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Extensive studies have focused on the self-propulsion of a droplet in a viscous
environment driven by the Marangoni effect in the absence of inertial effects. In order to
capture the influence of inertia on the self-propulsion of a droplet, we use the singular
perturbation solution for small but finite Reynolds number (Re) flow past a spherical
droplet with inhomogeneous surface tension. We calculate the swimming speed and the
corresponding flow fields generated by the droplet in an axisymmetric unbounded medium
at O(Re2). The present results reveal how the choice of the stress parameter σ , which is the
ratio of the first two modes of the induced stress field, distinguishes between the different
swimming styles, and determines the role of inertia on the swimming speed, energy
expenditure and swimming efficiency of the droplet. Inertia enhances the swimming speed
and the associated swimming efficiency of the droplet by abating the energy expenditure.
It is striking to observe how a droplet swimmer with σ < 0 has a competitive advantage
over a rigid squirmer with an equivalent surface activity due to the existence of an internal
flow. We independently treat the potential influence of the viscosity ratio on the swimming
properties of the droplet at finite Re. Additionally, using linear stability analysis, we
provide insights into the stability of the estimated migration velocity at O(Re). We argue
that the droplet achieves a distinct stable equilibrium velocity, which occurs due to the
inertial effect of the surrounding medium.

Key words: drops, swimming/flying

1. Introduction

Swimming droplets are artificial micro-swimmers that are driven by an asymmetric
distribution of external energy sources across the interface (Maass et al. 2016; Weber
et al. 2019). These systems are of tremendous interest as experimental models for
mimicking the motion of several biological systems (Čejková et al. 2017; Li et al.
2018). For most motile biological systems, the necessary isotropic symmetry breaking
for propulsion occurs intrinsically, i.e. through the beating of the associated appendages
cilia or flagella (Lauga & Powers 2009) or due to shape deformation (D’Ambrosio
& Sinigaglia 2003). However, for droplets, typically the swimmer itself is perfectly
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isotropic, and the associated symmetry is broken through the external energy sources
(Herminghaus et al. 2014; Yoshinaga 2017). In the literature, the propulsion mechanisms
of several external sources are believed to be reasonably well understood (Saintillan
& Shelley 2015; Seemann, Fleury & Maass 2016; Kree, Burada & Zippelius 2017).
Theoretical as well as numerical studies have considered droplets in a chemically reacting
fluid (Kitahata et al. 2011; Thutupalli & Herminghaus 2011; Fadda et al. 2017), in an
inhomogeneous temperature field (Subramanian 1992; Karbalaei, Kumar & Cho 2016)
or droplets that move owing to liquid–liquid phase separation (Lamorgese & Mauri
2011, 2017) etc. In particular, active droplets driven by nonlinear advection effects of the
surfactants (Furtado, Pooley & Yeomans 2008; Mozorov & Michelin 2019) or the thermal
field (Balasubramaniam & Subramanian 2000; Zhang, Subramanian & Balasubramaniam
2001) and surfactant-stabilized droplets driven by solubilization (Pena & Miller 2006;
Ariyaprakai & Dungan 2008) have gained significant attention in the last decade.

All the sources, as mentioned earlier, cause the interface tension of the droplet to
vary along the surface. This phenomenon is known as the Marangoni effect (Scriven
& Sternling 1960; Lauga & Davis 2012). There exist extensive studies for the flow field
around a Marangoni-driven active droplet in the quasi-steady Stokesian regime (Schmitt
& Stark 2013, 2016a,b; Masoud & Stone 2014; Stricker 2017) neglecting the inertial
effect. Inertial swimming within the context of biological systems serves as a useful tool
in several scientific applications (Reynolds 1965; Hamel et al. 2011). Wu et al. (2009)
have demonstrated kinematic separation of mixed bacteria streaming against a wall and
shown that the larger bacteria have a faster rate than the smaller bacteria. However, there
exist preferably a limited number of studies that have quantified the effects of convective
inertia on the kinematics and energetics of swimming droplets (Li & Mao 2001; Mason &
Moremedi 2011) which are potential artificial analogues of biological systems.

Under the influence of inertial effects due to the external fluid, i.e. at finite Reynolds
number (Re), the leading-order approximation to the flow can be found by solving
the standard Stokes equation. In an attempt to find the first-order correction due to the
Reynolds number, an approximation via a regular perturbation expansion fails, as the
computed velocity field invalidates the uniform far-field boundary condition and the higher
approximations diverge at infinity. This is known as the Whitehead paradox in the literature
(Whitehead 1889). In the vicinity of the system, indicated as the Stokes or inner regime,
the viscous effects are dominant. However, there exists an outer region as r > O(Re−1), in
which the strength of the inertial and viscous forces are comparable regardless of the low
Reynolds number approximation. Subsequently, the Stokes solution is ineffectual. Oseen
(1910) fixed this paradox by identifying that the perturbation solution has a singularity at
the far field and solved this by introducing a different length scale to rescale the governing
equations. Proudman & Pearson (1957) were the first to utilize the approach of singular
perturbation and the matched asymptotic expansion to solve the classical problem of low
Reynolds number flow around a solid sphere and a circular cylinder. Later, in view of this,
the inertial effect of a steady flow past a spherical liquid droplet with uniform interfacial
tension was first considered by Taylor & Acrivos (1964).

The velocity fields of a spherical droplet with a non-uniform interfacial tension up to
first order in low Reynolds number flow was attempted by Mason & Moremedi (2011).
Further, several studies have numerically investigated the Marangoni transport of droplets
in presence of the convective effects of fluid inertia (Li & Mao 2001; Bäumler 2014;
Blyth & Pozrikidis 2014; Shardt, Masoud & Stone 2016; Seric, Afkhami & Kondic 2018).
Nevertheless, much less is known about how the inertial effect influences the swimming
characteristics of a Marangoni droplet despite being relevant for artificial systems.
A primary feature of self-induced Marangoni propulsion is to relate the prescribed surface
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activity to the migration velocity, which is useful for developing an artificial swimmer, and
analyse how it is affected by the many factors of the surrounding medium, including the
Reynolds number. Additionally, in the case of active suspensions, it is equally important
to understand how the corresponding power dissipation and the swimming efficiency are
controlled by the Reynolds number.

Following the classical solutions of Proudman & Pearson (1957) and Taylor & Acrivos
(1964) of improving the Stokes solution for a flow past a solid and a fluid sphere,
respectively, in the present study we carefully utilize the matched asymptotic analysis of
a spherical droplet driven by interfacial Marangoni flow at small, but non-zero Reynolds
number and predict the effect of the convective inertia on the swimming velocity, power
dissipation and swimming efficiency of the droplet swimmer. As mentioned earlier, the
variation in the interfacial tension can arise due to different physical mechanisms. In the
present work, we prescribe a generic description of the Marangoni effect across the surface
of the spherical droplet independently of how the variability in the interfacial tension
might have been induced. In this regard, we note that several other studies have examined
the self-propulsion of solid bodies at small, but non-zero, Reynolds numbers, and have
investigated the relevant swimming properties (Khair & Chisholm 2011; Wang & Ardekani
2011; Chisholm et al. 2016). In this work, we probe the answers to similar questions for
a Marangoni-driven axisymmetric droplet swimmer. Towards this, we explicitly calculate
the interior and exterior streamfunctions and the associated swimming velocity up to the
second order in Reynolds number and correlate the results to the swimming characteristics
of a solid squirmer (Lighthill 1952; Blake 1971).

The paper is organized as follows. In § 2, we formulate the problem by introducing the
governing equations and the related boundary conditions for Marangoni propulsion. In § 3,
we employ the singular perturbation and the method of matched asymptotics to determine
the analytical solution up to the first and second orders in Reynolds number. In §§ 4 and 5,
we discuss the impact of the Reynolds number on the swimming characteristics of the
droplet. We provide the main conclusions in § 6.

2. Mathematical model

We consider a spherical fluid droplet of radius a and viscosity μi which is moving with
a velocity U due to an inhomogeneous surface tension γ at the interface in an unbounded
stationary Newtonian fluid with a viscosity μe. The fluids are of different viscosities and
are assumed to be completely immiscible and incompressible. We assume that the resulting
flow in the exterior domain (r > a) due to the presence of the fluid droplet, is a steady low
Reynolds number flow with velocity and pressure fields (ve, pe), while the velocity and
pressure fields interior (r < a) to the droplet (vi, pi) are assumed to be essentially viscous,
i.e. at the zero Reynolds number regime. In view of these assumptions, the flow fields
exterior as well as interior to the droplet satisfy the Navier–Stokes and Stokes equations,
respectively, as (Kim & Karrila 2005)

Re (ve · ∇) · ve = −∇pe + ∇2ve, ∇ · ve = 0, (2.1)

0 = −∇pi + ∇2vi, ∇ · vi = 0, (2.2)

where Re = Uaρe/μe < 1 is the Reynolds number associated with the exterior fluid with
density ρe. The above velocity and pressure fields are presented in a non-dimensionalized
form via ṽ

e,i = ve,i/U , r̃ = r/a, ∇̃ = a ∇ and p̃e,i = a pe,i/μe,i|U |. We have further
dropped the tilde notation for convenience. We now solve the problem within the
reference frame moving with velocity U , which is the migration velocity of the droplet.
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Therefore, the exterior velocity field is expected to meet the migration velocity of the
droplet in the limit r → ∞. The inhomogeneous surface tension (γ ) across the interface
is balanced by a stress jump at the fluid–fluid interface. Consequently, the boundary
condition corresponding to the tangential stresses are formulated as (Saville 1973; Levan
1981)

Σ e
n̂t̂ − Σ i

n̂t̂ = ∇sγ · t̂, r = a, (2.3)

where Σ e, Σ i are the stress tensors corresponding to the external and internal fluids; n̂ and
t̂ are the relevant normal and tangential unit vectors on the surface of the droplet. Further,
we expand the inhomogeneous axisymmetric surface tension as γ (θ) = ∑∞

n=1 γnPn(cos θ)
with the strength γn and Pn(cos θ) are the Legendre polynomials. Now, (2.3) can be
simplified in dimensionless form as

λΣ e
n̂t̂ − Σ i

n̂t̂ = Ts · t̂, r = 1, (2.4)

where λ = μe/μi is the viscosity ratio of the exterior fluid to the interior. The
dimensionless stress field Ts developed at the interface of the droplet given by

Ts =
∞∑

n=1

2
(n + 1)

σnλ

U
∇sPn(cos θ), (2.5)

where σn = (n + 1)a2γn/2μe denotes the corresponding strength. It is evident from the
prescribed definition of Ts that we have characterized the surface stress activity in an
analogous mathematical structure to the slip velocity in the squirmer model (Lighthill
1952; Blake 1971) for further comparison to this classic model of an axisymmetric
spherical micro-swimmer. The normal stress balance can be used to determine the shape
change of the droplet, however, we restrict ourselves to the case of a spherical droplet.
Although, Taylor & Acrivos (1964) have shown that the deformation occurs for a spherical
fluid droplet at first order in Reynolds number, however, in the case of Marangoni
flows, the interfacial tension distribution allows the droplet to remain spherical as it
induces an additional surface force across the interface (Stone & Leal 1990; Hu & Lips
2003). Furthermore, the surface of the droplet is impenetrable and the tangential fluxes
are continuous across the fluid–fluid interface. Therefore, the associated conditions of
immiscibility and continuity of the fluids lead to the following conditions for the normal
and tangential velocity components, respectively,

ve · n̂ = vi · n̂ = 0, (2.6)

ve · t̂ − vi · t̂ = 0. (2.7)

3. Analytical solution of the boundary value problem

In a simplified approach, we have regarded the migration of the droplet as an
axisymmetric motion, and the associated streamfunctions ψ i,e are utilized to describe the
flow fields interior and exterior to the droplet, respectively (Happel & Brenner 1983).
Correspondingly, the radial and the tangential components of velocity fields are expressed
in terms of the streamfunction as

vi,e
r = − 1

r2

∂ψ i,e

∂η
, v

i,e
θ = − 1

r(1 − η2)1/2

∂ψ i,e

∂r
, (3.1a,b)

where η = cos θ . The above streamfunctions are non-dimensionalized as ψ i,e = ψ i,e/a2U.
Therefore, substituting (3.1a,b) in the momentum equations, (2.1) and (2.2) can be
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manifested as (Proudman & Pearson 1957)

1
r2

∂(ψ e,E2
rψ

e)

∂(r, η)
+ 2

r2
E2

rψ
eLrψ

e = 1
Re

E4
rψ

e, (3.2)

E4
rψ

i = 0, (3.3)

where E2
r = ∂2/∂r2 + (1 − η2)/r2 ∂2/∂η2 and Lr = η/(1 − η2) ∂/∂r + 1/r ∂/∂η.

Correspondingly, the far-field (r → ∞) and the near-field (r = 1) boundary conditions
can be expressed in terms of the streamfunction as

ψ e → 1
2

r2(1 − η2) as r → ∞, (3.4)

and at r = 1,

ψ e = ψ i = 0, (3.5)

∂ψ e

∂r
− ∂ψ i

∂r
= 0, (3.6)

λ
∂

∂r

(
1
r2

∂ψ e

∂r

)
− ∂

∂r

(
1
r2

∂ψ i

∂r

)
= −(1 − η2)1/2 σ1 λ (1 + 2 σ η). (3.7)

In the induced stress field Ts, we have asserted the first two terms (n = 2) of the general
series (see (2.5)) to proceed with the calculation. Accordingly, we have defined σ = σ2/σ1
as the relative strength of the first two modes. The flow around the droplet is analysed for
small Reynolds number Re; thus, it is required that we must have σRe < 1 in addition to
the condition Re < 1.

3.1. Singular perturbation technique
It may be noted that the available Stokes solution of the Marangoni propulsion of a
fluid droplet does not provide a valid correction when the viscous and inertial effects are
comparable (Whitehead 1889). The solution breaks down in the limit r ≥ O(Re−1) under
the aforementioned boundary conditions. In this context, the problem of low Reynolds
number flow around the Marangoni droplet may be considered as a singular perturbation
problem (Van Dyke 1975; Hsiao & MacCamy 1982). Consequently, we adopt the singular
perturbation technique followed by the method of matched asymptotic (Kaplun 1957;
Proudman & Pearson 1957) to analytically obtain the asymptotic expansions of the
governing streamfunctions of the interior and exterior fluids and analyse the kinematics
and energetics of a Marangoni-driven droplet (figure 1).

3.1.1. Inner or Stokes regime
In the matched asymptotic expansions, we decompose the continuous phase of the fluid

(r > 1) into two separate overlapping regions, the Stokes or the inner regime and the Oseen
or outer regime. In the Stokes regime, where r ∼ O(1) and Re < 1, we consider that the
viscous effects are dominant and the exterior streamfunction is manifested as

ψ e = f0(Re)ψ e
0 + f1(Re)ψ e

1 + . . . , (3.8)

such that fn+1(Re)/fn(Re) → 0 as Re → 0. Also, we have assumed that the fluid interior
(r < 1) to the droplet is highly viscous and obeys the Stokes equation. Consequently, we
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U

x

Ts

z

y
aθ

μi

μe

Stokes regime

Oseen regime

FIGURE 1. The schematic representation of the droplet (of viscosity μi) with an interfacial
stress field Ts in a low Reynolds number fluid of viscosity μe (< μi). A fictitious boundary
separates the Stokes and Oseen regimes; U indicates the far-field migration velocity of the
droplet in the Oseen regime.

adopt a similar expansion for the interior streamfunction ψ i as

ψ i = f0(Re)ψ i
0 + f1(Re)ψ i

1 + . . . , (3.9)

where we have used the same expansion coefficients that were used in the
exterior streamfunction for simplifying the calculations. The inner expansion of the
streamfunctions ψ e and ψ i, i.e. (3.8) and (3.9), must satisfy the equations (3.2) and (3.3),
respectively, along with the boundary conditions (3.5)–(3.7). The inner expressions are
valid in the Stokes regime, therefore, we are restricted to adopt the far-field condition (as
in (3.4)) directly. However, the contribution of the far field in the inner expansions of the
exterior and interior streamfunctions (ψ e or ψ i) are later obtained through the matching
condition with the outer expansion corresponding to the Oseen region (Proudman &
Pearson 1957).

3.1.2. Outer or Oseen regime
In the outer (Oseen) region, where r ∼ O(Re−1), the inertial term Re(ve · ∇) · ve from

the Navier–Stokes equation ((2.1)) is not negligible and, hence, in this region the inner
expansion of the exterior streamfunction ((3.8)) is not valid. This can be avoided by
using a suitable length scale to rescale the equation (Oseen 1910). Accordingly, the Oseen
variables are defined as

r̂ = r Re, Ψ e = Re2 ψ e, (3.10a,b)

and a straightforward substitution will ascertain (3.2) that

1
r̂2

∂(Ψ e,E2
r̂Ψ

e)

∂(r̂, η)
+ 2

r̂2
E2

r̂Ψ
eLr̂Ψ

e = E4
r̂Ψ

e, (3.11)

where the operators E2
r̂ and Lr̂ are similar to those defined in the former section. The

corresponding far-field condition ((3.4)) takes the form

Ψ e → 1
2

r̂2(1 − η2) as r̂ → ∞. (3.12)

As before, the exterior streamfunction in the Oseen region is expressed as

Ψ e = F0(Re)Ψ e
0 + F1(Re)Ψ e

1 + . . . , (3.13)
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where Fn+1(Re)/Fn(Re) → 0 as Re → 0.

3.2. Leading-order calculation
The leading-order solution of the Stokes expansion of the interior streamfunction (r < 1)
satisfies the Stokes equation E4

rψ
i
0 = 0. Therefore, an appropriate solution which is regular

at the origin (r → 0) is given by Happel & Brenner (1983)

ψ i
0 =

∞∑
n=1

(
Ci

nrn+1 + Di
nrn+3) Qn(η), (3.14)

where Ci
n and Di

n are the unknown coefficients, and Qn(η) = ∫ η
−1 Pn(η

′)dη′. Likewise, the
leading order of the Stokes expansion of the exterior streamfunction (3.8) also satisfies
E4

rψ
e
0 = 0, thus, the solution can be computed as

ψ e
0 = Ce

1 r2 Q1(η)+
∞∑

n=1

(
Ae

nr−n + Be
nr2−n

)
Qn(η). (3.15)

It may be noted that the above solution of the exterior streamfunction is obtained by
avoiding the singularities and in view of the uniform far-field streamfunction in the limit
r → ∞. It is evident that, concerning the uniform far field and the prescribed surface
activity ((3.7)), the higher-order (n ≥ 3) terms in the general expansions of the interior
and exterior streamfunctions are zero. Correspondingly, the unknown coefficients (Ci

n,Di
n)

and (Ae
n,Be

n) can be determined by employing the aforesaid boundary conditions at the
fluid–fluid interface. However, the coefficient of far field, i.e. Ce

1, can be determined by
matching the leading-order solutions of the Stokes and Oseen regimes. Thus, the general
solutions of the leading-order interior (r < 1) and exterior (r > 1) streamfunctions can be
obtained as

ψ i
0 = λ (3Ce

1 + 2σ1)

6(1 + λ)
(
r4 − r2) Q1(η)− 2σ2λ

(5U(1 + λ))
(
r2 − r4) Q2(η), (3.16)

ψ e
0 =

(
Ce

1r2 − ((3 + 2λ)Ce
1 − 2σ1λ/3U)

2(1 + λ) r + (Ce
1 − 2σ1λ/3U)
2(1 + λ)r

)
Q1(η)

+ 2σ2λ

(5U(1 + λ))
(

1 − 1
r2

)
Q2(η). (3.17)

Now, the leading-order solution in the Oseen regime should necessarily agree with the
uniform far-field condition at infinity. Consequently, we indicate Ψ e

0 as (from (3.12))

Ψ e
0 = −r̂2Q1(η) with F0(Re) = 1. (3.18)

3.2.1. Determination of Ce
1

In order to match the leading-order solutions of the Stokes and Oseen regimes, we
further express (3.17) in terms of the Oseen variables and consider the limit Re → 0.
This would imply that Ce

1 = −1. Thus, Stokes solution for the Marangoni-driven droplet
is recovered (Balasubramaniam & Subramanian 2000; Schmitt & Stark 2016b).
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3.3. First-order corrections
Under the assumption of negligible inertial effect, the first order of the interior
streamfunction gives rise to the Stokes equation, i.e. E4

rψ
i
1 = 0, which admits a general

solution as been mentioned in (3.14). On the other hand, after substituting (3.8) and
(3.13) in (3.2) and (3.11), respectively, the governing equations for the first-order exterior
streamfunction in the Stokes and Oseen regimes, respectively, can be obtained as

f1(Re)
Re

E4
rψ

e
1 = 1

r2

∂(ψ e
0 ,E2

rψ
e
0)

∂(r, η)
+ 2

r2
E2

rψ
e
0 Lrψ

e
0, (3.19)

E4
r̂Ψ

e
1 = (1 − η2)

r̂
∂(E2

r̂Ψ
e

1 )

∂η
+ η

∂(E2
r̂Ψ

e
1 )

∂ r̂
. (3.20)

In the following, we set f1(Re) = Re without the loss of generality (Proudman & Pearson
1957). Further, by substituting (3.17) in (3.19), the governing equation of ψ e

1 can be
simplified to,

E4
rψ

e
1 =

(
6 Ae

2Be
1

5r4
+ 6 Ae

2

5r6

(
Be

1 + 6Ae
1

))
Q1(η)

+
(

6 Be
1

r2
− 6 (Be

1)
2

r3
− 6 Ae

1Be
1

r5
− 24(Ae

2)
2

7r5
+ 48 (Ae

2)
2

7r4

)
Q2(η)

+
(

144 Ae
2Be

1

5r4
− 24 Ae

2

r3
+ 84 Ae

2Ae
1

5r6
− 36 Ae

2Be
1

5r6

)
Q3(η)

+
(

120 (Ae
2)

2

7r7
− 144 (Ae

2)
2

7r7

)
Q4(η), (3.21)

where Ae
1,Be

1,Ae
2 are the coefficients of the leading-order solution of the exterior

streamfunction in the Stokes regime (see (3.15)) which have been determined using the
boundary conditions mentioned in § 3.2. It may be noted that without explicit substitution
of the coefficients, the structure of inhomogeneous part of (3.21) appears identical to the
analysis by Wang & Ardekani (2011) for the inertial effects on a squirmer. Accordingly,
we write the general solution of (3.21) as ψ e

1 = ∑4
n=1 gn(r)Qn(η), where

g1(r) =
(
αe

1

r
+ βe

1r + γ e
1 r2 − 3

20
Ae

2Be
1 + Ae

2

10r2

(
Ae

1 + Be
1/6

))
,

g2(r) =
(
αe

2

r2
+ βe

2 − (Be
1)

2

4
r + Be

1

4
r2 +

(
Ae

1Be
1

4
+ (Ae

2)
2

7

)
1
r

+ (Ae
2)

2

21r3

)
,

g3(r) =
(
αe

3

r3
+ βe

3

r1
+ 2

5
Ae

2Be
1 − Ae

2

5
r + 1

20r2

(−7Ae
2Ae

1 + 3Ae
2Be

1

))
,

g4(r) =
(
αe

4

r4
+ βe

4

r2
− (Ae

2)
2

7r
− 3(Ae

2)
2

14r3

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.22)

The above expressions are determined considering the fact that the streamfunction
in the Stokes regime should not contain higher-order terms (in r) than the uniform
far-field streamfunction. All the unknown coefficients (αe

n, β
e
n) and (Ci

n,Di
n) at O(Re)

are to be determined from the boundary conditions mentioned in (3.5)–(3.7). Further,
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Inertial active droplet 904 A28-9

to determine γ e
1 , we match the coefficient of the highest order of r in ψ e

1 (i.e. r2) to
the same in the first-order solution in the Oseen regime, which we determine in what
follows.

According to Goldstein (1929), (3.20) can be solved using a transformation E2
r̂Ψ

e
1 =

er̂η/2φ. Hence, the general solution of Ψ e
1 that vanishes at infinity and η = ±1 can be

determined as (Proudman & Pearson 1957) (for details see appendix A)

Ψ e
1 = −Be

1 (1 + η)

(
1 − exp

(
− r̂(1 − η)

2

))
. (3.23)

3.3.1. Determination of γ e
1

From the first-order solutions in the Stokes regime (i.e. ψ e
1 ) and Oseen regime (i.e. Ψ e

1 ),
the coefficient of the highest-order term r2 or r̂2 can be identified as

Ψ e
1 ≈ Be

1

8
(1 − η2) (1 + η) r̂2, (3.24)

ψ e
1 ≈

(
γ e

1 r2 Q1 + Be
1

4
r2 Q2

)
. (3.25)

In view of the matching condition, (3.25) can be expressed in term of the Oseen variables.
Correspondingly, (3.24) should agree with (3.25), and γ e

1 which determines γ e
1 = −Be

1/4.
This is supported by the results of Wang & Ardekani (2011).

3.4. Second-order correction
From (3.2) and (3.11), the governing equations for the second-order exterior
streamfunction in the inner and Oseen regimes are respectively given by

E4ψ e
2 = 1

r2

(
∂(ψ e

0,E2ψ e
1)

∂(r, η)
+ ∂(ψ e

1 ,E2ψ e
0)

∂(r, η)

)
+ 2

r2

(
E2ψ e

0Lψ e
1 + E2ψ e

1Lψ e
0

)
, (3.26)

E4
r̂Ψ

e
2 = (1 − η2)

r̂
∂(E2

r̂Ψ
e

2 )

∂η
+ η

∂(E2
r̂Ψ

e
2 )

∂ r̂
, (3.27)

where we have set f2(Re) = Re2 in the inner regime without loss of generality. Further,
using the solutions for ψ e

0 and ψ e
1 ((3.17) and (3.22)), the inhomogeneous part (right-hand

side) of (3.26) can be obtained in accordance with the angular dependency Qn(η). It
may be noted that, due to the arduous structure of the inhomogeneous part, we pursue
the solution of the second-order streamfunction ψ e

2 up to the first mode (n = 1), i.e. the
contribution of the streamfunction that is necessary for determining the migration velocity.
A straightforward calculation of the complementary solution and the particular integral
yields

ψ e
2 =

(
ae

1

r
+ be

1r + ce
1r2 − 3

20

(
Ae

2β
e
1 − Ae

1Be
1

2
− Be

1β
e
2

)

+
(

−α
e
1

50
− βe

1

300
− Ae

1β
e
2

10
+ Be

1α
e
2

60

)
1
r2

− (Ae
1)

2Be
1

200r3

)
Q1(η), (3.28)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

65
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.657


904 A28-10 A. Dhar, P. S. Burada and G. P. Raja Sekhar

where the unknown coefficients ae
1 and be

1 can be determined from the boundary conditions
prescribed in (3.5)–(3.7) and the coefficient ce

1 from the matching condition with the
second-order streamfunction in the Oseen regime.

Regarding this, we notice that the governing equation for Ψ e
2 in the Oseen regime is

identical to (3.20) with Ψ e
1 replaced by Ψ e

2 . Therefore, a solution up to the first mode
(Q1(η)) is analogous to (A 1). Additionally, the first mode contribution of the derived
inner streamfunction ( i.e. ψ e ∼ ψ e

0 + Reψ e
1 ) in the Oseen regime is quantified as E2ψ e ∼

−2βe
1Q1(η)/r at O(Re2). Consequently, the unknown coefficient A1 for the second-order

streamfunction in the Oseen regime is retrieved as A1 = −βe
1. Furthermore, an appropriate

matching condition yields ce
1 = −βe

1/4.
In this context, the fundamental difference between a passive and an active spherical

body was noted by Khair & Chisholm (2011). For any creeping flow past a passive droplet,
due to the existence of a uniform far-field velocity of the ambient medium, a finite net
force acts on the surface of the body, whereas, for an active self-propelling system, due to
the force-free nature of the motion, the far-field velocity typically indicates the migration
velocity of the swimmer. Apparently, by virtue of this, the logarithm terms (O(Re2 ln Re)),
which appear in the second order in the Stokes expansion for a passive system, do
not appear at O(Re2) (Khair & Chisholm 2011) for active systems. This summarizes
the complete calculation of the streamfunctions in the Stokes and Oseen regimes for a
Marangoni-driven droplet up to O(Re) and an approximated first mode solution for the
exterior streamfunction at O(Re2). In the following sections, we allude the significance of
this inertial forcing encountered by the droplet on its swimming motility, flow fields and
energy expenditures utilizing the complete general solutions up to O(Re) and comment on
the distinctness of the first-order and second-order corrected migration velocities.

4. Results: first-order correction

4.1. Drag on the surface of the droplet
For evaluation of the drag on the surface of the droplet, we proceed with the streamfunction
(ψ e = ψ e

0 + Reψ e
1 ) in the Stokes or inner regime which is well founded in the vicinity of

the droplet. For axisymmetric swimming, the non-zero component of the drag force acting
in the z-direction is given by

D =
∫

s
(Σrr cos θ −Σrθ sin θ) ds, (4.1)

where ds is the surface element of the droplet. Having computed the velocity fields from
the streamfunction, we further obtain the corresponding stresses and arrive at the following
expression for dimensionless drag force

D ≈ D0 + Re D1, (4.2)

where D0 and D1 are evaluated as

D0 = 2π(3 + 2λ)
1 + λ

(
1 − 1

U

)
, (4.3)

D1 = π(3 + 2λ)2

4(1 + λ)2
(

1 − 1
U

(
11 + 10λ
3 + 2λ

+ σ(36 + 67λ+ 26λ2)

250(1 + λ)(3 + 2λ)

)
− σ(2 + λ)

50 U2(1 + λ)
)
,

(4.4)
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Inertial active droplet 904 A28-11

with U → U/U0 as the dimensionless velocity of the droplet. We have used U0 =
−2σ1λ/(3(3 + 2λ)) as the reference scale, which is the standard locomotion speed for
a Marangoni stress-driven droplet in the limit Re → 0 (Schmitt & Stark 2016b). For
self-propulsion of the droplet, the net drag (D) must vanish on the surface of the droplet.
Consequently, we arrive at the following quadratic equation in U,

D =
(

2 + Re
3 + 2λ

4(1 + λ)
)

U2 −
(

2 + Re
11 + 10λ
4(1 + λ) + Re σ

(36 + 67λ+ 26λ2)

250(1 + λ)2
)

U

− Re σ
(2 + λ)(3 + 2λ)

50(1 + λ)2 = 0. (4.5)

The migration velocity U can be determined by solving the above quadratic equation up
to O(Re) limit. The approximated solutions can be written as

U1 ≈ 1 + Re
(
1 + σ

(
0.134 − 0.064λ+ 0.066λ2)) , (4.6)

U∗
1 ≈ −Re σ

(
0.06 − 0.05λ+ 0.06λ2) . (4.7)

It may be noted that the above solutions are obtained subject to the constraint λ < 1 up to
O(λ2). This constraint indicates that the interior fluid is more viscous than the exterior,
consistent with our prior assumption. Correspondingly, the σReλ < 1 and σReλ2 < 1
conditions are maintained in the further calculations. We observe that U∗

1 (as in (4.7))
vanishes in the limit Re → 0. Hence, we treat U1 (as in (4.6)) as the corrected migration
velocity U at O(Re) for the sake of concurrence of the velocity field and the associated
swimming characteristics in the limit Re → 0.

4.2. Migration velocity
In the absence of inertial effect, i.e. in Re → 0 limit, the locomotion speed of the droplet
is essentially controlled by the first mode of the surface stress activity. However, (4.6)
implies that the second mode of the induced stress field plays a predominant role in
the migration velocity of the droplet for finite Reynolds numbers. In figure 2(a), the
variation of U with the Reynolds number Re has been depicted for a set of σ values.
Typically, the inertial effect of the medium reduces the viscous resistance for the droplet
and hence the migration velocity is enhanced. In pursuance of comparison with the
low Reynolds number characteristics of the squirmers, which is the classical model for
analysing the migration of micro-swimmers, a straightforward analysis of the surface
flows and the associated stresslet strength of any Marangoni stress-driven flow will imply
that β = β2/β1 ∼ −σ2/σ1 (Schmitt & Stark 2016b). For squirmers using purely tangential
velocity actuation, one can categorize the swimmer as neutral when β = 0, a pusher (or
puller) when β is negative (or positive). This can be verified by the swimming patterns
observed in figure 3 where the streamlines for σ = −5 are analogous to the swimming
pattern of a puller (β > 0) and vice versa.

For solid squirmers, pushers (β < 0) have their locomotion speed increased while for
pullers (β > 0), the speed decreases with Re. Further, for a neutral (β = 0) squirmer
stresslets are absent in the external medium; hence, the migration velocity remains
unaltered by Re (Wang & Ardekani 2011). In contrast, the observation that the migration
velocity of a swimming droplet exhibits an increasing trend with Re for any value
of σ is intriguing. Similar to a neutral squirmer, for σ = 0, due to the absence of
vortices in the exterior medium, the interfacial stress in the direction of migration
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FIGURE 2. (a) The dimensionless migration velocity (U) as a function of Re, for different σ
values fixing σ1 = 1 and λ = 0.5. We have varied Re in such a way that the conditions σRe < 1,
σReλ < 1 and σReλ2 < 1 are satisfied. (b) The variation of the surface stress of the spherical
droplet swimmer, in the direction of migration, as a function of polar angle θ for different σ
values. The solid and dashed lines (green & blue) represent the stress variation for Re = 0 and
Re = 0.19, respectively. For σ = 0, the solid and dashed lines coincide.

z

x
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FIGURE 3. The comparison of the streamlines of the velocity field of the droplet swimmer with
(a) σ = 5, (b) σ = 0 and (c) σ = −5. The red lines and the black arrow lines represents the
streamlines for Re = 0.19 and the Re = 0 limit, respectively at λ = 0.5. The solid black arrow
indicates the direction of the migration.

(i.e. negative z-direction) remains unaltered at finite Re (see figure 2b). However, for
droplets with σ = 0, vortices are formed interior to the droplet, which gets redistributed
due to the inertial effects (see figure 3b). Therefore, the migration velocity evolves with
Re. Straightaway, from (4.6) we note that the subsequent increase from the neutral case
is relatively higher or lower for σ > 0 or σ < 0, respectively. Figure 3(a) depicts that, for
σ = 5, the stresslets or the closed-streamline re-circulatory regions of the external fluid,
developed in the direction of the migration, get abbreviated due to finite inertial effects.
Subsequently, the interfacial stress in the direction of migration gets reduced for σ > 0
(see figure 2b) and the migration velocity increases significantly, identical to the behaviour
of an equivalent squirmer (with β < 0). Surprisingly for σ = −5, although the external
stresslets enlarge due to inertial effect, which successively enhances the interfacial stress
(see figure 2b), the migration velocity increases with Re. This is due to the existence of
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FIGURE 4. (a) The power dissipation and (b) the corresponding efficiency of the droplet
swimmer as a function of the Reynolds number Re for different σ values fixing σ1 = 1 and
λ = 0.5. Here, the absolute power and efficiency of the droplet are scaled with the respective
values at Re → 0 limit, i.e. P → P/PRe→0 and η → η/ηRe→0.

prominent counter rotating vortices of the interior flow in the direction of migration of
the droplet (see figure 3c), which re-acclimate and retaliate the enhanced stress at finite
Re (Mason & Moremedi 2011). In this regard, we note that the previous counteraction for
σ < 0 is inconceivable for an equivalent solid squirmer (with β > 0). This alludes to the
fact that the droplet swimmers are more malleable at finite Re than its rigid counterparts.

Furthermore, as a consequence of truncation up to λ2, we observe that Re quadratically
couples with λ and σ (see (4.6)). Correspondingly, the magnitude of net migration velocity
(−2σ1λ/(3(3 + 2λ))U increases monotonically as a function of λ (within the limit λ < 1)
with escalation governed by the choice of σ at O(Re). This is identical to the qualitative
behaviour of U vs. λ in the limit Re → 0. Overall, the above results highlight the fact that
within the insisted range λ < 1 the inertial effect of a droplet is invariably lower than the
external fluid, therefore both Re and λ synergistically enhance the locomotion speed of the
droplet swimmer, and a keen choice of σ determines the percentage increase.

4.3. Power dissipation and efficiency
Primarily, the rate of work done by the swimmer can be quantified by P = − ∫

(Σ e · n̂) ·
ve ds, which can be calculated with the help of constitutive relations and the corresponding
flow fields of the swimmer. Additionally, using the reciprocal theorem, the viscous
dissipation of a spherical body with purely tangential surface activity can be written
in terms of the vorticity and the surface velocity of the swimmer (Stone & Samuel
1996; Masoud & Stone 2019). Following this, one may infer that with increasing Re, the
droplet that minimizes the vorticity will also minimize the power dissipation. Figure 4(a)
illustrates this trend. The vortices in the vicinity of the droplet when σ < 0 get outweighed
for non-zero Re, which enhance the corresponding dissipated power with increasing Re.
Nevertheless, for σ ≥ 0, the dissipated power decreases monotonically due to abbreviation
or redistribution of the external or internal vortices, respectively. One might conjecture
that this behaviour contradicts the Helmholtz minimum dissipation theorem (Batchelor
1967), which guarantees that a Stokes flow field dissipates less energy than any other
incompressible flow field with the same boundary velocities. However, the theorem does
not apply here as the far-field boundary velocity is denoted by the migration velocity of
the droplet which depends on Reynolds number.
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While the energetic cost of moving through a medium is an essential property of
locomotion, for self-propelling systems, it is relevant to investigate how the properties
of the swimmer and the surrounding medium influence the efficiency of the locomotion.
According to Lighthill (1952), the efficiency (η) of a swimmer is defined as the ratio of the
power necessary to pull the swimmer at the swimming speed (i.e. FH U) to the rate of work
done (P) by the swimmer, i.e. η = FH U/P. Here, we consider FH as the hydrodynamic
force acting on the spherical droplet at O(Re) limit, which is given by (Taylor & Acrivos
1964)

FH ∼ 2π

(
3 + 2λ
1 + λ + Re

(3 + 2λ)2

8(1 + λ)2
)
. (4.8)

Note that FH also represents the Hadamard and Rybczynski drag force of a droplet in
the limit Re → 0 (Clift, Grace & Weber 1978; Sadhal, Ayyaswamy & Chung 1997). The
above expression agrees with the well-established low Reynolds number drag of a solid
sphere in the limit λ→ 0 (Proudman & Pearson 1957). Note that the swimming efficiency
is systematically higher over the entire range of Re (see figure 4b) for σ > 0 and σ = 0.
It would be reasonable to expect that droplets with σ > 0 are more efficient than the
droplets with σ = 0. Notably, for σ = 5, η is significantly pronounced (more than 1.5
times) in the limit σRe < 1, whereas for σ = −5 the efficiency meagrely reduces due to
higher power consumption at O(Re). Although for σ < 0, U increases as a function of Re,
the output power FHU under performs the dissipated power P, which further decreases the
efficiency. This reinforces the fact that for a broader class of droplets (σ ≥ 0) swimming
against fully resistive viscous medium is challenging and less efficient (Purcell 1977).
When inertia is present, the droplets (σ ≥ 0) effectively exploit the depleted viscous
resistance from the external medium to gain higher motility as well as energetically
efficient swimming. This finding is analogous to the efficiency of a solid squirmer in a
low Reynolds number flow.

Moreover, our results reveal some noticeable observations on the behaviour of P
and η with respect to the viscosity ratio λ at finite Re. Recall that for a droplet with
σ = 0, no additional λ dependency is witnessed in the corrected migration velocity Ũ
(see (4.6)). Consequently, all the associated swimming properties necessarily follow the
corresponding Stokesian behaviour (i.e. at Re → 0) with λ. Interestingly, for σ > 0, the
Stokesian behaviour also persists with increasing λ at O(Re) despite an acquired λ2

reliance. Subsequently, we observe P (or η) monotonically decreases (or increases) with λ
in the limit λ < 1 (see figure 5). However, for σ < 0, as mentioned earlier that the stresslets
generated by the swimmer intensify due to the inertial effect. Consequently, the apparent
extent of the swimmer (i.e. swimmer with the associated vortices) increases at finite Re.
Therefore, towards higher λ (within the limit λ < 1) the Reynolds number associated
with the internal fluid becomes comparable to the Reynolds number of the external fluid.
Consequently, the swimmer with σ < 0 dissipates lower power (P) and exhibits higher
efficiency (η) towards higher λ and the foreseen increasing (or decreasing) trend for η (or
P) discontinues at higher λ (see figure 5).

4.4. Linear stability analysis of the migration
In the preceding section, we have shown the impact of the inertial effect on the
self-propulsion of the droplet with inhomogeneous surface tension. Towards this, we
have asserted the dimensionless velocity U = U1 as the coherent solution at O(Re).
However, the present system incorporates the nonlinear convective inertial effects of
the surrounding medium; this persuades the investigation of the linear stability of drag
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FIGURE 5. (a) The power dissipation and (b) the corresponding efficiency of the droplet
swimmer as a function of the viscosity ratio λ for different σ values at Re = 0.19. Here, the
absolute power and efficiency of the droplet are scaled as P → P/Pλ→1 and η → η/ηλ→1,
respectively.
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U1
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FIGURE 6. The nonlinear drag function D ((4.5)) as a function of the dimensionless migration
velocity U at Re = 0.19, λ = 0.5, and at different σ values. U1 and U∗

1 are the fixed points of
the function. The arrows indicate the trend of the function near the fixed points, which also
demonstrates the stability.

function D derived in (4.5). Figure 6 illustrates the fixed points of the drag function D,
which mark the migration velocities U1 and U∗

1 . We perform the linear stability analysis
around the fixed points. We analyse the first derivative of the drag function D at U1 and U∗

1 ,
which measures the rate of decay to the corresponding fixed points. Further investigation
indicates that at U = U1, ∂D/∂U > 0, whereas at U = U∗

1 , we have ∂D/∂U < 0 for all σ
values. Interestingly, the negative slope at the latter fixed point establishes U = U∗

1 as an
asymptotically stable swimming state of the droplet swimmer, which corresponds to zero
migration in Re → 0 limit. This can be understood as follows.

The external sources for inhomogeneous surface tension i.e. external thermal or
chemical gradients, or inhomogeneous coverage of surfactant molecules reduce the local
interfacial tension (γ ), developing the Marangoni flow towards the higher γ value.
However, the Marangoni flow across the interface induces a short-lived motion of the
droplet. In the absence of external forces, neglecting the inertial effect of the medium,
the long-time limit leads to an equilibrium state of the droplet. This corresponds to no
migration as the droplet achieves a state of uniform interfacial tension (Izri et al. 2014).
Nevertheless, for low but finite Reynolds number due to nonlinear convective effect of the
surroundings, we proclaim that at a later stage the velocity of the droplet decreases from
the initial velocity U1 and develops a distinct migration velocity U∗

1 before impending
the halt. This asymptotically stable migration velocity is an outcome of the nonlinear
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(U − 1)

σ = 5 σ = −5

Re O(Re) O(Re2) O(Re) O(Re2)

10−4 0.00016 0.00016 0.00004 0.00004
10−3 0.00159 0.00161 0.00041 0.00042
10−2 0.01593 0.01732 0.00408 0.00498
10−1 0.15925 0.29887 0.04075 0.13134

TABLE 1. A direct comparison of the quantitative increase of U at O(Re) and O(Re2).

interaction of the droplet with the surrounding medium and is dictated by the Reynolds
number Re and the choice of σ . For σ = 0, U∗

1 is zero but for σ > 0 or σ < 0 it indicates
a migration in positive or negative z-direction, respectively. Interestingly, this refers to a
plausible reversal of the migration direction from the migration induced by U = U1 for
σ > 0. However, our aim is to analyse the droplet in its early unsettled phase. Therefore,
in the present framework, all the swimming characteristics are analysed employing the
migration velocity U = U1.

5. Second-order migration velocity

In order to derive an expression for a migration velocity up to O(Re2), we stress that the
net drag experienced by the droplet up to the same order must vanish across the surface. By
employing the expression of the approximated streamfunction ψ e

2 as in (3.25), we follow
an equivalent formalism as summarized in § 4. A lengthy and strenuous analysis shows
that

U = 1 + Re (1 + A σ)+ Re2 (
11.460 + B σ + C σ 2) , (5.1)

where A, B, and C are obtained as

A = 0.134 − 0.064λ+ 0.066λ2,

B = 0.443 − 0.403λ+ 0.995λ2,

C = 0.0024 + 0.0035λ− 0.0085λ2.

⎫⎪⎬
⎪⎭ (5.2)

It may be noted that, throughout the analysis, by maintaining the λ < 1 limit, we have
considered terms up to λ2. Likewise, we argue that the strengths of Re2λσ , Re2λσ 2, Re2λ2σ

and Re2λ2σ 2 are less than unity in the present analysis; U in (5.1) represents the real and
coherent solution at O(Re2). In figure 7, a direct comparison of the swimming velocities
as in (4.6) and (5.1) reveals that in the limit Re < 1, as U in (5.1) is viewed as quadratic
power series of Re, it inherently predicts a higher upsurge of the migration velocity for
both σ > 0 and σ < 0. Table 1 illustrates the quantitative increase (U − 1) of migration
velocity with growing perturbations in Reynolds number. The conclusion from table 1
is that the difference between O(Re) and O(Re2) is prominent in the range Re ∼ 10−1

at which the inertial effect is evident in the inner regime. Interestingly, we note that for a
particular case when C = 0 the contribution of the σ 2 is nullified in the migration velocity.
Consequently, the disparity between O(Re) and O(Re2) is curtailed reasonably.
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FIGURE 7. The comparison between the first-order (O(Re)) (dashed line) and second-order
(O(Re2)) (solid line) migration velocity with the Reynolds number for both σ = 5 and σ = −5 at
λ = 0.5. As envisaged, the augmentations for both the cases are considerably higher for O(Re2).

6. Conclusions

In this work we have demonstrated the role of convective inertial forces of the
external fluid medium on the self-propulsion of a viscous droplet with an inhomogeneous
interfacial tension. We consider a generic axisymmetric framework for the inhomogeneous
surface tension, and determine the exact analytical solution of the interior and exterior
streamfunctions up to first (O(Re)) and an approximated second (O(Re2)) order solution
in Reynolds number by utilizing the singular perturbation and matched asymptotic solution
technique.

The discussion shows that, in the present model, the singular perturbation technique
yields accurate migration velocity for the droplet under the assertion of low Reynolds
number (Re < 1) and viscosity ratio (λ < 1) limits both at O(Re) and O(Re2). It may be
noted that the stress parameter σ which is the ratio of the amplitudes of the first two
modes of the stress field induced by the variable interfacial tension is comparable to β for
the solid squirmers. This distinguishes the swimming features of the active droplet and
acts as a decisive parameter in governing the swimming characteristics of the droplet at
finite Re.

In contrast to the solid squirmers, where the effect of inertia increases the speed of
a pusher (β < 0) swimmer and decreases the speed of a puller (β > 0), in the case of
swimming droplets the foreseen antisymmetry is broken. The finite inertial effect of the
surrounding medium enables a systematic increase in the locomotion speed and swimming
efficiency of the droplet for all σ values. As was to be expected, at O(Re2), due to the
quadratic coupling with the Reynolds number, the migration velocity exhibits a substantial
increase for both σ > 0 or σ < 0 compared to O(Re). However, the difference between
σ > 0 or σ < 0 can be understood by considering how inertia perturbs the corresponding
flow fields and is perceivable in the augmentation of the migration velocity.

Typically, a droplet with σ < 0 is ineffective than its compliments due to its distinct
swimming style. In this particular case, the stresslets generated by the droplet in the
exterior medium intensify and the associated surface stress in the direction of migration
increases at finite Re. This disadvantage is partially prevailed over by the presence of
the counter-rotating vortices of the interior fluid towards the direction of migration.
Interestingly, for σ < 0, we identify that due to extended stresslets, the apparent extent
of the swimmer increases at finite Re. This prompts an interplay among the inertial
effect of the surrounding medium and the viscosity ratio of the droplet at higher λ
(in the limit λ < 1), and subsequently the viscous power dissipation and the swimming
efficiency differs from the monotonically decreasing and increasing Stokesian behaviour,
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respectively. Our findings also provide insights into an alternative illustration of the effect
of inertia by visualizing the nonlinear drag function of the droplet in the phase space of the
migration velocity. The linear stability analysis of the associated drag function at O(Re) is
to identify an asymptotically stable non-zero migration state for the droplet, which solely
occurs due to the convective inertial forcing of the surrounding medium.

In summary, our approach is not restricted to a particular choice of external source that
induces a variability in the surface tension, thus the above results can be applied to broader
class of active droplets. Although the behaviours are manifested at the low viscosity ratio
limit, the present framework probe deeper insights into the migration of a single swimming
droplet at finite Re. The present results scale the migration velocity and relevant swimming
characteristics of the droplet with the corresponding size and enhance the ability of the
droplet to operate at higher flow rates. These are significant advantages for separation and
filtration applications in micro-fluidic systems (Di Carlo 2009; Martel & Toner 2014), and
will stimulate experimental studies on artificial swimmers incorporating the inertial effect.
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Appendix A. Solution of streamfunction in the Oseen regime

On employing the Goldstein transformation (Goldstein 1929), the leading-order
contribution of E2

r̂Ψ
e

1 which necessarily satisfies ReE2
r̂Ψ

e
1 ∼ O(1) in the stokes regime,

can be written as (Proudman & Pearson 1957; Khair & Chisholm 2011)

E2
r̂Ψ

e
1 = er̂η/2 (π/2)1/2e−r̂/2

(
1 + 2

r̂

)
A1 Q1(η)

= exp
(

− r̂
2
(1 − η)

)
(π/2)1/2

(
1 + 2

r̂

)
A1 Q1(η). (A 1)

The vorticity (∼ E2ψ e) generated by the swimmer in the inner regime primarily gets
transported to the corresponding higher order in the Oseen regime (Khair & Chisholm
2011). Subsequently, from the leading-order solution (ψ e

0 ) in the Stokes or inner regime,
the associated contribution at O(Re) is given by E2

rψ
e
0 = ((−2Be

1)/r)Q1. This leads to
A1 ∼ −Be

1. Consequently, from the results of Proudman & Pearson (1957), the solution of
Ψ e

1 can be written as,

Ψ e
1 = −Be

1 (1 + η)

(
1 − exp

(
− r̂(1 − η)

2

))
. (A 2)
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