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Coordinated suction and blowing of a cylinder
array for thrust generation
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Various systems of mechanical devices and natural organisms use the repeated expansion
and contraction of deformable structures to draw in and blow out fluid. Instead of such
deformable continuous structures, a system that consists of multiple discrete bodies can
also generate a directional flow through the cooperative movement of the individual
bodies. In this study, we numerically investigate the collective effects of a multi-body
system composed of eight circular cylinders, each of which oscillates separately in
the radial direction to generate thrust. The cylinder array performs cooperative motion
regulated by three motion parameters: phase difference, oscillation amplitude and
frequency at a low Reynolds number (Re = 10). The phase difference between the
cylinders is critical in determining the extent of the directional flow and the time-averaged
thrust. The optimal phase difference that yields the maximum time-averaged thrust is
consistent, regardless of the oscillation amplitude and frequency. However, the thrust
generation performance becomes significantly weaker at a higher Reynolds number (Re =
100). This highlights that the hydrodynamic blockage in gaps between cylinders, which
is induced by strong viscous diffusion at the low Reynolds number, is essential for the
cooperative force generation of multiple closely spaced bodies. A new dimensionless
geometric parameter based on the motion of the array is proposed to characterize
the degree of bias in the generated flow and it successfully predicts the trend in the
time-averaged thrust at the low Reynolds number with strong hydrodynamic blockage.

Key words: flow–structure interactions, propulsion

1. Introduction

A pressure difference between two spaces, which may be artificially generated by
modifying the volumes of the spaces, can induce the transport of fluid. The expansion and
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Figure 1. (a) Deformation of a continuous flexible body for suction and blowing. Deformation of a
discretized body composed of (b) two and (c) six separated rigid segments.

contraction of the volume cause suction and blowing of flow, respectively. This suction
and blowing flow has been adopted in various fields for fluid transport and momentum
generation. A diaphragm pump, for instance, transports fluid by oscillating a rubber
diaphragm, and a synthetic jet actuator transfers momentum using oscillatory blowing
through membrane vibration and internal volume change (e.g. Smith & Glezer 1998;
Kotapati, Mittal & Cattafesta 2007; Kotapati et al. 2010). Respiratory and circulatory
systems in the human body, such as lung and heart, employ repeated suction and blowing
for the pulsatile transport of fluid (e.g. Grotberg 2001; Hunter, Pullan & Smaill 2003;
Bermejo, Martinez-Legazpi & del Alamo 2015). Periodic suction and blowing are also
used as a propulsion strategy by certain aquatic animals such as squid and jellyfish (e.g.
Dabiri et al. 2005; Dabiri, Colin & Costello 2006; Weymouth & Triantafyllou 2013;
Hoover, Griffith & Miller 2017).

Inspired by the flow generation based on suction and blowing, we propose a new strategy
for thrust generation by performing volumetric change from a different perspective.
In contrast to typical continuous flexible bodies that undergo periodic expansion and
contraction (figure 1a), our model is composed of multiple rigid segments separated by
gaps between adjacent segments (figure 1b,c). Because of the rigidity of the segments,
morphological changes in the system are achieved through the coordinated translation of
the individual segments. As the number of segments increases, the overall shape of the
discretized body converges to that of a continuous flexible body.

Collaborative and collective motion in a group of individual entities can be found in
nature, and its physical implications have been investigated. The collaborative performance
of a group, such as groups of fire ants and blackworms, leads to remarkable improvements
in terms of efficiency and survivability (Tennenbaum et al. 2016; Ozkan-Aydin, Goldman
& Bhamla 2021). With regard to propulsion in fluid, fish schooling (Weihs 1973; Becker
et al. 2015) and bird flocking (Lissaman & Shollenberger 1970; Bajec & Heppner 2009;
Nagy et al. 2010) have been reported to improve propulsion efficiency for the entire group.
Furthermore, inspired by the collective intelligence of animals, researchers have attempted
to develop a self-assembling system with a thousand modular robots (Rubenstein, Cornejo
& Nagpal 2014). More recently, collective behaviours of swarming robots working in a
fluid domain have been investigated at various length scales (Yu et al. 2018; Xie et al.
2019; Dong & Sitti 2020).

A new system composed of multiple rigid entities can mimic a complex deformation
of a flexible body, using one-degree-of-freedom motion of each entity, as exemplified
in figure 1(c). Instead of dealing with the deformation of a structure involving elasticity
and stretchability, each segment of the system can be independently regulated to achieve
a desired motion. This notable advantage of discretized models can be applied to
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Coordinated motion of a cylinder array for thrust generation
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Figure 2. Schematic of a multi-body model consisting of eight circular cylinders.

small-scale propulsion and fluid transport systems if they are properly designed and
controlled. As a preliminary step in determining the fluid-mechanical principles in the
suction–blowing-based propulsion of coordinated but separated segments, we introduce a
simple two-dimensional array consisting of several rigid cylinders as separated segments
(figure 2). This multi-body system generates thrust through the coordinated motion of each
segment undergoing linear oscillations in a still fluid. Admittedly, the array in figure 2 is
not the most efficient configuration in terms of propulsion. However, the axisymmetric
shape of the array provides some notable characteristics of coordinated propulsion, and
serves as a basic model for more advanced and complicated multi-body systems or particle
clusters. Numerical simulations are performed by varying the oscillation phase, amplitude
and frequency of the cylinders, as well as the Reynolds number of the fluid. The conditions
under which the thrust is maximized are determined and the physical mechanisms for
optimal thrust generation are elucidated.

The multi-body model (cylinder array) and numerical method are described in § 2.
In § 3.1, the velocity and pressure fields around the cylinder array are examined under
various phase differences between the cylinders, whereby we elaborate the mechanism of
thrust generation. A scaling parameter based on geometric variables is proposed in § 3.2,
allowing the optimal phase difference for maximum thrust to be predicted. Furthermore,
the effects of the oscillation amplitude and frequency of the cylinders on the generated
thrust are discussed in § 3.3, and the effects of the flow regime are addressed by varying
the Reynolds number in § 3.4. Finally, concluding remarks are presented in § 4.

2. Problem description

2.1. Model and parameters
In investigating the fluid dynamics of a bio-inspired propulsion system, simple
two-dimensional (2-D) models have often been adopted because they effectively reveal
the key mechanisms despite their simplicity of form and motion. For example, a 2-D
semi-ellipsoidal structure and a 2-D wavy hydrofoil were used to represent a squid (Bi
& Zhu 2019; Luo et al. 2020) and a fish (Bergmann & Iollo 2011; Liu, Yu & Tong 2011;
Maertens, Gao & Triantafyllou 2017), respectively, and a 2-D ellipse or flexible plate was
chosen to simulate an insect wing (Wang 2000; Yin & Luo 2010; Shoele & Zhu 2013;
Reade & Jankauski 2022). Moreover, the inline arrangement of multiple 2-D cylinders
with gaps has been adopted to simplify the bristled wings of microscale insects (Lee,
Lahooti & Kim 2018; Lee, Lee & Kim 2020b; Lee & Kim 2021). Similarly, the multiple
feathers of a bird wing were simplified to an array of 2-D plates (Kim, Lee & Kim 2019).
As 2-D simplification is effective in identifying the dynamics of complex structures, this
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Figure 3. Schematic of the coordinated motion of cylinders with phase delay. (a) Distribution of phase
difference �φ between cylinder sets i = 0–3. A pair of cylinders are marked with the same colour and index i.
(b) Sequential configurations of the array during one cycle for �φ = π/5.

study adopts a multi-body model in 2-D space. The model is composed of eight circular
cylinders, each with diameter d. The centres of the cylinders are placed on a circle of
diameter D which is four times the cylinder diameter d, i.e. D = 4d, as the reference
position. The configuration is depicted in figure 2 where two cylinders are positioned
in each quadrant of the coordinate system. A moderate number of cylinders is chosen
considering the diversity and complexity of the coordinate motion. Too few cylinders mean
that the deformation analogous to that of a continuous body cannot be imitated, whereas
too many cylinders would produce interference in the cylinder paths.

Each cylinder oscillates harmonically in a radial direction with respect to the origin,
with identical amplitude A and period T (figure 2). The basic oscillatory motion for each
cylinder is

r(t) = D
2

+ A cos
(

2πt
T

)
, (2.1)

where r is the distance of the cylinder centre from the origin. However, because the
cylinders move in quiescent fluid, the identical radial translations of the cylinders cause a
uniform expansion and shrinkage of the array, resulting in a zero net force on the array.
Therefore, to generate thrust, the array should move asymmetrically. Asymmetric motion
is realized by applying a phase delay φ to each cylinder:

ri(t) =

⎧⎪⎪⎨
⎪⎪⎩

D
2

+ A
(

0 ≤ t <
φi

2π

)
,

D
2

+ A cos
(

2πt − φi

T

) (
t ≥ φi

2π

)
.

(2.2)

The phase delay for each cylinder is set to φi = i�φ, where i denotes a cylinder set
depicted in figure 3(a) and �φ is the phase difference between adjacent sets. A pair
of cylinders with the same x coordinate forms a single cylinder set and the index i
increases along the positive x axis. All eight cylinders are initially placed on a circular
line (ri(0) = D/2 + A). Each cylinder pair i starts to move at t = i�φ/2π; the leftmost
cylinder pair i = 0 at t = 0, the cylinder pair i = 1 at t = �φ/2π and so on. After the
cylinders begin to oscillate, the array does not return to the perfect circular arrangement
of the initial condition because of the sequential phase delay among the cylinder sets
(figure 3b). A cylinder set on the left contracts and expands earlier than a cylinder set on the
right.
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Parameter Symbol Value

Cylinder diameter d 1.0
Array diameter D 4.0
Oscillation amplitude A 0.1–0.5
Oscillation frequency f 0.25–1.0
Phase difference �φ 0–π

Table 1. Parameters for the shape and motion of the multi-body model.

The motion parameters A, f and �φ are varied to examine the effects of each parameter
on thrust generation (see table 1). To avoid collisions between cylinders, the oscillation
amplitude A should be limited to less than 0.5; thus, the amplitude range is set to be
A = 0.1–0.5. The oscillation frequency f (= 1/T) ranges between 0.25 and 1.0. The phase
difference �φ varies between 0–π because the array motion is repeated in �φ = π–2π;
the case of �φ = π + α shows the motion mirrored with respect to the y axis compared
with �φ = π − α. The Reynolds number is defined as Re = Umaxd/ν, where Umax =
2πAf is the maximum speed of a cylinder and ν is the fluid kinematic viscosity. For
A = 0.5 and f = 0.5, which are basic parameter values used in this study, two Reynolds
numbers are considered additionally (Re = 5 and 100) by changing the fluid kinematic
viscosity ν. This range of Re belongs to the laminar-flow regime, whereby the flow around
a circular cylinder is 2-D, even in three-dimensional space (Williamson 1996).

2.2. Numerical method
The incompressible laminar flow around the cylinder array is simulated by solving the
mass and momentum conservation equations:

∇ · u = 0, (2.3a)

∂u
∂t

+ (u · ∇)u = − 1
ρ

∇p + ν∇2u, (2.3b)

where ρ is the fluid density, u is the velocity and p is the pressure. The governing equations
are numerically solved using an in-house immersed boundary method (IBM) code based
on OpenFOAM (Mahravan, Lahooti & Kim 2023). To achieve pressure–velocity coupling
in transient solutions, the pressure implicit with splitting of operators (PISO) algorithm
is employed. The convection term is discretized using the second-order linear upwind
scheme, while other spatial terms are discretized with the second-order Gauss linear
scheme. The implicit Euler scheme is adopted for temporal discretization.

To account for the effect of immersed boundaries, (2.3b) is modified by adding a
momentum forcing source term f , which is a force per unit mass:

∂u
∂t

+ (u · ∇)u = − 1
ρ

∇p + ν∇2u + f . (2.4)

To obtain the momentum forcing term f , the direct forcing approach suggested by
Uhlmann (2005) is employed. The fluid domain and the solid bodies (immersed
boundaries) are separately discretized into Eulerian grids in the domain Ω and Lagrangian
grids in the domain Θ . A preliminary velocity ũ is obtained by solving the momentum
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Figure 4. (a) Fluid domain and model for numerical simulations and (b) grid layouts in three different scale
views.

equation in the Eulerian domain (2.3b) without considering the effect of solid bodies, and
this is then interpolated to a preliminary velocity on the Lagrangian point as

Ũ =
∫

Ω

ũδ(X − x) dx, (2.5)

where (X , x) are the points on the Lagrangian grid and the Eulerian domain, and the
discrete delta function δ (Roma, Peskin & Berger 1999) is a kernel connecting the fluid
and solid bodies. The force at the Lagrangian point is obtained using the desired velocity
Ud, which is the prescribed velocity of a cylinder for our model:

F = Ud − Ũ
�t

. (2.6)

This force on the Lagrangian point is transmitted to adjacent Eulerian nodes, yielding f :

f =
∫

Θ

Fδ(x − X ) ds. (2.7)

For details of the direct forcing IBM used in this study, readers are referred to Uhlmann
(2005).

The fluid domain is square with a side length of 16D, which is large enough to minimize
boundary effects, and the cylinder array is located at the centre of the domain (figure 4a).
The initial values of velocity and pressure over the entire domain are set to zero, and
symmetric boundary conditions are imposed on all four boundaries. A reference point for
the pressure is set far away from the cylinder arrangement. The fluid domain consists of
five uniform square grid regions enclosing the cylinder array (figure 4b). The three inner
regions have circular boundaries with diameters of 3D, 5D and 7D, and the two outer
regions are square with side lengths of 9D and 16D. The innermost region near the array
has the smallest grid size of 0.02d and the size doubles for each adjacent outer region. The
time step size is determined such that the maximum Courant–Friedrichs–Lewy number
(CFL = u�t/�x) is less than 1 in the entire domain: �t/T = 0.0001.

The convergence with various time steps and grid sizes is tested to find the numerical
setting that balances the computational cost with the accuracy of results. For quantitative
comparison between different numerical settings, we use the thrust coefficient C̄T of the
cylinder array, which is averaged over the sixth period of the cyclic motion, with A = 0.5,
f = 0.5 and �φ = π/5; C̄T is defined in § 3.1. For a given size of the finest grid �x =
0.02d, C̄T tends to converge as �t decreases from 0.001T to 0.00005T , and the difference
in C̄T is less than 2 % between �t = 0.0001T and 0.00005T (table 2a). The size of the
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�x �t C̄T �x �t C̄T

0.02d 0.001T 0.422 0.1d 0.0005T 0.747
0.02d 0.0005T 0.421 0.04d 0.0002T 0.483
0.02d 0.0002T 0.451 0.02d 0.0001T 0.470
0.02d 0.0001T 0.470 0.01d 0.00005T 0.453
0.02d 0.00005T 0.477 (b) Grid convergence.
(a) Time-step convergence.

Table 2. Convergence tests of (a) time step and (b) grid size. Time-averaged thrust coefficients C̄T of the
cylinder array are compared between several numerical settings.

–4

0

4

2

–2

119 10

t/T

CD

Figure 5. Time history of drag coefficient CD for a single circular cylinder oscillating in still fluid: blue solid
line, present study and red dashed line, Dütsch et al. (1998).

finest grid �x is then varied while �t is predetermined to keep CFL = 0.0157 (table 2b).
The difference in C̄T between [�x, �t] = [0.02d, 0.0001T] and [0.01d, 0.00005T] is
within 4 %. Based on the results from these two convergence tests, �x = 0.02d and
�t = 0.0001T are chosen. The chosen grid size and time step also produce converged
solutions for different values of A and f .

To validate our numerical method, we compare the drag coefficient of a single circular
cylinder harmonically oscillating in still fluid with the numerical result of Dütsch et al.
(1998). Two dimensionless parameters that characterize the cylinder motion are matched
by setting A = 7.96 and T = 1.0: the Reynolds number Re = Umaxd/ν = 100 and the
Keulegan–Carpenter number KC = UmaxT/d = 5. The time series data of the drag
coefficient along the oscillation direction, CD(t) = 2Fx(t)/ρU2

maxd, are in good agreement
with the results of Dütsch et al. (1998) (figure 5). The maximum CD obtained in the present
study, 3.23, is very similar to that of Dütsch et al. (1998), 3.24, which demonstrates that
our numerical results are reliable.

3. Results and discussion

3.1. Thrust generation mechanism of coordinated motion
The reciprocal motions of cylinders make the array contract and expand periodically,
which accordingly induces suction and blowing flows. A single cycle of the coordinated
motion is divided into contraction and expansion phases, depending on the internal area
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Figure 6. (a) Schematic of internal area Sin of the cylinder array. Temporal change in Sin after the fifth period
with respect to (b) time t/T and (c) adjusted time t∗: phase difference �φ = (i) π/15, (ii) π/5 and (iii) 4π/5.
Blue and red regions represent expansion and contraction phases, respectively.

of the cylinder array. The internal area Sin is defined as the area of an octagon in which the
vertices coincide with the cylinder centres, as shown in figure 6(a). The contraction phase
corresponds to a decrease in Sin from the maximum to the minimum, and the expansion
phase is the opposite. In figure 6(b), the starting times of the contraction and expansion do
not coincide for various cases of phase difference. A dimensionless time t∗ is introduced to
match the start and end of a cycle for easier comparison between the cases, as depicted in
figure 6(c). The start of a cycle, t∗ = 0, is the time when the maximum of Sin first appears
after five simulation cycles. Hereafter, only a single cycle between t∗ = 0–1 is considered
because all forces become periodic after five cycles from the beginning of the simulation;
t∗ = 0–0.5 for contraction and t∗ = 0.5–1.0 for expansion.

The total thrust FT generated by the cylinder array is defined to be the sum of the
x-directional forces exerted on all cylinders. Note that FT is positive along the negative
x axis and has a dimension of force per unit depth in a 2-D domain. The thrust coefficient
CT is then calculated using the maximum speed of the cylinders Umax(= 2πAf ) and the
array diameter D:

CT = 2FT

ρU2
maxD

= 2
ρU2

maxD

Ncyl∑
k=1

(−Fx,k), (3.1)

where Ncyl is the number of cylinders (Ncyl = 8). To evaluate the thrust force generated
per cycle, the time-averaged thrust coefficient C̄T is defined by averaging CT over a cycle,
t∗ = 0–1:

C̄T =
∫ 1

0

2FT

ρU2
maxD

dt∗. (3.2)

To focus on the effect of the phase difference �φ, the oscillation amplitude, frequency and
Reynolds number are fixed to A = 0.5, f = 0.5 and Re = 10 in § 3.1 and § 3.2.

Here, CT changes dramatically over a cycle as �φ varies (figure 7a). Generally, CT
is negative during the contraction phase, indicating that the force exerted on the array
is in the positive x direction, while CT is positive in the expansion phase. This result
is somewhat counterintuitive in that the total force on the cylinder array acts along the
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Figure 7. (a) Time history of thrust coefficient C̄T of the array. (b) Time history of −Fx,i, a force acting on
each cylinder in the four cylinder sets (i = 0–3) along the negative x direction for phase difference �φ = π/5.
(c) Time-averaged thrust coefficient C̄T with respect to phase difference �φ (A = 0.5, f = 0.5 and Re = 10).

positive x direction during the contraction phase, although fluid is squeezed out from
the array along the positive x direction by the earlier contraction of the left two cylinder
sets (i = 0, 1 in figure 3a). This mechanism is in contrast to the general thrust direction
produced by the contracting motion of a continuous flexible body.

The time history of −Fx,i, a force along the negative x direction, acting on each cylinder
set i = 0–3 is presented in figure 7(b) for �φ = π/5 which shows the largest temporal
variation in CT among the three cases in figure 7(a). The sign and magnitude of −Fx,i
differ by the position of the cylinder sets (i = 0–3). Notably, during the contraction phase
(t∗ = 0–0.5), the magnitude of −Fx,i for the rightmost cylinder set i = 3 is dominant over
the other cylinder sets, causing a negative total thrust. Meanwhile, the cylinder set i = 3
acts positively during the expansion phase, generating the greatest thrust among the four
cylinder sets. The sign of −Fx,i for the leftmost cylinder set i = 0 is the opposite to that
of the cylinder set i = 3 during most of the cycle. According to figure 7(b), the rightmost
cylinder set i = 3 makes the largest contribution to the net thrust over a cycle among the
four cylinder sets. When we conduct an additional simulation with the two cylinders of
i = 3 removed (i.e. with only the six cylinders of i = 0–2), C̄T decreases remarkably from
0.47 to −0.03 under the same input parameters as those of figure 7(b), which demonstrates
the critical role of the rightmost cylinder set in thrust generation.

The effect of the phase difference on the thrust generation is provided in figure 7(c).
At �φ = 0, the time-averaged C̄T in (3.2) is zero due to the axisymmetric motion of
the cylinder array. However, as �φ increases to π/5, C̄T rises sharply. With a further
increase in �φ, C̄T decreases and finally reaches zero at �φ = π. The phase difference
that maximizes C̄T is �φpeak = π/5. The phase difference in the coordinated motion is
a key parameter that breaks the symmetry of the circular array and generates net thrust
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in one direction. Thus, understanding the effect of �φ on thrust generation is essential in
elucidating the physical mechanism of thrust generation based on the coordinated motion.
The flow fields around the array are examined along with the cylinder motions for the
optimal �φpeak(= π/5) and two other values of �φ that produce smaller C̄T (�φ = π/15
and 4π/5). For these three phase differences, the corresponding time histories of CT are
presented in figure 7(a).

For all three phase differences, most of the cylinders push the surrounding fluid inwards
during contraction, gradually increasing pressure p/ρU2

max inside the array (t∗ = 0–0.5,
i–iv in figure 8; see also supplementary movie 1). Because the cylinder array does not
form a continuous boundary, the fluid inside the array tends to escape through the gaps
from the contracting array, inducing a blowing flow out of the array. The blowing flow
can be identified by the outward velocity vectors in figure 8(i–iv). At the same time, the
generation of the gap flow between adjacent cylinders is affected by the size of the gaps.
The gap flow is relatively extensive when the gap is large, assuming that other conditions,
such as the directions of cylinder motion and pressure gradient across the gap, are similar.
For �φ = π/5 and π/15 (figure 8a,b), the gaps on the right side of the array are generally
wider than those on the left side during contraction, and thus the blowing flow is dominant
on the right side of the array. For the subsequent expansion phase (t∗ = 0.5–1.0), the
expanding array sucks the surrounding fluid inwards by lowering the internal pressure
(v–viii in figure 8). Opposite to the contraction phase, the gaps are wider on the left side
of the array during expansion, making the suction flow prevalent on the left side of the
array. As a result, for both the expansion phase and contraction phase, the overall gap flow
is biased along the positive x direction.

Furthermore, by virtue of the high fluid viscosity and strong viscous diffusion, the
boundary layer on the cylinder surface grows thick enough to overlap with the other
boundary layer of the adjacent cylinder and forms a virtual fluid barrier in the gap,
suppressing the penetration of fluid through the gap. This phenomenon of hydrodynamic
blockage occurs between close solid structures in the low-Reynolds-number flow regime,
and is a crucial mechanism for the propulsion and passive transport of tiny organisms with
clustered appendages (Barta & Weihs 2006; Nawroth et al. 2010; Kolomenskiy et al. 2020;
Lee, Lee & Kim 2020a; Lee et al. 2020b; Kasoju & Santhanakrishnan 2021; Lee & Kim
2021). Consistent with the previous studies, it is reasonable to expect that the effect of
the fluid barrier in this study is stronger for narrow gaps than for wide gaps. To confirm
this, we compare the in-gap velocity profiles in figure 9, which presents the leftmost and
rightmost sets of cylinders (i = 0, 3) that have the largest phase difference 3�φ and thus
the largest difference in gap size within one cycle. In the contraction phase with outward
gap flows (i–iv in figure 9), the flow through the narrow gap produced by cylinder set i = 0
is suppressed by the strong hydrodynamic blockage and has a flat velocity profile, while the
gap flow at cylinder set i = 3 on the opposite side with a larger gap continuously develops
to a larger magnitude. As the array proceeds to the expansion phase with inward gap flows
(v–viii in figure 9), the narrower gap produced by cylinder set i = 3 forms a stronger fluid
barrier and has a smaller velocity magnitude than that through the gap at cylinder set i = 0.
That is, in addition to the physical size of the gaps, the hydrodynamic blockage guides the
fluid towards relatively wide gaps and enhances the directionally biased distribution of the
gap flow.

The velocity profile in figure 9 also shows that the fluid near the cylinder often moves in
the direction opposite to that of the fluid near the centre of the gap. That is, the signs of the
velocity are different between the two locations. This behaviour is because the fluid near
the cylinder is affected by the thick shear layer attached to the cylinder and moves in the
direction of cylinder motion, rather than following the primary direction of gap flow. For
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Coordinated motion of a cylinder array for thrust generation

(i) t∗ = 0 (ii) t∗ = 0.125 (iii) t∗ = 0.25 (iv) t∗ = 0.375

(v) t∗ = 0.5 (vi) t∗ = 0.625 (vii) t∗ = 0.75 (viii) t∗ = 0.875

(i) t∗ = 0 (ii) t∗ = 0.125 (iii) t∗ = 0.25 (iv) t∗ = 0.375

(v) t∗ = 0.5 (vi) t∗ = 0.625 (vii) t∗ = 0.75 (viii) t∗ = 0.875

(i) t∗ = 0 (ii) t∗ = 0.125 (iii) t∗ = 0.25 (iv) t∗ = 0.375

(v) t∗ = 0.5 (vi) t∗ = 0.625 (vii) t∗ = 0.75 (viii) t∗ = 0.875

20–20 p/ρU2
max

�φ = π/15

�φ = π/5

�φ = 4π/5

(a)

(b)

(c)

Figure 8. Snapshots of dimensionless pressure (p/ρU2
max) contours and fluid velocity (u/Umax) vectors at

eight instants with equal intervals during a cycle for phase difference �φpeak = (a) π/5, (b) π/15 and (c)
4π/5 (A = 0.5, f = 0.5 and Re = 10). The top row (i–iv) and bottom row (v–viii) show the contraction and
expansion of the array, respectively. See supplementary movie 1 available at https://doi.org/10.1017/jfm.2023.
1070.
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Figure 9. Normalized velocity profiles u/Umax in the positive x direction for gap flows passing through the
leftmost cylinder set (i = 0, solid line) and the rightmost cylinder set (i = 3, dashed line) during a cycle
(�φpeak = π/5). The eight instants (i–viii) correspond to the snapshots in figure 8; panels (i–iv) for contraction
and panels (v–viii) for expansion.

instance, when the array expands at t∗ = 0.5–0.75, the cylinder set i = 0 and fluid near the
cylinders move outwards (negative x direction), while the fluid near the centre of the gap
is drawn inwards (positive x direction) to fill the expanding space inside the array.

The phase difference and spatial variation in gap size are responsible for the temporal
trends of CT and −Fx,i depicted in figure 7(a,b). To better understand the dynamics
of cooperative array motion, the fluid forces acting on the cylinders are schematically
depicted for several key frames in figure 10. As the x-directional force is mainly caused
by the leftmost (i = 0) and rightmost (i = 3) cylinder sets, we only examine these two
cylinder sets for the fluid forces. In figure 10(a) for the early stage of contraction, despite
the leading inward motion of cylinder set i = 0, the fluid forces acting on the two cylinder
sets have relatively small differences in magnitude, as shown in figure 7(b). However,
during the subsequent inward motion of cylinder set i = 3 (figure 10b), cylinder set i = 3
is strongly affected by the high internal pressure at the array centre which has been built
up by the preceding inward motion of the other cylinders, and this cylinder set receives a
relatively strong fluid force along the outward direction from the mutual interaction with
the other cylinders. As a result, the overall magnitude of −Fx,i acting on cylinder set i = 3
exceeds that of cylinder set i = 0, leading to negative CT for the entire cylinder array
(figure 7a,b).

Similar to the contraction phase, the expansion phase can be divided into a process
of internal pressure change and a process in which the forces exerted on the rightmost
cylinder set are affected by the internal pressure. In figure 10(c) for the early stage of
expansion, the internal pressure at the array centre decreases and becomes lower than
outside the array; this is clearly demonstrated in figure 8(a). The outward motion of
cylinder set i = 3 is more strongly affected by the low pressure at the array centre because
cylinder set i = 3 moves outwards after the low pressure region has formed at the array
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Cylinder velocity Fluid force

(a) t∗ = 0.25 (c) t∗ = 0.5(b) t∗ = 0.375 (d ) t∗ = 0.625 (e) t∗ = 0.75

High pp p
Low p

ExpansionContraction

Figure 10. Prescribed cylinder velocity vectors (grey) and fluid force vectors (red) for each cylinder during
(a,b) contraction and (c–e) expansion (�φpeak = π/5). The fluid force vectors acting on the cylinder are only
depicted for cylinder sets i = 0, 3 for simplicity.

centre (figure 10d). That is, cylinder set i = 3 is subjected to a stronger fluid force along
the inward direction from the mutual interaction with the other cylinders. The overall
magnitude of −Fx,i for cylinder set i = 3 surpasses that of cylinder set i = 0, yielding
positive CT for the cylinder array (figure 7a,b).

According to figure 8(a,b), the pressure and velocity distributions of �φ = π/15 and
π/5 appear to be similar at each instant t∗, but the blowing and suction of �φ = π/15
are not as spatially biased as those of the peak phase difference �φpeak = π/5. For �φ =
π/15, the gap size difference between the left cylinder sets (i = 0, 1) and the right cylinder
sets (i = 2, 3) is relatively minor throughout the cycle, and the flow is weakly biased over
the cycle as a consequence. Although the internal pressure becomes strong at the late stage
of contraction, the weakly biased gap flow yields smaller C̄T . However, when the phase
difference is large (i.e. �φ = 4π/5), both the array motion and resultant gap flow are
distinctly different from the previous two cases (figure 8c). Some adjacent cylinders move
in opposite directions due to the large �φ, leading to minor changes in the internal area
and pressure over a cycle. In addition, while the gap size changes gradually along the x
axis for the small phase differences (�φ = π/5, π/15), the gap size changes abruptly at
the large phase difference (�φ = 4π/5). Due to the unorganized spatial distribution of
gap sizes at the large phase difference, large gaps appear in the middle of the array and the
fluid barrier is not effectively utilized. The generated flow cannot be guided into the gaps at
either end, resulting in less biased flow. The minor change in the internal pressure, coupled
with the unorganized gap distribution, causes a significant reduction in C̄T . In summary,
thrust generation through coordinated motion requires a strongly biased gap flow over a
cycle to produce a large time-averaged thrust, and the intensity of the biased flow is mainly
determined by the non-uniformity of gap sizes, which originates from the phase difference.

3.2. Prediction of thrust generation using motion parameters
Using the relation between the formation of a spatially biased gap flow and thrust
generation discussed in § 3.1, we construct a new parameter composed of several geometric
variables through a simple scaling argument. This parameter captures the trend in the
time-averaged thrust with respect to the phase difference. The biased gap flow can be
quantified by the net volume rate of the gap flow that enters and exits the circular boundary
of the array. Considering the mass conservation of incompressible fluids, the total flux of
fluid expelled out or drawn in through the gaps is equal to the change in the internal
area of the array. Thus, we express the total volume flux of suction and blowing as
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Figure 11. (a) Schematic showing outward unit normal vector nj and angle θj at the jth gap. (b)
Time-averaged flux coefficient β̄ with respect to phase difference �φ (A = 0.5, f = 0.5 and Re = 10).

the time derivative of the internal area, dSin/dt. Here, the internal area Sin is the area
of the grey octagon depicted in figure 11(a). To normalize the rate of change in the
internal area, an average rate of internal area change at �φ = 0 is used; for simplicity,
the area is assumed to be circular. For �φ = 0, the area changes from a maximum of
π(D/2 + A)2 to a minimum of π(D/2 − A)2 over half a period, T/2. The normalized
rate is then (dSin/dt)/(4πDA/T) = dS∗

in/dt∗, where S∗
in = S/(4πDA). For the contraction

phase, in which the rate of internal area change dS∗
in/dt∗ is negative, an outward gap flow is

generated and the total volume flux of the outward gap flow is then quantified as −dS∗
in/dt∗.

This quantity is closely related with the temporal change in pressure inside the internal
area, as exemplified in the pressure contours of figure 8.

The velocity vectors in figure 8 show the amount and direction of the flow passing
through the cylinder gaps, and indicate that the flux in the gap flow at each gap is affected
by the size and orientation of the gap. The size of the jth gap depicted in figure 11(a)
is denoted as Gj(t∗). We assume that the ratio of the flux across the jth gap to the total
flux across the eight gaps is approximated as the ratio of the gap size for the jth gap,
Gj(t∗)/Gtot(t∗), where Gtot(t∗) is the total gap size of the eight gaps at that instant. While
this assumption is acceptable at the low Reynolds number with strong hydrodynamic
blockage, it is invalid at the high Reynolds number, which is discussed in § 3.4. The
dimensionless flux of each gap flow is then expressed as a product of the rate of change
in the internal area and the gap ratio: −dS∗

in(t
∗)/dt∗ × Gj(t∗)/Gtot(t∗). To establish a

relation between the biased gap flow and thrust generation, the degree of bias in the
generated flow is quantified by the x-directional component of the flux in the gap flow.
Considering the outward-facing normal vector nj(t∗) of the jth gap, the x component of
the gap is Gj(t∗) cos θj(t∗), where θj is the angle between the vector nj and the x axis. The
x-directional flux of the flow is obtained by replacing Gj(t∗) with Gj(t∗) cos θj(t∗). A flux
coefficient β(t∗) is then given by summing the x-directional fluxes through all gaps:

β(t∗) =
Ngap∑
j=1

−dS∗
in(t

∗)
dt∗

Gj(t∗) cos θj(t∗)
Gtot(t∗)

, (3.3)

where Ngap is the total number of gaps (Ngap = 8). The sign and magnitude of β(t∗) denote
the direction and strength of the biased gap flow: positive when the net gap flow is along
the positive x direction and negative when the net gap flow is along the negative x direction.
Accordingly, the time-averaged value of β over a cycle (i.e. time-averaged flux along the
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Coordinated motion of a cylinder array for thrust generation

x direction) is expected to be correlated with the time-averaged thrust coefficient C̄T in
(3.2).

To evaluate the time-averaged extent of the biased flow over a cycle, the time-averaged
flux coefficient β̄ is considered:

β̄ =
∫ 1

0
β(t∗) dt∗. (3.4)

Indeed, β̄ in figure 11(b) exhibits a very similar tendency to the time-averaged thrust
coefficient C̄T in figure 7(c). Near phase differences of �φ = 0 and π, both C̄T and
β̄ are close to zero, and more importantly, the value of �φ that maximizes β̄ is π/5,
matching the optimal phase difference for C̄T . Negative values of β̄ are also observed near
�φ = 3π/5. According to the definition of β̄, its negative value means that the array has
wider gaps facing the negative x direction during contraction, while during the expansion,
wider gaps face the positive x direction. This array motion is not ideal for thrust generation
along the negative x axis and, indeed, the magnitude of C̄T corresponding to the negative
β̄ is very small albeit positive. Interestingly, with only time-dependent geometric variables
(Sin, Gtot, Gj and θj) in (3.3) and (3.4), which can be calculated from the input parameters
without numerical simulations, the trend in the time-averaged thrust generation for the
complex coordinated motion of the cylinder array can be successfully predicted.

On the one hand, the time-dependent β in (3.3) is insufficient to predict the
instantaneous thrust generation of the cylinder array. For instance, β is positive for both
contraction and expansion phases, while the signs of CT in each phase are opposite to each
other; see figure 17 in the Appendix. For the instantaneous thrust, the temporal change of
the flow inside the array (inside the internal area depicted in figure 6) should be considered
as well as the flow through the gaps (through the boundary of the internal area). On the
other hand, β does not account for the time-varying flow within the array, making it unable
to predict the instantaneous thrust. However, because of the periodicity of cylinder motion
and generated flow, the change of the flow within the array over a period is negligible. For
this reason, while β is not in accordance with CT , its cycle-averaged value β̄ is found to
be correlated with the cycle-averaged thrust C̄T .

3.3. Effects of oscillation amplitude and frequency
In addition to the phase difference effects addressed in § 3.1, we analyse how thrust
generation is affected by the oscillation amplitude A and frequency f while maintaining
the fluid kinematic viscosity unchanged. The amplitude ranges between A = 0.1 and 0.5
to prevent any collisions between the cylinders, which may occur for amplitudes exceeding
A = 0.5. The frequency varies from f = 0.25 to 1.0.

When the amplitude varies in the range of A = 0.1–0.5 for a fixed frequency f = 0.5,
the time-averaged thrust coefficient C̄T maintains a consistent trend with respect to the
phase difference, having the maximal value near the phase difference �φ = π/5, but
it gradually increases with A near �φ = π/5; refer to figure 12(a-i). Specifically, for
�φ = π/5, C̄T increases from 0.29 to 0.47 as A increases from 0.1 to 0.5. The change in
C̄T is relatively minor, compared with the five times increase in A. This thrust increase
is not solely due to the greater velocity of cylinders, which results in stronger flow
velocity and pressure (in dimensional forms). The change in spacing of an array also
contributes to thrust generation. In the radial oscillations of cylinders, the differences
in gap sizes at a given time magnify as A increases, which is crucial for enhancing
the degree of bias in the generated gap flow. The effects of A on the bias of the gap
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Figure 12. (a) Time-averaged thrust coefficient C̄T and (b) time-averaged flux coefficient β̄ versus phase
difference �φ for (i) five oscillation amplitudes A ( f = 0.5) and (ii) five oscillation frequencies f (A = 0.5).

flow are described in figure 13(a–c) and supplementary movie 2. For a large amplitude
(A = 0.5), the differences in the gap sizes become more pronounced in the middle of
contraction or expansion. Thus, the gap flow is stronger through the wider gap between
the cylinder set i = 3 at t∗ = 0.25 and the wider gap between the cylinder set i = 0 at
t∗ = 0.75, yielding notable spatial variations in the gap flows. Note that the dimensionless
pressure p/ρU2

max inside the array is the most significant for A = 0.1 (figure 13a–c).
However, strong dimensionless internal pressure itself does not guarantee the greater thrust
coefficient, and the bias of the gap flow should be also considered.

The time-averaged flux coefficient β̄ behaves similarly to C̄T in that it increases
monotonically with A near �φ = π/5. In contrast to C̄T , β̄ is simply proportional to A
at any phase difference because the rate of change in the internal area and the gap size
ratios, which constitute the flow coefficient in (3.3), are directly affected by the change
in A. Although β̄ does not accurately quantify the extent of thrust change by the varying
amplitude, it suggests that a cylinder array with a larger amplitude produces a more biased
flow.

As the frequency f increases for a fixed amplitude A = 0.5, C̄T rather decreases despite
the increasing cylinder speed, according to figure 12(a-ii). With the fourfold increase in
f from 0.25 to 1.0, C̄T decreases from 0.63 to 0.41. For the large f , the faster movement
of the cylinder reduces the thickness of the boundary layer on the cylinder surface due
to the weaker viscous diffusion, which reduces the strength of the virtual fluid barrier in
narrow gaps. Thus, the flow generated by the array is not well guided to wide gaps for
the higher f , and the gap flow through the narrowest gap becomes stronger than with the
lower f . In figure 13(d–f ) and supplementary movie 3, this result is clearly depicted by
the sizes of arrows representing the dimensionless fluid velocity u/Umax in the narrow
gaps. The weakened hydrodynamic blockage lowers the degree of bias in the gap flow and
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(i) t∗ = 0.25

(ii) t∗ = 0.75

(i) t∗ = 0.25

(ii) t∗ = 0.75

–20

20

p/ρU2
max

A = 0.1 A = 0.3 A = 0.5

f = 0.25 f = 0.5 f = 1.0

(a) (b) (c)

(d ) (e) ( f )

Figure 13. Snapshots of dimensionless pressure (p/ρU2
max) contours and fluid velocity vectors (u/Umax) in (i)

the middle of contraction (t∗ = 0.25) and (ii) the middle of expansion (t∗ = 0.75) for (a–c) three amplitudes
A = 0.1, 0.3 and 0.5 ( f = 0.5) and (d–f ) three frequencies f = 0.25, 0.5 and 1.0 (A = 0.5). The phase
difference is �φ = π/5. See supplementary movie 2 for panels (a–c) and movie 3 for panels (d–f ).

consequently decreases C̄T . It is noteworthy that C̄T increases notably as f changes from
0.375 to 0.25, while the variation in C̄T is relatively minor in the range f = 0.375–1.0. The
viscous diffusion length δ (i.e. boundary layer thickness) from a solid object generally
scales as δ ∼ (ν/f )1/2 for oscillating flow and this scaling indicates non-uniform variation
in δ with respect to f . For the low frequency of f = 0.25, the significant growth of viscous
diffusion length eventually leads to the notable increase in C̄T .

As f varies for a given A, the configuration of the cylindrical array remains identical at
a given dimensionless time t∗. The rate of change of the internal area in the dimensionless
form, dS∗

in/dt∗, as well as the gap ratio Gj(t∗)/Gtot(t∗) of each gap do not change at the
given t∗. Consequently, the flux coefficient β in (3.3) and the time-averaged flux coefficient
β̄ in (3.4) are independent of f ; see figure 12(b-ii). This is because the flux coefficient
is determined by the geometric characteristics of the array and does not account for the
viscous effects of the fluid, which is responsible for the variation in C̄T by f (figure 12a-ii).
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Figure 14. Time-averaged thrust coefficient C̄T for Re = 5, 10 and 100 (A = 0.5 and f = 0.5).

3.4. Thrust generation under different flow regimes
As the virtual fluid barrier that contributes to generating thrust is known to be effective in
the low-Re regime, we investigate the effect of viscosity on thrust generation. In addition
to Re = 10 considered thus far, Re = 5 and 100 are examined as the representatives of
higher and lower viscosities, respectively. The motion parameters remain the same as in
§ 3.1 (A = 0.5 and f = 0.5). No adjustments to the numerical settings were necessary for
achieving convergence in the simulations with the changed Reynolds numbers; only a few
additional iterations were required within each time step.

As the Reynolds number decreases from 10 to 5, the trend of thrust generation with
respect to the phase difference remains similar, having the optimal phase difference at
�φ = π/5, as shown in figure 14. The enhancement of thrust is also observed across
most phase differences. This result is expected from the thrust-generating mechanism
explained in § 3.1. Although the virtual fluid barrier is used to create a biased flow at
both Reynolds numbers, flow penetrating through narrow gaps becomes more suppressed
as viscosity increases. Instead, a significant amount of fluid prohibited by the narrow gaps
passes through the wide gaps, thereby increasing the degree of bias in the gap flow and
producing stronger thrust. Since the same hydrodynamic blockage mechanism applies for
both Re = 10 and 5, hereafter, we will focus on examining how the disappearance of
hydrodynamic blockage affects flow distribution and thrust by comparing Re = 10 and
100.

When Re increases from 10 to 100, C̄T decreases at all phase differences. Obviously, the
high Reynolds number (Re = 100) produces a markedly different trend in C̄T with respect
to the phase difference �φ compared with the low Reynolds numbers (Re = 5 and 10)
(figure 14). The value of C̄T reaches its maximum near �φ = π/15 and drops sharply until
�φ = π/5, remaining low up to �φ = π. With �φ = π/5, in particular, C̄T decreases
from 0.47 to 0.046 (figure 14). For a single isolated cylinder model, as Re increases from
10 to 100, the shear stress on the cylinder wall and the resultant viscous force acting on the
cylinder are reduced because of the tenfold decrease in fluid viscosity. However, for our
cylinder array, the reduction in the magnitude of the viscous force due to the lower fluid
viscosity is not a primary reason for the remarkable decline in C̄T . Similar to increasing
the frequency (§ 3.3, figure 12a-ii), the weaker thrust generation for Re = 100 can be
attributed to the decline in the hydrodynamic blockage; the increase in the frequency has
the same effect as the increase in the Reynolds number. The viscous diffusion length of
the boundary layer scales with the square root of the fluid kinematic viscosity (Schlichting
& Gersten 2000; Nawroth et al. 2010). With a high Reynolds number (Re = 100) and
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(i) t∗ = 0.25

(ii) t∗ = 0.75

−20

20

p/ρU2
max

(a) Re = 10 (b) Re = 100

Figure 15. Snapshots of dimensionless pressure contours (p/ρU2
max) and fluid velocity vectors (u/Umax) in

(i) the middle of contraction (t∗ = 0.25) and (ii) the middle of expansion (t∗ = 0.75) for (a) Re = 10 and (b)
Re = 100 (A = 0.5, f = 0.5 and �φ = π/5). See supplementary movie 4.

one-tenth of the kinematic viscosity, the boundary layer becomes notably thinner due to
reduced viscous diffusion, causing the virtual fluid barrier in the gaps to almost disappear.
The significantly weakened viscous diffusion and fluid barrier effect make the temporal
variation in the internal pressure less distinct, and the gap flows generated through the
narrow gaps are as strong as those through the wider gaps. This results in a decrease
in the degree of bias in the gap flow; compare figure 15(a) with figure 15(b) and see
supplementary movie 4.

The distinct trend of C̄T for Re = 100 in figure 14 cannot be accurately captured using
β̄. This limitation arises because β is based on the assumption that the virtual fluid barrier
is sufficiently effective and does not directly reflect the variations in kinematic viscosity.
The decrease in viscosity and weakened hydrodynamic blockage cause substantial changes
in gap flow, and the basic assumption of β that the flux through the gap is correlated with
the gap size is no longer valid.

The weak fluid barrier for Re = 100 is identifiable from the large velocity vectors in
the narrow gaps in figure 15(b), and is more apparent in the x-directional velocity profiles
of gap flows presented in figure 16 for �φ = π/5. As Re increases from 10 to 100, the
gap flow through the narrower gaps is enhanced in both the contraction and expansion
phases. In the middle of contraction, at t∗ = 0.25 (figure 16i), the gap at cylinder set i = 0
is narrower than that at i = 3. By increasing Re to 100, the magnitude of u/Umax increases
by a factor of 3.3 at the midpoint of the narrower gap. Similarly, in the middle of expansion,
at t∗ = 0.75 (figure 16ii), the gap at cylinder set i = 3 is narrower than that of i = 0, and
the magnitude of u/Umax increases by a factor of 2.5 at the midpoint of the narrower
gap. In return, for both the contraction and expansion phases, the lower volume of flow
is guided to the wider gap in the opposite side, causing the u-velocity profile to have
a notable deficit near the midpoint of the wider gap. The magnitude of u/Umax at the
midpoint of the wider gap decreases from 2.84 to 0.68 at t∗ = 0.25 and from 2.34 to
1.13 at t∗ = 0.75. As a result of the weaker hydrodynamic blockage effect, the magnitude
of the instantaneous force acting on each cylinder decreases, although the shape of the
temporal force profile over a cycle is retained. In summary, the lower level of viscous
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–0.5

0

0.5

–0.5

0

0.5

–4 –2 0 2 4–4 –2 0 2 4

y/
d

u/Umax u/Umax

(i) t∗ = 0.25 (ii) t∗ = 0.75

Re = 10, gap at i = 0
Re = 10, gap at i = 3
Re = 100, gap at i = 0
Re = 100, gap at i = 3

Figure 16. Normalized velocity profiles u/Umax in the positive x direction for gap flows passing through the
leftmost cylinder set (i = 0, solid line) and the rightmost cylinder set (i = 3, dashed line) during a cycle;
Re = 10 and 100. The velocity profiles are in (i) the middle of contraction (t∗ = 0.25) and (ii) the middle of
expansion (t∗ = 0.75).

diffusion of the high-Reynolds-number flow hinders the fluid inside the array from exiting
through the wider gap, eventually annihilating the bias of the gap flow and decreasing the
time-averaged thrust.

4. Concluding remarks

In this study, we have examined the thrust-generating strategy of a multi-body system in the
low-Reynolds-number regime, using repeated suction and blowing through coordinated
motion. The phase difference of the cylinders in the array is critical in producing
asymmetric flow and consequently generating net thrust. The optimal phase difference
that maximizes the time-averaged thrust exists, and is almost unaffected by changes in the
oscillation amplitude and frequency. The flux coefficient for determining the strength and
bias of the gap flow was constructed from the input parameters, with the assumption that
the flux through the gap is correlated with the gap size. The trend of the time-averaged
flux coefficient was found to be remarkably consistent with that of the time-averaged
thrust coefficient at the low-Reynolds-number regime, enabling successful predictions of
the optimal phase difference for the peak time-averaged thrust. As the Reynolds number
increases, net thrust generation declines because the virtual fluid barrier is no longer
effective. That is, for effective thrust generation, the hydrodynamic blockage produced
by viscous diffusion in the gaps of the array should be accompanied by the coordinated
suction and blowing of separate but close individual bodies.

Our preliminary multi-body model is limited to simple geometry and motions (circular
cylinders with radial oscillations only) in a two-dimensional still fluid. Nevertheless, the
proposed concept based on multiple separate bodies and hydrodynamic blockage can be
easily extended to advanced flow-generating systems, which are more appropriate to actual
environments; for example, the model moving in space collectively by imposing external
input and generating thrust and flow. The multi-body system in the low-Reynolds-number
flow possesses significantly reduced degrees of freedom owing to the discrete bodies and
utilizes effective hydrodynamic blockage in the gaps between the bodies. By virtue of
these advantages, the multi-body system with coordinated motion provides alternative
solutions for small-scale propulsion, fluid transport and flow control based on particle
clusters, replacing traditional continuous structures.
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Figure 17. Time histories of (a) thrust coefficient CT and (b) flux coefficient β for three phase differences of
�φ = π/15, π/5 and 4π/5 (A = 0.5, f = 0.5 and Re = 10).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.1070.
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Appendix. Comparison of thrust coefficient and flux coefficient

The thrust coefficient CT (3.1) and flux coefficient β (3.3) of the cylinder array are
compared in figure 17 for three values of the phase difference, �φ = π/15, π/5 and 4π/5.
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