
the case of N = 4 and β = 0 with x · y now being the associative quaternion product,
although we will not go into detail.

In [13], we have constructed three orthogonal triple systems which can be converted
into U(−1,−1)-BFKTSs by Equation (2.2), when the triple product is renormalized
suitably. In this way, we obtain the following proposition.

Proposition 3.1. The following are U(−1,−1)-BFKTSs.

(i) N = 8 with β = ±1,

xyz
.= 1

3β[x, y, z] − 〈y|z〉x + 〈x|z〉y + 〈x|y〉z, (3.8)

where we assumed that the underlying field F is of characteristic not 3.

(ii) N = 4 with β = 0,

xyz
.= σ[x, y, z] − 〈y|z〉x + 〈x|z〉y + 〈x|y〉z (3.9)

for arbitrary σ ∈ F .
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(iii) N = 7.

Let A be an octonion algebra with the bilinear product x · y and set

V = {x | 〈e|x〉 = 0, x ∈ A} (3.10 a)

so that V with Dim V = 7 is essentially the seven-dimensional exceptional Malcev
algebra. We introduce a triple product in V by

xyz = − 3
4 (x, y, z) + 1

4 [[x, y], z] + 〈x|y〉z
= − 1

4 (x, y, z) − 〈y|z〉x + 〈x|z〉y + 〈x|y〉z, (3.10 b)

where (x, y, z) = (x · y) · z − x · (y · z) is the associator in A. Note that 〈e|xyz〉 = 0
for x, y, z ∈ V .

From Equations (3.8)–(3.10) we see that the parts of xyz which are independent of [x, y, z]
and (x, y, z) are precisely the U(−1,−1)-BFKTSs given by Equation (3.2).

Remark 3.2. The reason why we can have arbitrary σ ∈ F for the case of N = 4 is
due to the validity of the identities

〈w|x〉〈y|[z, u, v]〉 + 〈w|y〉〈z|[u, v, x]〉
+ 〈w|z〉〈u|[v, x, y]〉 + 〈w|u〉〈v|[x, y, z]〉 + 〈w|v〉〈x|[y, z, u]〉 = 0 (3.11 a)

and

〈u|[v, x, y]〉w = 〈w|x〉[y, u, v] + 〈w|u〉[x, y, v] + 〈w|v〉[y, x, u] − 〈w|y〉[u, v, x] (3.11 b)

for N = 4, as has already been remarked on in [13]. For example, the left-hand side of
Equation (3.11 a) is totally antisymmetric in five variables (x, y, z, u and v), so it must
be identically zero for N = 4.

Remark 3.3. If the underlying field F is of characteristic 3 for the case of N = 8,
then [x, y, z] represents a Lie triple system.

We will now show that the three cases in Proposition 3.1 will lead to Lie superalgebras
F (4), D(2, 1; α) (α �= 0,∞) and G(3), respectively, by first showing that the Lie algebras
g0 in Equation (2.17) are so(7), su(2) ⊕ su(2) and G2, respectively. We discuss these
cases separately below.

Case 1. N = 4 and β = 0.

Although we can express [x, y, z] in terms of the quaternion algebra by Equation (3.7),
it is more instructive to proceed as follows. We assume for simplicity that the underlying
field F is algebraically closed. Let e1, e2, e3, e4 be a basis of V with

〈eµ|eν〉 = δµν (µ, ν = 1, 2, 3, 4). (3.12)
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We can then construct the triple product by

[eµ, eν , eλ] =
4∑

α=1

εµνλαeα, (3.13)

where εµνλα is the four-dimensional totally antisymmetric Levi-Civita symbol with
ε1234 = 1. We can then readily verify the validity of Equations (3.3), (3.4) with β = 0
(see, for example, [14]).

Setting

L̃1 = �(e2, e3), L̃2 = �(e3, e1), L̃3 = �(e1, e2), (3.14 a)

M̃1 = �(e1, e4), M̃2 = �(e2, e4), M̃3 = �(e3, e4), (3.14 b)

Equation (2.5 b) then leads to

[L̃i, L̃j ] =
3∑

k=1

εijk(L̃k + σM̃k), (3.15 a)

[L̃i, M̃j ] =
3∑

k=1

εijk(M̃k + σL̃k), (3.15 b)

[M̃i, M̃j ] =
3∑

k=1

εijk(L̃k + σM̃k) (3.15 c)

for i, j, k = 1, 2, 3, where εijk is now the totally antisymmetric Levi-Civita symbol in
three dimensions. Suppose σ �= ±1. Then, if we set

L
(±)
i =

1
2(1 ± σ)

(L̃i ± M̃i) (i = 1, 2, 3), (3.16)

Equations (3.15) can be rewritten as the su(2) ⊕ su(2) relations

[L(±)
i , L

(±)
j ] =

3∑
k=1

εijkL
(±)
k , (3.17 a)

[L(+)
i , L

(−)
j ] = 0. (3.17 b)

In particular, L0̄ is isomorphic to su(2)⊕su(2)⊕su(2). Studying the action of L0̄ on L1̄,
we see that the Lie superalgebra L is Γ (1+σ, 1−σ, −2) in the notation of Scheunert [18].
In the Kac notation this corresponds to D(2, 1; α) with

α =
1 − σ

1 + σ
. (3.18)

We must have α �= 0, and α �= ∞ since σ �= ±1. Our construction also effectively
reproduces the explicit realization given in [6]. Note also that for σ = 0 we have
Γ (1, 1,−2) 	 osp(4, 2) (see [18]) in agreement with the result stated in the beginning of
this section for N = 4, since Equation (3.9) for σ = 0 is nothing but Equation (3.2).
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However, the case of σ = ±1 leads to an entirely different situation. Suppose σ = +1.
We can still define L

(+)
i by Equation (3.10) but not L

(−)
i , and L

(+)
i satisfies the same

su(2) relation of Equation (3.17 a). But we can easily see that

[L̃i − M̃i, L̃j − M̃j ] = 0 = [L̃i − M̃i, L
(+)
j ]. (3.19)

Therefore, the Lie algebra L0̄ is now given as

L0̄ = su(2) ⊕ su(2) ⊕ u(1) ⊕ u(1) ⊕ u(1), (3.20)

with the abelian part u(1)⊕u(1)⊕u(1) being an ideal of the Lie superalgebra L. Hence,
L is no longer simple. However, the quotient Lie superalgebra L/u(1) ⊕ u(1) ⊕ u(1) is
isomorphic to the Lie superalgebra sp�(2, 2)/FI4 in the notation of [18].

Case 2. N = 7.

Although the Lie algebra g0 must be G(2) by its construction given in [13], we will
also demonstrate it below.

Let Lx be the left multiplication operator in the octonion algebra A by Lxy
.= xy for

x ∈ V but y ∈ A. Then, �(x, y) given in Equation (2.4) is essentially rewritten as

�(x, y) = − 3
4{Lxy − LxLy} + 1

4ad[x, y] (3.21)

for x, y ∈ V with adxy = [x, y] since �(x, y)e = 0. Using alternative properties of A (see,
for example, [14]), we can rewrite Equation (3.21) as

�(x, y) = 1
8{ad[x,y] + [adx, ady]} = 1

4{ad[x,y] − 3[Lx, Ry]},

which is the standard derivation operator of the octonion algebra [17]. Therefore, the
Lie algebra g0 is G2 which acts on seven-dimensional V . The resulting Lie superalgebra
L is then G(3) in the Kac notation.

Case 3. N = 8 and β = ±1.

Without loss of generality, we can set β = −1 by changing the sign of [x, y, z] if neces-
sary, and we can prove g0 to be so(7) as follows. We will again assume for simplicity that
F is algebraically closed, and consider the Clifford algebra C(7, 0) in seven-dimensional
carrier space with the defining relation

γµγν + γνγµ = 2δµν (µ, ν = 1, 2, . . . , 7). (3.22)

This admits an eight-dimensional irreducible representation space V . Let x, y, z ∈ V be
eight-dimensional spinors on which 8 × 8 matrices γµ act. We then note that

Jµν = 1
4 [γµ, γν ] (µ, ν = 1, 2, . . . , 7) (3.23)

defines an so(7) Lie algebra of

Jµν = −Jνµ, (3.24 a)

[Jµν , Jαβ ] = δναJµβ − δµαJνβ − δνβJµα + δµβJνα. (3.24 b)
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Also, as has been shown in [15], there exists the charge-conjugation matrix C satisfying

CγµC−1 = −γT
µ (µ = 1, 2, . . . , 7), (3.25 a)

CT = C, (3.25 b)

where the superscript ‘T’ denotes transpose. We now introduce a bilinear form in V by

〈x|y〉 =
8∑

i,j=1

xiCijyj , (3.26)

which is symmetric by Equation (3.25 b). Also, it is non-degenerate, as we can easily
show. Setting

[x, y, z] .= 1
3

7∑
µ=1

{〈y|γµz〉γµx + 〈z|γµx〉γµy + 〈x|γµy〉γµz}, (3.27)

we have shown in [15] that it satisfies Equations (3.3) and (3.4) with β = −1. Moreover,
we can rewrite Equation (3.27) as

[x, y, z] =
7∑

µ=1

〈y|γµz〉γµx + 〈x|z〉y − 〈x|y〉z

=
7∑

µ=1

〈z|γµx〉γµy + 〈x|y〉z − 〈y|z〉x

=
7∑

µ=1

〈x|γµy〉γµz + 〈y|z〉x − 〈z|x〉y (3.28)

when we use the so-called Fierz identities (see [15]). We also note the following. Although
we have assumed in [15] that the underlying field F is real or complex, the results stated
here hold true for any algebraically closed field F of characteristic not 2 and not 3.
Actually, we can relax the condition of algebraic closure by using a Clifford algebra
C(4, 3) or C(0, 7) instead of the Clifford algebra C(7, 0) of Equation (3.22) (see [15] for
details).

In order to show that the Lie algebra g0 is so(7), we note further that the triple product
xyz for the corresponding U(−1,−1)-BFKTS can be written as

xyz = − 1
24

7∑
µ,ν=1

〈x|[γµ, γν ]y〉[γµ, γν ]z + 〈x|y〉z (3.29)

by using various identities given in the appendix of [15]. This implies the validity of

�(x, y) = −2
3

7∑
µ,ν=1

〈x|Jµνy〉Jµν . (3.30)
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Conversely, let e1, e2, . . . , e8 be a basis of V with

〈ej |ek〉 = δjk (j, k = 1, 2, . . . , 8). (3.31)

We can then express Jµν as

Jµν = 3
8

8∑
j=1

�(ej , Jµνej) (3.32)

in terms of the �(x, y). These show that g0 is indeed so(7). Moreover, these relations
reproduce essentially the formula for F (4) given in [6]. This completes the demonstration
that the case of N = 8 will lead to the Lie superalgebra F (4). Also, Equation (3.27) or
Equation (3.7 a) will offer new realizations of F (4) in terms of either eight-dimensional
so(7) spinors or octonions.
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