
A terminating intuitionistic calculus

Giulio Fellin∗ and Sara Negri†

Abstract

A terminating sequent calculus for intuitionistic propositional logic is obtained by mod-
ifying the R⊃ rule of the labelled sequent calculus G3I. This is done by adding a variant of
the principle of a fortiori in the left-hand side of the premiss of the rule. In the resulting
calculus, called G3It, derivability of any given sequent is directly decidable by root-first
proof search, without any extra device such as loop-checking. In the negative case, the
failed proof search gives a finite countermodel to the sequent on a reflexive, transitive and
Noetherian Kripke frame. As a byproduct, a direct proof of faithfulness of the embedding
of intuitionistic logic into Grzegorcyk logic is obtained.

1 Introduction

In his doctoral thesis [8, 9], Gentzen introduced sequent calculi for classical and intuitionistic
logic. In particular, he solved the decision problem for intuitionistic propositional logic (Int)
with a calculus that he called LI.1 However, Gentzen’s original calculus lacked some desirable
properties, such as invertibility of its rules, that would avoid the need for backtracking. Ever
since then, many other approaches were proposed; we refer to [4] for an extended survey.

The labelled calculus G3I by Dyckhoff and Negri [5, 14, 17] reported in Table 1 solves the
problem of backtracking but doesn’t yet have the property of termination, see for instance the
example of Peirce’s Law in Subsection 3.3. In order to solve this problem, Negri [15,16] showed
how to add a loop-checking mechanism to ensure termination. However, it is desirable to avoid
loop-checking since its effect on complexity is not clear.

Corsi [2, 3] presented a calculus for Int which fulfils the termination property. The key to
get termination is the addition of the following rule:

Γ → ∆,B
a fortiori

Γ → ∆,A ⊃ B

This rule is logically equivalent to the formula B ⊃ (A ⊃ B), which is called the principle of a
fortiori.
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Initial sequent

x ⩽ y,x : P ,Γ → ∆, y : P

Logical Rules
x : A,x : B,Γ → ∆

L∧
x : A∧B,Γ → ∆

Γ → ∆,x : A Γ → ∆,x : B
R∧

Γ → ∆,x : A∧B
x : A,Γ → ∆ x : B,Γ → ∆

L∨
x : A∨B,Γ → ∆

Γ → ∆,x : A,x : B
R∨

Γ → ∆,x : A∨B
x ⩽ y,x : A ⊃ B,Γ → ∆, y : A x ⩽ y,x : A ⊃ B,y : B,Γ → ∆

L⊃
x ⩽ y,x : A ⊃ B,Γ → ∆

L⊥
x : ⊥,Γ → ∆

x ⩽ y,y : A,Γ → ∆, y : B
R⊃

Γ → ∆,x : A ⊃ B

Mathematical Rules

x ⩽ x,Γ → ∆
Ref⩽

Γ → ∆

x ⩽ z,x ⩽ y,y ⩽ z,Γ → ∆
Trans⩽x ⩽ y,y ⩽ z,Γ → ∆

Table 1: The sequent calculus G3I. Rule R⊃ has the condition that y is fresh.

Initial sequent As in G3I

Logical Rules L∧, R∧, L∨, R∨, L⊃, L⊥ as in G3I
x ⩽ y,y : B ⊃ (A ⊃ B), y : A,Γ → ∆, y : B

R⊃t (y fresh)
Γ → ∆,x : A ⊃ B

Mathematical Rules As in G3I

Table 2: The sequent calculus G3It.
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In this paper, we consider the labelled calculus G3I instead, and show that a way to reach
termination consists in modifying its rule R⊃ as follows:

x ⩽ y,y : B ⊃ (A ⊃ B), y : A,Γ → ∆, y : B
R⊃t (y fresh)

Γ → ∆,x : A ⊃ B

Although the idea comes from a similar terminating procedure [6] for the calculus G3Grz for
the provability logic Grz, into which Int is embeddable as detailed in Section 4, we notice that
what we do is actually incorporating a fortiori into R⊃.

2 Structural properties

Consider the sequent calculi G3I and G3It as presented in Tables 1 and 2, respectively.

Theorem 2.1. G3I and G3It are equivalent in the sense that

G3I ⊢ Γ → ∆ if and only if G3It ⊢ Γ → ∆

Proof. Suppose that G3I ⊢ Γ → ∆. We transform the given derivation into one in G3It by
using height-preserving weakening to add whenever needed the extra formula of the form
y : B ⊃ (A ⊃ B) in the premiss of R⊃. So G3It ⊢ Γ → ∆.

Conversely, if G3It ⊢ Γ → ∆, consider the steps of R⊃t:

x ⩽ y,y : B ⊃ (A ⊃ B), y : A,Γ ′→ ∆′ , y : B
R⊃t

Γ ′→ ∆′ ,x : A ⊃ B

...

Γ → ∆

By a Cut with the extra (derivable) sequent→ y : B ⊃ (A ⊃ B), we turn it into premisses of R⊃
with the same conclusions:

→ y : B ⊃ (A ⊃ B) x ⩽ y,y : B ⊃ (A ⊃ B), y : A,Γ ′→ ∆′ , y : B
Cut

x ⩽ y,y : A,Γ ′→ ∆′ , y : B
R⊃

Γ ′→ ∆′ ,x : A ⊃ B

...

Γ → ∆

We conclude by admissibility of Cut in G3I. ■

Theorem 2.2. All the structural properties hold for G3It. In particular,

(i) All the sequents of the following form are derivable in G3It:

(a) x ⩽ y,x : A,Γ → ∆, y : A,

(b) x : A,Γ → ∆,x : A.

(ii) If G3It ⊢ Γ → ∆, then G3It ⊢ Γ (x/y)→ ∆(x/y) with the same derivation height.
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(iii) The rules of weakening,

Γ → ∆
LW

x : A,Γ → ∆

Γ → ∆
RW

Γ → ∆,x : A

Γ → ∆
LW⩽x ⩽ y,Γ → ∆

are height-preserving admissible in G3It.

(iv) All rules of G3It are height-preserving invertible.

(v) The rules of contraction,

x : A,x : A,Γ → ∆
LC

x : A,Γ → ∆

Γ → ∆,x : A,x : A
RC

Γ → ∆,x : A

x ⩽ y,x ⩽ y,Γ → ∆
LC⩽x ⩽ y,Γ → ∆

are height-preserving admissible in G3It.

Proof. The proofs are similar to those of [17, 12.25–12.29]. ■

We will see later that also the rule of cut,

Γ → ∆,x : A x : A,Γ ′→ ∆′
Cut

Γ ,Γ ′→ ∆,∆′

is admissible in G3It (Corollary 3.8). However, the proof that we are going to give is not
syntactical. On the other hand, this formulation of the calculus permits a completeness proof
(Theorem 3.5) that yields at the same time a semantic proof of admissibility of Cut, the finite
model property and a constructive decision procedure.

Remark 2.3. As a consequence of admissibility of LW, rule R⊃ of G3I is admissible in G3It.

We now prove a few lemmata that will be useful later.

Lemma 2.4. The rule

x ⩽ y,Γ → ∆,x : A

x ⩽ y,Γ → ∆, y : A

is admissible in G3It.

Proof. We prove it by induction on the height of the derivation of the premiss.
n = 0: The only nontrivial case is the one in which the premiss is an initial sequent and x : A

is principal. In this case, we can write the sequent as

x ⩽ y,w ⩽ x,w : A,Γ ′→ ∆,x : A,

where Γ ≡ w ⩽ x,w : A,Γ ′. Observe that the sequent

w ⩽ y,x ⩽ y,w ⩽ x,w : A,Γ ′→ ∆, y : A
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is initial. By the rule Trans⩽, we get a derivation of

x ⩽ y,w ⩽ x,w : A,Γ ′→ ∆, y : A,

which is just x ⩽ y,Γ → ∆, y : A, as wanted.
n > 0: The only nontrivial cases are those in which the last rule applied is a right rule and

x : A is principal. If the last rule applied is R∧ and A ≡ B∧C, then we have

x ⩽ y,Γ → ∆,x : B x ⩽ y,Γ → ∆,x : C
R∧

x ⩽ y,Γ → ∆,x : B∧C

We can apply the induction hypothesis to the premisses and get

x ⩽ y,Γ → ∆, y : B,

x ⩽ y,Γ → ∆, y : C.

We conclude by an application of R∧. If the last rule applied is R∨ and A ≡ B∨C, then we have

x ⩽ y,Γ → ∆,x : B,x : C
R∨

x ⩽ y,Γ → ∆,x : B∨C

We can apply the induction hypothesis to the premiss and get

x ⩽ y,Γ → ∆, y : B,y : C.

We conclude by an application of R∨. If the last rule applied is R⊃t and A ≡ B ⊃ C, then we
have

x ⩽ z,x ⩽ y,z : C ⊃ (B ⊃ C), z : B,Γ → ∆, z : C
R⊃tx ⩽ y,Γ → ∆,x : B ⊃ C

We can apply hp-weakening to the premiss and get

y ⩽ z,x ⩽ z,x ⩽ y,z : C ⊃ (B ⊃ C), z : B,Γ → ∆, z : C,

which, by an application of transitivity leads to

y ⩽ z,x ⩽ y,z : C ⊃ (B ⊃ C), z : B,Γ → ∆, z : C.

We conclude with an application of R⊃t. ■

Lemma 2.5. The rule

x ⩽ y,x : A,y : A,Γ → ∆

x ⩽ y,x : A,Γ → ∆

is admissible in G3It.

Proof. We prove it by induction on the height of the derivation of the premiss.
n = 0: The only nontrivial case is the one in which the premiss is an initial sequent and y : A

is principal. In this case, we can write the sequent as

x ⩽ y,y ⩽ z,x : A,y : A,Γ ′→ ∆′ , z : A,
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where Γ ≡ y ⩽ z,Γ ′ and ∆ ≡ ∆′ , z : A. Observe that the sequent

x ⩽ y,y ⩽ z,x ⩽ z,x : A,Γ ′→ ∆′ , z : A

is initial. By transitivity, we get a derivation of

x ⩽ y,y ⩽ z,x : A,Γ ′→ ∆′ , z : A,

which is just x ⩽ y,x : A,Γ → ∆, as wanted.
n > 0: The only nontrivial cases are those in which the last rule applied is a left rule and

y : A is principal. If the last rule applied is L∧ and A ≡ B∧C, then we have

x ⩽ y,x : B∧C,y : B,y : C,Γ → ∆
L∧

x ⩽ y,x : B∧C,y : B∧C,Γ → ∆

Then, by hp-invertibility of L∧, we get

x ⩽ y,x : B,x : C,y : B,y : C,Γ → ∆,

to which the induction hypothesis can be applied:

x ⩽ y,x : B,x : C,Γ → ∆.

We conclude by an application of L∧. If the last rule applied is L∨ and A ≡ B∨C, then we have

x ⩽ y,x : B∨C,y : B,Γ → ∆ x ⩽ y,x : B∨C,y : C,Γ → ∆
L∨

x ⩽ y,x : B∨C,y : B∨C,Γ → ∆

Then, by hp-invertibility of L∨, we get

x ⩽ y,x : B,y : B,Γ → ∆

x ⩽ y,x : C,y : C,Γ → ∆,

to which the induction hypothesis can be applied:

x ⩽ y,x : B,Γ → ∆

x ⩽ y,x : C,Γ → ∆.

We conclude by an application of L∨. If the last rule applied is L⊃ and A ≡ B ⊃ C, then we have

x ⩽ y,x : B ⊃ C,y : B ⊃ C,y ⩽ z,Γ ′→ ∆, z : B x ⩽ y,x : B ⊃ C,y : B ⊃ C,z : C,y ⩽ z,Γ ′→ ∆
L⊃

x ⩽ y,x : B ⊃ C,y : B ⊃ C,y ⩽ z,Γ ′→ ∆

where Γ ≡ y ⩽ z,Γ ′. Then we can apply the induction hypothesis to the premisses:

x ⩽ y,x : B ⊃ C,y ⩽ z,Γ ′→ ∆, z : B

x ⩽ y,x : B ⊃ C,z : C,y ⩽ z,Γ ′→ ∆.

By hp-weakening, these lead to

x ⩽ z,x ⩽ y,x : B ⊃ C,y ⩽ z,Γ ′→ ∆, z : B

x ⩽ z,x ⩽ y,x : B ⊃ C,z : C,y ⩽ z,Γ ′→ ∆.

Now we can apply L⊃ in order to get

x ⩽ z,x ⩽ y,x : B ⊃ C,y ⩽ z,Γ ′→ ∆.

We conclude by an application of transitivity. ■
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Lemma 2.6. The rule

x ⩽ y,x : B ⊃ (A ⊃ B),x : A,Γ → ∆, y : B,y : A ⊃ B

x ⩽ y,x : B ⊃ (A ⊃ B),x : A,Γ → ∆, y : B

is admissible.

Proof. The direction from conclusion to premiss is just an instance of weakening. For the
other direction, we apply invertibility of R⊃t (we notice that the inverse rule does not have the
condition on the eigenvariable, but it can be done on an arbitrary label) to get

x ⩽ y,x ⩽ y,x : B ⊃ (A ⊃ B), y : B ⊃ (A ⊃ B), y : A,y : A,Γ → ∆, y : B,y : B
LC,RC

x ⩽ y,x : B ⊃ (A ⊃ B), y : B ⊃ (A ⊃ B),x : A,y : A,Γ → ∆, y : B
Lemma 2.5, twice

x ⩽ y,x : B ⊃ (A ⊃ B),x : A,Γ → ∆, y : B ■

3 Soundness and completeness

3.1 Semantics

A Kripke model [11] (X,R,val) is a set X together with an accessibility relation R, i.e. a binary
relation between elements of X, and a valuation val, i.e. a function assigning one of the truth
values 0 or 1 to an element x of X and an atomic formula P . The usual notation for val(x,P ) = 1
is x ⊩ P . In Kripke models for intuitionistic logic, the accessibility relation is a preorder, i.e. it
is reflexive

∀x(xRx)

and transitive
∀x∀y∀z(zRy & yRx⇒ zRx),

and therefore it is denoted by the usual symbol ⩽ for a preorder. For convenience, we assume
to have equality = and a binary relation < on X which is transitive and irreflexive, i.e.

∀x(x ≮ x),

and we define ⩽ as its reflexive closure:

x ⩽ y ⇐⇒ (x < y or x = y).

As usual, we denote by ⩾ the inverse relation of ⩽; i.e.

x ⩾ y ⇐⇒ y ⩽ x.

The inductive definition of truth of a proposition in Int in terms of Kripke semantics is:

x ⊮⊥
x ⊩ A∧B if and only if x ⊩ A and x ⊩ B

x ⊩ A∨B if and only if x ⊩ A or x ⊩ B

x ⊩ A ⊃ B if and only if y ⊩ A⇒ y ⊩ B for all y such that x ⩽ y
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Let x ∈ X. We say that ⩽ satisfies the semantic a fortiori property for x if

∀y ⩾ x(y ⊩ B ⊃ (A ⊃ B)&y ⊩ A⇒ y ⊩ B). (SAFx)

Let R be a relation on X. An infinite R-sequence is a sequence (xi)i∈N of elements of X such
that xiRxi+1 for all i ∈N. An infinite R-sequence (xi)i∈N is convergent if there is i ∈N such that
xj = xi for all j > i. We say that R is Noetherian—for short, R satisfies Noeth—if every infinite
R-sequence converges.

Lemma 3.1. Let x ∈ X. If ⩽ is Noetherian and satisfies SAFx, then

∀y > x(y ⊩ B ⊃ (A ⊃ B)).

Proof. Notice that the relation < is transitive, irreflexive and Noetherian. Therefore it follows
that its inverse > satisfies the Gödel–Löb Induction (see [7, Proposition 4.2 and Theorem 4.3]),
that is

∀x(∀y > x(∀z > y Ez⇒ Ey)⇒∀y > xEy) (GL-Ind)

for any given predicate E(x) on X. Therefore, if we let E(x) ≡ x ⊩ B ⊃ (A ⊃ B), it suffices to show
that

∀y > x(∀z > y(z ⊩ B ⊃ (A ⊃ B))⇒ y ⊩ B ⊃ (A ⊃ B)). (1)

So let y > x such that

∀z > y(z ⊩ B ⊃ (A ⊃ B)). (2)

We claim that y ⊩ B ⊃ (A ⊃ B), i.e.

∀z ⩾ y(z ⊩ B⇒ z ⊩ A ⊃ B). (3)

So let z ⩾ y such that z ⊩ B. We have to prove z ⊩ A ⊃ B, i.e.

∀w ⩾ z(w ⊩ A⇒ w ⊩ B). (4)

So let w ⩾ z such that w ⊩ A. The claim is w ⊩ B.

• If w = z, then we already know that z ⊩ B.

• If w > z, then by transitivity w > y and by (2) we get w ⊩ B ⊃ (A ⊃ B). Since w ⊩ A and by
transitivity w ⩾ x, we can apply SAFx and derive w ⊩ B.

Now unroll the proof to get claims (4), (3) and (1), and thus the main claim. ■

Lemma 3.2. Fix x ∈ X. If ⩽ is Noetherian and satisfies SAFx, then x ⊩ B ⊃ (A ⊃ B).

Proof. The claim is equivalent to

∀y ⩾ x(y ⊩ B⇒ y ⊩ A ⊃ B). (5)

Fix y ⩾ x such that y ⊩ B. We claim that y ⊩ A ⊃ B, i.e.

∀z ⩾ y(z ⊩ A⇒ z ⊩ B). (6)

Fix z ⩾ y such that z ⊩ A. We need to prove that z ⊩ B.
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• If z = y, then we already know that y ⊩ B.

• If z > y, then by transitivity z > x and by Lemma 3.1 we get z ⊩ B ⊃ (A ⊃ B). Since z ⊩ A
and by transitivity z ⩾ x, we can apply SAFx and derive z ⊩ B.

Now unroll the proof to get claims (6), and (5), and thus the main claim. ■

Lemma 3.3 (Semantic Lemma). Fix x ∈ X. If ⩽ is Noetherian, then the following are equivalent:

(i) SAFx.

(ii) ∀y ⩾ x(y ⊩ A⇒ y ⊩ B).

Proof. (ii)⇒(i): A fortiori.
(i)⇒(ii): Fix y ⩾ x such that y ⊩ A. We claim that y ⊩ B.

• If y = x, then by Lemma 3.2 we get that x ⊩ B ⊃ (A ⊃ B).

• If y > x, then by Lemma 3.1 we get that y ⊩ B ⊃ (A ⊃ B).

In either case we have y ⊩ B ⊃ (A ⊃ B) and y ⊩ A, thus we can apply SAFx and get y ⊩ B. ■

3.2 Proof search

Consider the proof search procedure as defined in [6]. We have the analogous of 5.3–6:

Theorem 3.4 (Soundness). If G3It ⊢ Γ → ∆, then Γ → ∆ is valid in every reflexive transitive and
Noetherian frame.

Proof. If G3It ⊢ Γ → ∆, then G3I ⊢ Γ → ∆ and therefore Γ → ∆ is valid in every reflexive
transitive frame, a fortiori in every Noetherian one. ■

Theorem 3.5. Let Γ → ∆ be a sequent in the language of G3It. Then it is decidable whether it is
derivable in G3It. If it is not derivable, the failed proof search gives a finite countermodel to the
sequent on a reflexive, transitive and Noetherian frame.

Proof. We adapt the proof of [6, Theorem 5.4], which in turn is an adaptation to labelled se-
quents of the method of reduction trees detailed for Gentzen’s LK by Takeuti [19, Chapter 1,
Paragraph 8].

For an arbitrary sequent Γ → ∆ in the language of G3It we apply, whenever possible, root-
first the rules of G3It, in a given order. The procedure will construct either a derivation in G3It
or a countermodel.
1. Construction of the reduction tree: The reduction tree is defined inductively in stages as
follows: Stage 0 has Γ → ∆ at the root of the tree. For each branch, stage n > 0 has two cases:
Case I: If the top-sequent is either an initial sequent or has some x : A, not necessarily atomic,
on both left and right, or is a conclusion of L⊥, the construction of the branch ends.
Case II: Otherwise we continue the construction of the branch by writing, above its top-sequent,
other sequents that are obtained by applying root-first the rules of G3It(except L⊥) whenever
possible, in a given order and under suitable conditions.

There are 8 different stages: one for each logical rule, Ref⩽ and Trans. At stage 8 + 1 we
repeat stage 1, at stage 8+2 we repeat stage 2, and so on until an initial sequent, or a conclusion
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of L⊥, or a saturated branch (defined below) is found. In applying root-first the rules, we also
copy their principal formulas in the premisses. All such copied formulas, except the principal
formula of L⊃, need not be analysed again and are thus marked as overlined. For instance:

y : A∧B,y : A,y : B,Γ → ∆
L∧

y : A∧B,Γ → ∆

These marked formulas are only auxiliary, and will thus be removed at the end of the procedure
to get the reduction tree.

The stages for the rules other than R⊃t are similar to those in [17, Theorem 11.28].
For formulas of the form y : A ⊃ B in the succedent, we apply rule R⊃t. However, if the

sequent contains x ⩽ y,x : B ⊃ (A ⊃ B), y : A in the antecedent and y : B in the succedent, we
remove it. This is justified by Lemma 2.6.

Finally, we consider the cases of the frame rules Ref⩽ and Trans. As detailed in [5, 6], it is
enough to instantiate Ref⩽ only on terms in the top-sequent.

Observe also that, because of height-preserving admissibility of contraction, once a rule has
been considered, it need not be instantiated again on the same principal formulas (for L⊃ such
principal formulas are pairs of the form x ⩽ y,x : A ⊃ B and it need not be applied whenever its
application produces a duplication of labelled formulas or relational atoms.

To show that the procedure terminates, it is enough to show that every branch in the re-
duction tree for a sequent Γ → ∆ is finite. Every branch contains one or more chains of labels
x1 ⩽ y1, ...,xm ⩽ ym, ...; each label that was not already in the endsequent is introduced by a step
of R⊃t. By inspection of the rules of G3It, it is clear that all the formulas that occur in the
branch are subformulas of Γ ,∆ or formulas of the form A ⊃ (B ⊃ A) for some subformula B ⊃ A
of Γ ,∆. To ensure that all proper chains of labels in the reduction tree are finite, it is therefore
enough to prove that rule R⊃t need not be applied twice to the same formula along a chain of
labels.

Suppose that we have a chain x0 ⩽ x1, ...,xn−1 ⩽ xn in the antecedent and x0 : A ⊃ B,xn : A ⊃ B
in the succedent of a branch in the proof search and that R⊃t has been applied to x0 : A ⊃ B.
We need to show that there is no need to apply R⊃t to xn : A ⊃ B. Suppose for simplicity that
we have a chain of length 2, with x0 ≡ x,x1 ≡ y,x2 ≡ z:

x ⩽ y,y ⩽ z,y : B ⊃ (A ⊃ B),Γ ′→ ∆′ , z : A ⊃ B

...

x ⩽ y,y : B ⊃ (A ⊃ B), y : A,Γ → ∆, y : B
R⊃t

Γ → ∆,x : A ⊃ B

and assume that the top-sequent is closed under all the available rules (excluding R⊃t) of the
reduction procedure. We observe that in the application of L⊃ on y : B ⊃ (A ⊃ B) and y ⩽ z, the
right premiss with z : A ⊃ B both on the left and right is derivable, therefore we only consider
the left premiss with z : B is in the succedent. So we have that y : A (as marked) is in the
antecedent from the first step of R⊃t below, and ∆′ contains z : B is in the succedent from the
application of L⊃ on y : B ⊃ (A ⊃ B) and y ⩽ z (we consider only the left premiss since the right
premiss with z : A ⊃ B both on the left and right is derivable). So we can apply Lemma 2.6 and
discard z : A ⊃ B.
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We can conclude that all the chains of labels in the tree are finite. To conclude that the
branch is finite, it is enough to observe that it contains only a finite number of such chains
(the number of chains is bounded by a function of the number of disjunctions or commas in
the positive part of the endsequent). The general case, where the chain is longer than just
x ⩽ y,y ⩽ z, is similar.

A branch which either ends in an initial sequent or in a sequent with the same labelled
formula, even compound, in both the antecedent and succedent, or at the conclusion of L⊥, or
has a top-sequent amenable to any of the reduction steps, is called unsaturated. Every other
branch is said to be saturated.
2. Construction of the countermodel: If the reduction tree for Γ → ∆ is not a derivation, it has
at least one saturated branch. Let Γ ∗ → ∆∗ be the union (respectively, of the antecedents and
succedents) of all the sequents Γi → ∆i of the branch up to its top-sequent. We define a Kripke
model that forces all the formulas in Γ ∗ and no formula in ∆∗ and is therefore a countermodel
to the sequent Γ → ∆.

Consider the frame X, the nodes of which are the labels that appear in the relational atoms
in Γ ∗ and the order on which is given by these relational atoms. Clearly, the construction
of the reduction tree imposes the frame properties on the countermodel: Ref⩽ and Trans⩽
hold because the branch is saturated. Morever, any label that appears in the sequent will
appear in a relational atom (and thus in the frame X), because the rule Ref⩽ has been applied.
Noetherianity clearly holds because all the strictly ascending chains in the countermodel are
finite by construction.

On the frame (X,⩽) we define the following valuation: for each labelled atomic formula
x : P in Γ ∗ we stipulate that x ⊩ P . Since the top-sequent is not initial, for all labelled atomic
formulas y : Q in ∆∗ we infer that y ⊮ Q. We then show by induction on size(A) that x ⊩ A if
x : A is in Γ ∗ and that x ⊮ A if x : A is in ∆∗. Therefore we have a countermodel to the endsequent
Γ → ∆.

— If A is atomic, then the claim holds by the definition of the model.

— If A ≡ ⊥, it cannot be in Γ ∗, by definition of saturated branch: so x ⊮ A.

— If A ≡ B∧C is in Γ ∗, then by the saturation of the branch we also have x : B and x : C in
Γ ∗. By the induction hypothesis, x ⊩ B and x ⊩ C, and therefore x ⊩ B∧C.

— If A ≡ B∧C is in ∆∗, then by the saturation of the branch either x : B or x : C in ∆∗. By the
induction hypothesis, x ⊮ B or x ⊮ C, and therefore x ⊮ B∧C.

— If A ≡ B∨C is in Γ ∗, then by the saturation of the branch either x : B or x : C in Γ ∗. By the
induction hypothesis, x ⊩ B or x ⊩ C, and therefore x ⊩ B∨C.

— If A ≡ B∨C is in ∆∗, then by the saturation of the branch we also have x : B and x : C in
∆∗. By the induction hypothesis, x ⊮ B and x ⊮ C, and therefore x ⊮ B∨C.

— If A ≡ B ⊃ C is in Γ ∗, then for any occurrence of x ⩽ y in Γ ∗ we find, by saturation and by
the construction of the reduction tree, either an occurrence of y : B in ∆∗ or an occurrence
of y : C in Γ ∗. By the induction hypothesis, in the former case y ⊮ B, and in the latter
y ⊩ C, so in both cases x ⊩ B ⊃ C.
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— If A ≡ B ⊃ C is in ∆∗, we consider the step where it is analysed. If x : C is in the succedent
of that step (or any succedent below it), then by the induction hypothesis x ⊩ B. Since x ⩽
x is also in Γ ∗ by construction of the reduction tree, it follows that x ⊩ B ⊃ C. Otherwise
there is x ⩽ y in Γ ∗ and y : C in ∆∗. By the induction hypothesis y ⊮ C, and therefore
x ⊮ A. ■

Corollary 3.6. If a sequent Γ → ∆ is valid in every reflexive, transitive and Noetherian frame, then
it is derivable in G3It.

Corollary 3.7. A formula A is provable in Int if and only if the sequent→ x : A is derivable in G3It
for some (or any) label x.

Corollary 3.8. The rule of cut,

Γ → ∆,x : A x : A,Γ ′→ ∆′
Cut

Γ ,Γ ′→ ∆,∆′

is admissible in G3It.

The proof of Theorem 3.5 is also of interest because it establishes the finite model property
for Int and gives a constructive decision procedure for it, i.e. an algorithm that, given a sequent,
constructs either a derivation or a countermodel.

3.3 An example: Peirce’s Law

Consider Peirce’s Law:

((P ⊃Q) ⊃ P ) ⊃ P .

If we try to do a derivation of→ x : ((P ⊃Q) ⊃ P ) ⊃ P in G3I, we get

...
L⊃

y ⩽ w,z ⩽ w,y ⩽ z,y ⩽ y,x ⩽ y,w : P ,z : P ,y : (P ⊃Q) ⊃ P → y : P ,z : Q,w : Q
Trans

z ⩽ w,y ⩽ z,y ⩽ y,x ⩽ y,w : P ,z : P ,y : (P ⊃Q) ⊃ P → y : P ,z : Q,w : Q
R⊃

y ⩽ z,y ⩽ y,x ⩽ y,z : P ,y : (P ⊃Q) ⊃ P → y : P ,z : Q,z : P ⊃Q
...

L⊃
y ⩽ z,y ⩽ y,x ⩽ y,z : P ,y : (P ⊃Q) ⊃ P → y : P ,z : Q

R⊃
y ⩽ y,x ⩽ y,y : (P ⊃Q) ⊃ P → y : P ,y : P ⊃Q

...
L⊃

y ⩽ y,x ⩽ y,y : (P ⊃Q) ⊃ P → y : P
Ref⩽

x ⩽ y,y : (P ⊃Q) ⊃ P → y : P
L⊃

→ x : ((P ⊃Q) ⊃ P ) ⊃ P

We see that the left branch is generating a loop and therefore does not terminate. If we try to
do a derivation of→ x : ((P ⊃Q) ⊃ P ) ⊃ P in G3It instead, we get

z ⩽ y,z : Q ⊃ (P ⊃Q), z : P ,y ⩽ y,x ⩽ y,y : P ⊃ (((P ⊃Q) ⊃ P ) ⊃ P ), y : (P ⊃Q) ⊃ P → y : P ,z : Q,z : P ⊃Q
...

L⊃
z ⩽ y,z : Q ⊃ (P ⊃Q), z : P ,y ⩽ y,x ⩽ y,y : P ⊃ (((P ⊃Q) ⊃ P ) ⊃ P ), y : (P ⊃Q) ⊃ P → y : P ,z : Q

R⊃t
y ⩽ y,x ⩽ y,y : P ⊃ (((P ⊃Q) ⊃ P ) ⊃ P ), y : (P ⊃Q) ⊃ P → y : P ,y : P ⊃Q

...
L⊃

y ⩽ y,x ⩽ y,y : P ⊃ (((P ⊃Q) ⊃ P ) ⊃ P ), y : (P ⊃Q) ⊃ P → y : P
Ref⩽

x ⩽ y,y : P ⊃ (((P ⊃Q) ⊃ P ) ⊃ P ), y : (P ⊃Q) ⊃ P → y : P
R⊃t→ x : ((P ⊃Q) ⊃ P ) ⊃ P
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This time, the proof search algorithm defined in the proof of Theorem 3.5 tells us that the
top-sequent of the left branch need not be further analysed, and it helps us in constructing a
countermodel:

x y ⊮ P z ⊩ P ,z ⊮Q

Let’s check that actually x ⊮ ((P ⊃Q) ⊃ P ) ⊃ P , which is equivalent to the statement that

∀x1 ⩾ x(∀x2 ⩾ x1(∀x3 ⩾ x2(x3 ⊩ P ⇒ x3 ⊩Q)⇒ x2 ⊩ P )⇒ x1 ⊩ P )

does not hold. We check that this does not hold for x1 ≡ y. Since y ⊮ P , we just need to show
that

∀x2 ⩾ y(∀x3 ⩾ x2(x3 ⊩ P ⇒ x3 ⊩Q)⇒ x2 ⊩ P ).

We have two cases: if x2 ≡ y, then our claim follows from y ⩽ z and z ⊩ P ⇏ z ⊩ Q; if x2 ≡ z,
then our claim follows a fortiori from z ⊩ P .

4 Embedding into Grzegorczyk logic

We recall that modal logic is obtained by adding the modal operator□ to the language of propo-
sitional logic, and the inductive clauses for valuations of modal formulas are the following:

x ⊮⊥
x ⊩ A ⊃ B if and only if x ⊩ A⇒ x ⊩ B

x ⊩ A∧B if and only if x ⊩ A and x ⊩ B

x ⊩ A∨B if and only if x ⊩ A or x ⊩ B

x ⊩ □A if and only if ∀y(x ⩽ y⇒ y ⊩ A)

The provability logic Grz (Grzegorczyk logic) [1, 6, 10] is an extension of basic modal logic
K with the additional schemata

□A ⊃ A (Ax. T)

□A ⊃ □□A (Ax. 4)

□(G(A) ⊃ A) ⊃ A (Ax. Grz)

where G(A) ≡ □(A ⊃ □A). Grz is characterised by reflexive, transitive and Noetherian frames
[6]. The sequent calculus G3Grz for Grz (see table 3) satisfies all usual structural rules, includ-
ing hp-invertibility of its rules [6].

As shown in [6], an indirect decision procedure for Int is obtained through faithfulness of
the embedding of Int into Grz via the translation □ inductively defined as

P □ ≡ □P
⊥□ ≡ ⊥

(A∧B)□ ≡ A□ ∧B□

(A∨B)□ ≡ A□ ∨B□

(A ⊃ B)□ ≡ □(A□ ⊃ B□)
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Initial sequent

x : P ,Γ → ∆,x : P

Propositional rules
x : A,x : B,Γ → ∆

L∧
x : A∧B,Γ → ∆

Γ → ∆,x : A Γ → ∆,x : B
R∧

Γ → ∆,x : A∧B
x : A,Γ → ∆ x : B,Γ → ∆

L∨
x : A∨B,Γ → ∆

Γ → ∆,x : A,x : B
R∨

Γ → ∆,x : A∨B
Γ → ∆,x : A x : B,Γ → ∆

L⊃
x : A ⊃ B,Γ → ∆

x : A,Γ → ∆,x : B
R⊃

Γ → ∆,x : A ⊃ B

L⊥
x : ⊥,Γ → ∆

Modal rules
x ⩽ y,y : A,x : □A,Γ → ∆

L□
x ⩽ y,x : □A,Γ → ∆

x ⩽ y,y : G(A),Γ → ∆, y : A
R□Z

Γ → ∆,x : □A

Mathematical rules

x ⩽ x,Γ → ∆
Ref⩽

Γ → ∆

x ⩽ z,x ⩽ y,y ⩽ z,Γ → ∆
Trans⩽x ⩽ y,y ⩽ z,Γ → ∆

Table 3: The sequent calculus G3Grz. Rule R□Z has the condition that y is fresh.
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Remark 4.1. The translation of R⊃t is the following:

x ⩽ y,y : □(B□ ⊃ □(A□ ⊃ B□)), y : A□,Γ □→ ∆□, y : B□
(y fresh)

Γ □→ ∆□,x : □(A□ ⊃ B□)

If we set A ≡ ⊤, this is equivalent to

x ⩽ y,y : □(B□ ⊃ □B□),Γ □→ ∆□, y : B□
(y fresh)

Γ □→ ∆□,x : □B□

which is an instance of R□Z, the rule that allows decidability in the calculus G3Grz for Grze-
gorczyk logic.

We now want to give a proof of faithfulness alternative to the one is given in [6] by using
G3It in place of G3I. We first need a few lemmata:

Lemma 4.2. If there is a derivation in G3Grz of height n of

x : A ⊃ B,Γ → ∆, (7)

then there are derivations of height at most n of

Γ → ∆,x : A (8)

x : B,Γ → ∆. (9)

If, moreover, x : A ⊃ B is used as the principal formula somewhere in the given derivation of (7), then
the derivations of (8) and (9) have height at most n− 1.

Proof. We slightly modify the usual argument for hp-invertibility of L⊃ (see, e.g. [13, Proposi-
tion 4.11]). The proof proceeds by induction on n.

n = 0: Trivial.
n > 0: If x : A ⊃ B is principal in the last rule applied in the derivation of (7), then the two

branches are derivations of (8) and (9) of height at most n − 1. If it is not principal and the
last rule applied is rule, then we proceed as usual by applying the induction hypothesis to the
previous step(s) followed by rule. ■

Lemma 4.3. The rule
x ⩽ y,x : A□, y : A□,Γ → ∆

x ⩽ y,x : A□,Γ → ∆

with the condition that the top-sequent is saturated under transitivity, is hp-admissible in G3Grz.

Proof. We prove it by induction on the height of the derivation of the premiss, with a subin-
duction on the length of A.

n = 0: Trivial.
n > 0: The only nontrivial cases are those in which the last rule applied is a left rule and

y : A□ is principal. Cases L∧ and L∨ are dealt with as in Lemma 2.5, and L□ as in [6, Lemma
3.14]. The assumption of saturation under transitivity makes the application of Trans⩽ in [6,
Lemma 3.14] unnecessary, thus ensuring height preservation. ■
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Lemma 4.4. The rule
x : A□,x : □((A□ ⊃ B) ⊃ C),Γ → ∆

x : A□,x : □(B ⊃ C),Γ → ∆

with the condition that the top-sequent is saturated under transitivity, is hp-admissible in G3Grz.

Proof. Suppose that there is a derivation of

x : A□,x : □((A□ ⊃ B) ⊃ C),Γ → ∆ (10)

of height n. We prove by induction on n that there is a derivation of

x : A□,x : □(B ⊃ C),Γ → ∆ (11)

of height n.
n = 0: All cases are trivial.
n > 0: The cases in which the principal formula is in Γ or ∆ are trivial.

Suppose that the principal formula is x : A□, and consider the case in which A ≡ A1∧A2, which
means that we have a derivation

x : A□1 ,x : A□2 ,x : □((A□ ⊃ B) ⊃ C),Γ → ∆
L∧

x : A□,x : □((A□ ⊃ B) ⊃ C),Γ → ∆

We can apply hp-weakening to the premiss and get

x : A□,x : A□1 ,x : A□2 ,x : □((A□ ⊃ B) ⊃ C),Γ → ∆,

to which we can apply the induction hypothesis:

x : A□,x : A□1 ,x : A□2 ,x : □(B ⊃ C),Γ → ∆.

We conclude by L∧ and contraction.
Suppose that the principal formula is x : A□, and consider the case in which A ≡ A1∨A2, which
means that we have a derivation

x : A□1 ,x : □((A□ ⊃ B) ⊃ C),Γ → ∆ x : A□2 ,x : □((A□ ⊃ B) ⊃ C),Γ → ∆
L∨

x : A□,x : □((A□ ⊃ B) ⊃ C),Γ → ∆

We can apply hp-weakening to the premisses and get

x : A□,x : A□1 ,x : □((A□ ⊃ B) ⊃ C),Γ → ∆

x : A□,x : A□2 ,x : □((A□ ⊃ B) ⊃ C),Γ → ∆

to which we can apply the induction hypothesis:

x : A□,x : A□1 ,x : □(B ⊃ C),Γ → ∆

x : A□,x : A□2 ,x : □(B ⊃ C),Γ → ∆

We conclude by L∨ and contraction.
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Suppose that the principal formula is x : A□, and consider the case in which A ≡ A1 ⊃ A2 or
A ≡ P , which means that we have a derivation

y : A,x : A□,x : □((A□ ⊃ B) ⊃ C),x ⩽ y,Γ ′→ ∆
L□

x : A□,x : □((A□ ⊃ B) ⊃ C),x ⩽ y,Γ ′→ ∆

where Γ ≡ x ⩽ y,Γ ′. We can apply the induction hypothesis to the premiss:

y : A,x : A□,x : □(B ⊃ C),x ⩽ y,Γ ′→ ∆

We conclude by L⊃.
Now suppose that the principal formula is x : □((A□ ⊃ B) ⊃ C). This means that we have

y : (A□ ⊃ B) ⊃ C,x : A□,x : □((A□ ⊃ B) ⊃ C),x ⩽ y,Γ ′→ ∆
L□

x : A□,x : □((A□ ⊃ B) ⊃ C),x ⩽ y,Γ ′→ ∆

where Γ ≡ x ⩽ y,Γ ′. We can assume that y : (A□ ⊃ B) ⊃ C is used as the principal formula
somewhere above this instance of L□: if not, then we could find a derivation of (10) without
this instance of L□, this would have smaller height and therefore we could apply the induction
hypothesis to it. By applying hp-weakening to the premiss, we obtain a derivation of

y : A□, y : (A□ ⊃ B) ⊃ C,x : A□,x : □((A□ ⊃ B) ⊃ C),x ⩽ y,Γ ′→ ∆

of height n−1 and such that y : (A□ ⊃ B) ⊃ C is used as the principal formula somewhere above.
Now by Lemma 4.2 on invertibility of L⊃ we get derivations of

y : C,y : A□,x : A□,x : □((A□ ⊃ B) ⊃ C),x ⩽ y,Γ ′→ ∆ (12)

y : A□,x : A□,x : □((A□ ⊃ B) ⊃ C),x ⩽ y,Γ ′→ ∆, y : A□ ⊃ B, (13)

both of height n−2. Now we can apply the induction hypothesis to (12) and get a derivation of

y : C,y : A□,x : A□,x : □(B ⊃ C),x ⩽ y,Γ ′→ ∆ (14)

of height n− 2. By applying hp-invertibility of R⊃ and hp-contraction to (13), we get a deriva-
tion of

y : A□,x : A□,x : □((A□ ⊃ B) ⊃ C),x ⩽ y,Γ ′→ ∆, y : B

of height n− 2, to which we can apply the induction hypothesis and get a derivation of

y : A□,x : A□,x : □(B ⊃ C),x ⩽ y,Γ ′→ ∆, y : B (15)

of height n− 2. Now we can apply L⊃ to (14) and (15) and get a derivation of

y : B ⊃ C,y : A□,x : A□,x : □(B ⊃ C),x ⩽ y,Γ ′→ ∆

of height n− 1, which by an application of L□ gives a derivation of

y : A□,x : A□,x : □(B ⊃ C),x ⩽ y,Γ ′→ ∆

of height n. We conclude by Lemma 4.3. ■
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Now we are able to prove faithfulness:

Theorem 4.5 (Faithfulness). Let Γ ,∆ be multisets of labelled formulas in the language of G3It, Γ ′ ,∆′

multisets of labelled atomic formulas, with Γ ′ possibly containing also relational atoms. If

G3Grz ⊢ Γ □,Γ ′→ ∆□,∆′ ,

then
G3It ⊢ Γ ,Γ ′→ ∆,∆′ .

Proof. By induction on the height of the derivation of Γ □,Γ ′→ ∆□,∆′. We assume that Γ □,Γ ′→
∆□,∆′ is saturated under transitivity: this can be done without loss of generality since it is
equivalent to apply Trans⩽ in the proof search as soon as possible, which is innocuous because
the rule operates on labels already introduced.

n = 0: If it is an initial sequent or the conclusion of L⊥, then it can be translated smoothly
into the corresponding initial sequent or rule in G3It.

n > 0: First, notice that rules for ⊃ cannot produce a sequent of this form. If it is the con-
clusion of a rule for ⊥,∧,∨, then it can be translated smoothly into the corresponding initial
sequent or rule in G3It. If it is derived by a modal rule, then the principal formula can be of
the form □P or of the form □(A□ ⊃ B□). We have four cases:

— If □P is principal on the left, we have (with Γ = x : P ,Γ ′′)

x ⩽ y,y : P ,x : □P ,Γ ′′□,Γ ′→ ∆□,∆′
L□

x ⩽ y,x : □P ,Γ ′′□,Γ ′→ ∆□,∆′

which, using the induction hypothesis, is translated into the admissible G3It step

x ⩽ y,y : P ,x : P ,Γ ′′ ,Γ ′→ ∆,∆′

x ⩽ y,x : P ,Γ ′′ ,Γ ′→ ∆,∆′

— If □P is principal on the right, we have (with ∆ = x : P ,∆′′)

x ⩽ y,y : G(P ),Γ □,Γ ′→ ∆′′□, y : P ,∆′
R□Z

Γ □,Γ ′→ ∆′′□,x : □P ,∆′

which, as seen in Remark 4.1, is the translation of a step of rule R⊃t with ⊤ ⊃ P as the
principal formula.

— If □(A□ ⊃ B□) is principal on the left, we have (with Γ = A⊃B,Γ ′′ and Γ ′ = x ⩽ y,Γ ′′′)

x ⩽ y,y : A□ ⊃ B□,x : □(A□ ⊃ B□),Γ ′′□,Γ ′′′→ ∆□,∆′
L□

x ⩽ y,x : □(A□ ⊃ B□),Γ ′′□,Γ ′′′→ ∆□,∆′

from which, by hp-invertibility of L⊃ in G3Grz we have

G3Grz ⊢ x ⩽ y,y : B□,x : □(A□ ⊃ B□),Γ ′′□,Γ ′′′→ ∆□,∆′

G3Grz ⊢ x ⩽ y,x : □(A□ ⊃ B□),Γ ′′□,Γ ′′′→ ∆□, y : A□,∆′
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to which the induction hypothesis applies:

G3It ⊢ x ⩽ y,y : B,x : A ⊃ B,Γ ′′ ,Γ ′′′→ ∆,∆′

G3It ⊢ x ⩽ y,x : A ⊃ B,Γ ′′ ,Γ ′′′→ ∆, y : A,∆′

We conclude by an application of L⊃.

— If □(A□ ⊃ B□) is principal on the right, we have (with ∆ = x : A⊃B,∆′′)

x ⩽ y,y : G(A□ ⊃ B□),Γ □,Γ ′→ ∆′′□, y : A□ ⊃ B□,∆′
R□Z

Γ □,Γ ′→ ∆′′□,x : □(A□ ⊃ B□),∆′

from which, by hp-invertibility of R⊃ in G3Grz we have

G3Grz ⊢ x ⩽ y,y : G(A□ ⊃ B□), y : A□,Γ □,Γ ′→ ∆′′□, y : B□,∆′ .

By Lemma 4.4, it follows that

G3Grz ⊢ x ⩽ y,y : □(B□ ⊃ □(A□ ⊃ B□)), y : A□,Γ ′′□,Γ ′→ ∆′′□, y : B□,∆′ ,

to which the induction hypothesis applies:

G3It ⊢ x ⩽ y,y : B ⊃ (A ⊃ B), y : A,Γ ,Γ ′→ ∆′′ , y : B,∆′

We conclude by R⊃t. ■

5 Future work

Since the logic Grz studied in the present paper is characterised by reflexive, transitive and
Noetherian frames, we also plan to use the approach of [7] to define a variant of induction
principle, which we may dub Grzegorczyk induction corresponding to rule R□Z:

∀x [∀y ⩽ x(GE(y) =⇒ E(y)) =⇒∀y ⩽ x E(y)] ,

where GE(y) is an abbreviation for ∀z ⩽ y(E(z) =⇒ ∀w ⩽ z E(w)). This can be considered a
weak form of induction compatible with reflexivity, and may give a different perspective of the
semantics of both Grz and Int and may give some insights on the properties of the accessibility
relation.

We then plan to extend the approach of this paper to extensions of Int, such as intermediate
logics [5, 16], modal intuitionistic logic [12] and possibly bi-intuitionistic logic [18].
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