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AN INTERIOR POINT METHOD FOR LINEAR PROGRAMMING
BASED ON A CLASS OF KERNEL FUNCTIONS

K. AMINI AND M.R. PEYGHAMI

Interior point methods are not only the most effective methods for solving optimisa-
tion problems in practice but they also have polynomial time complexity. However,
there is still a gap between the practical behavior of the interior point method algo-
rithms and their theoretical complexity results. In this paper, by focusing on linear
programming problems, we introduce a new family of kernel functions that have some
simple and easy to check properties. We present a simplified analysis to obtain the
complexity of generic interior point methods based on the proximity functions in-
duced by these kernel functions. Finally, we prove that this family of kernel functions
leads to improved iteration bounds of the large-update interior point methods.

1. INTRODUCTION

After the seminal paper of Karmarkar [3], linear optimisation, that is linear program-
ming, revitalised as an active area of research. Currently, the interior point methods not
only are the most effective methods in practice but also have polynomial time complexity
[9, 11, 12]. In this paper, we deal with primal-dual interior point methods for solving
the standard linear optimisation problem

(P) min{cTa; : Ax = b, x^O},

where A € E m x n , c g R " and b e Rm are fixed data and x € M" is the vector of unknowns.
The dual problem of (P) is given by

(D) max{bTy : ATy + s = c, s ^ 0},

where s € Kn and y 6 Km. We assume that both (P) and (D) satisfy the interior point
condition, that is, there exists (x°,y°,s°) such that

Ax° = b, x°> 0,
ATy° + s° = c, s°> 0.
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It is well known that the interior point condition can be assumed without loss of generality.
In fact, we assume that x° = s° = e, where e denotes the all-one vector of length n ([9]).
To find a primal-dual optimal solution of (P) and (£)), it is sufficient to solve the following
system of equations:

Ax = b, x ^ 0,

(1) ATy + s = c, s^sO,

XiSi = 0, i = 1,... , n.

The first and second equations denote primal and dual feasibility while the third equation
is the so-called complementarity condition of problems (P) and (£>).

We use the following notational conventions. Throughout the paper, ||.|| denotes the
2-norm of a vector. For x, s € R", xs denotes the coordinate-wise (Hadamard) product
of the vectors x and s, that is, (xs)j = x̂ Sj for all i € {1 , . . . ,n}. The nonnegative and
positive orthants are denoted by R" and R" + , respectively. We say f(x) = 6(<?(x)) if
there exist some positive constants c\ and c2 such that Cig(x) ^ f(x) ^ c2g(x) holds
for all x > 0. Further, f(x) — O(g(x)) if.there exists a positive constant c such that
f(x) < cg(x) holds for all x > 0.

The basic idea behind the primal-dual interior point methods is replacing the third
equation in (1) by the parameterised equation xs = fie, with some fi > 0. This substitu-
tion leads us to the following system:

Ax = b, x > 0,
(2) ATy + s = c, s > 0,

xs = fj,e.

Without loss of generality, we assume that A has full row rank and the interior point
condition holds. Under these assumptions, system (2) has a unique solution for each
value fj. > 0. The set of unique solutions I (x(^),y(ii),s(fi)) | /x > o | , is referred to
as the central path of (P) and (D). The central path for linear optimisation was first
recognised independently by Sonnevend [10] and Megiddo [4]. As fj, ->• 0, the limit of the
central path exists and converges to an optimal solution of (P) and (D).

Let us briefly explain how a primal-dual interior point method works. Let (x(fx),
y(n),s(n)) be known for some [i > 0. One may assume that x(fi) = s(fj.) — e, for fj, = 1
([7]). First, we decrease fi to /x+ := (1 — 9)fi, for some 8 € (0,1) and then, solve the
system (2) to obtain an approximate solution by applying Newton's method. The Newton
direction for (2) is determined by the following system:

AAx = 0-,

(3) ATAy + As = 0,

xAs + sAx — /i+e — xs.
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Since A has full row rank for any x > 0 and s > 0, system (3) defines a Newton search

direction (Ax, Ay, As) , uniquely. The third equation in (3) is referred to as the centring

equation. Taking a step along the Newton direction determined by (3), one constructs a

triple (x+,y+,s+) as

x+ = x + aAx, y+ =y + aAy, s+ = s + aAs.

By repeating this procedure, we find an iterate "close" enough to ^x(fi),y(ii),s(fj,)). In
this way, an e-solution of the problems (P) and (D) is found if fi is small enough, say
nfi ^ e.

The choice of 9, the so-called barrier update parameter, plays an impor tant role in

the theory and practice of interior point methods. Usually, if 9 is a constant independent

of the problem dimension n, say 8 = 1/2, then we refer to the algorithm as large-update

(or long-step) method. If 9 depends on the problem dimension n, say 9 = l / \ / n , then the

algorithm is referred to as small-update (or short-step) method. Recall t ha t small-update

methods have the best iteration bound in theory ([9]). They require O(-y/nlog(n/e))

iterations to produce a e-solution. On the other hand, large-update methods based on the

Newton direction determined by (3) are much more efficient than small-update methods

in practice ([1]), but have a worst-case iteration bound, t ha t is, O(n\og{n/e)) ([9, 1 1 ,

12]). This phenomenon is called "The gap between theory and practice". Recently, to

resolve this discrepancy, Peng, Roos and Terlaky [7] introduced a family of Self-Regular

proximity functions and for a special member of the self-regular family, they established

an O(y/n log n log(n /e ) ) iteration bound for the large-update interior point methods.

In this paper, we present another family of proximity functions. They enjoy some

mild and easy to check properties, t ha t is, exponential-convexity, superconvexity and

monotonicity of the second derivatives. We provide some powerful tools for the com-

plexity analysis of the generic primal-dual interior point methods. We also prove t ha t

the approach constructed by these kernel functions can achieve the worst case iteration

bound Olqy/n^ogn)1^1/^ log(n/e)J for the large-update methods, where q ^ 1 is the

so-called barrier degree of these kernel functions.

The paper is organised as follows. In Section 2, we review some necessary concepts

and introduce some simplifying notation. Section 3 is devoted to define the new family

of kernel functions and their properties. In Section 4, the growth behaviour of this

family is investigated and a default value for the step size is derived. We estimate the

decrease of the proximity function during a damped step in Section 5. From these results,

the iteration bound is obtained in this section as well. The last section contains some

concluding remarks.
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2. P R E L I M I N A R Y

In this section we describe the idea underlying the approach of this paper. First, we
associate t o any triple (x, y, s) the vectors

(4) v := . — and v~l := w — ,
V A4 \ xs

whose ith components are y/(xiSi)/fj, and ^ / ( X J S J ) , respectively. Introduce the scaled
search directions dx and ds,

, , . , vAx vAs
(5) dx := and ds := .

x s
Then the system (3), with /x+ replaced by /i, can be rewritten as

Adx = 0,

(6) ATAy + d, = 0,

dx + ds = v'1 - v,

where

(7) A := -AV~lX, V := diag(t/), X := diag(x).

Note that dx and ds are orthogonal vectors, since dx G null(^l) and ds G range(^4 ).

Consequently, dx = ds = 0 if and only if v~l - v — 0, or equivalently v = e. Thus,

dx — ds = 0 holds if and only if (x, s) — (X(/J), s(/i)).

An important observation is that the right hand side of the third equation in (6)

equals to minus of the gradient of the scaled barrier (proximity) function

By replacing \Pc(*0 with any other strictly convex function ^(v) with v € K" + , where
ty(v) is minimal at v = e with vl̂ e) = 0, the general scaled centring equation is

(8) dx + ds=-VV{v).

We reassert that in (8), dx = d3 = 0 holds if and only if W(v) = 0. Thus, dx = d3 - 0

holds if and only if (x,s) = (x(^),s(/x)), as it should. To simplify matters, we restrict

our interest to the case where ^(v) is separable with identical coordinate functions, that

is,

(9) * ( « ) :
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where ij> : D -* K+ with E + + C D, is a strictly convex function with ip(t) minimised at
t — 1, and ip(l) — 0. We refer to the univariate function ip(t) as the kernel function of
the unsealed barrier (proximity) function ^ introduced in (9). In general, it is supposed
that the kernel function is twice differentiable. With this assumption and considering
(5), the new search direction (Ax, Ay, As) is defined by solving the following system for
dx,Ay,d,.

Adx = 0,

(10) ATAy + ds = 0,

The aforementioned discussion is summarised in the following generic primal-dual algo-
rithm ([9]) for linear optimisation.

Algorithm 1. Generic Primal-Dual Algorithm for Linear Optimisation

Input:
A proximity
A threshold
An accuracy

function ^(v);

parameter r > 0;

parameter e > 0;
A fixed barrier update parameter 6, 0 < 6 < 1;

begin
x := e; s :-
while n/j, ^
begin

= e; fi:— 1;

: £ do

v := y/(xs)/n;

while *
begin

2/+ = 2/
S+ = 5

end
end

end

(«) ^ r do

+ aAx;
+ aAy;

+ aAs;

In Algorithm 1, the inner "while loop" is called the inner iteration and the outer
"while loop" is called the outer iteration. Each outer iteration consists of an update of
parameter fj, and a sequence of (one or more) inner iterations. The total number of inner
iterations is referred to as iteration complexity of the algorithm. Usually, this number is
described as a function of n and e. The choice of parameters ^(V),T, 9 and step size a

plays an important role in controlling the complexity of the algorithm.
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3. N E W FAMILY OF KERNEL FUNCTIONS

In this section, we introduce a new class of kernel functions that helps us to narrow

"the gap between theory and practice". Consider

( ID t 1 1 ^ ^
where q ^ 1. The parameter q is called the barrier degree. Obviously, tjj(t) is a kernel

function, since ^>(1) = ^'(1) = 0, and it can be determined by its second derivative as

follows:

The proximity functions induced by kernel function (11) are

(12)

In the complexity analysis of Algorithm 1, we use the norm-based proximity measure
6(v) defined by

(13)
l \

Note that ty(v) is a strictly convex function with a minimum of 0 at v = e. Thus, we
have

ijr(e) = 0 «• 6(v) = 0<&v = e.

Let us verify some properties of the kernel function ip(t) introduced by (11). These
properties lead to an upper bound for the growth behaviour of the proximity function
and let us define a default value for step size. First, we need the first three derivatives of
ip(t) with respect to t. They are

V "* ~1 + oe*~' ~1 a2et'" ~l

It can be directly concluded from (11) and (14) that ip"(t) ^ 1, for all t > 0 and

linn/'W = lim tp(t) — +oo.
t-*0 t-y+oo

According to these facts, one can easily prove the following lemma.

LEMMA 3 . 1 . ip"(t) is monotonicaily decreasing for allt>0 and q ^ 1.
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Remember that if the kernel function satisfies the so-called exponential convexity,

that is,

(15) t/K^M^K ^ ( * i ) + </>(*2)], V*!, *2>0>

then the complexity analysis of the algorithm is greatly simplified ([2, 6]). The following
lemma establishes the exponential convexity property of the kernel functions (11) that
plays an important role to identify the default value for the step size.

LEMMA 3 . 2 . Let ip(t) be defined as (11). Then, ip(t) has the exponential con-
vexity property.

PROOF: According to [8, Lemma 2.1.2], we know that (15) holds if and only if
ip'(t) + tip"{t) ^ 0, for t > 0. Since ip'{t) > 0, for t ^ 1, then ip'(t) + tip"(t) ^ 0 holds.
On the other hand, from (14), the following relation holds for 0 < t < 1,

i>'{t) + tip"(t) = 2t + e ^ ' - ^ - l + qt~9) > 0,

which completes the proof. D

We also need some properties of the kernel function (11) stated in the following
lemma. One can find its proof in [2].

LEMMA 3 . 3 . Let ip(t) be defined by (11). Then

(i) (t - l ) 2 /2 ^ j,(t) < i//(t)2/2, Vt>0.

(ii) *(w) ^ 2S(v)2, and

(iii) ||w|| ^ y/n+ y/2^{v) ^ y/n + 26(v).

4. G R O W T H BEHAVIOR O F T H E P R O X I M I T Y FUNCTION AND A DEFAULT VALUE FOR

S T E P SIZE

In this section, we verify the growth behaviour of the proximity function (12) and
investigate its decreasing property during a feasible step size.

4 .1 . G R O W T H BEHAVIOR. Before updating /z in the generic interior point method,

we have \f(i>) ^ r . In updating /z in an outer iteration, the vector v is divided by the

factor \ / l - 0, which generally leads to an increase of the value of ^(v). Thus, during the

inner iterations, the value of ty(v) decreases until it passes the threshold r . We proceed

by giving an upper bound to the increase of ip(t), when t increases to /3t, with 0^1.

LEMMA 4 . 1 Let 0 ^ 1, Then

(16)

PROOF: From (11), we have
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where the last inequality follows from the fact / l e x ~ ' d x ^ 0, for P ^ 1. D

Lemma 4.1 enables us to estimate the effect of an update of the barrier parameter
/i on the value of the proximity function (12). The following lemma presents an upper
bound for the value of ty(v) after the ^-update.

LEMMA 4 . 2 . Let 0 < 9 < 1 and v+ := v/y/l-0. Then,

PROOF: From Lemma 4.1 with /3 = l /v ' l — 0, and Lemma 3.3, we have

= X>(/N

1=1

2(1 - 6)

4.2. ESTIMATING O F A DEFAULT VALUE FOR THE STEP SIZE. In order to estimate
the decrease of the proximity function (12) during one step, we need a feasible step size.
Taking a step along the search direction given by (5) and (10), with a step size denned
by a line search rule, one constructs a triple (x+, y+,s+) as

x+ = x + aAx, y+ = y + aAy and s+ = s + aAs.

By (5), we have
x+ — -(v + adx), and s+ = -(v + ads).

v v
Thus,

v2
+ = ^ ± = (v + adx){v + ada),

and by Lemma 3.2

(w + adx)(v + ads)) < -[*(v + adx) + V(v + ad,)].

Let f(a) = *(v+) - *(v), and

(17) h(a) = ±[V(v + adx) + tf(w + ads)] - *(w).
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It is easy to verify that f(a) ^ / i ( a ) and fi(a) is a convex function with / (0 ) = / i(0) = 0.
The first and second derivatives of fi(a) with respect to a are

/{(a) = \i>2 (I/fa + adXi)dXi + rl/{vt + adSi)dSi),
t = l

(is) /r(a) = \ J2 (</<>.+<<)<+r(vi+co<).

Using (8), equation (18) can be rewritten as

(19) f[(0) = ^VV(v)T(dx + ds) = ~W(v)TVV(v) = -26(v)2.

Assume that v, is the minimum component of the vector v, that is, v, = min V{.

Recall the definition of 5{v) in (13). For the sake of simplicity, we denote it by

6 := 6(v). According to the orthogonality of dx and da, and using (8), we conclude

that | |(dx,d,) | | = 25. Therefore, for 1 ^ i ^ n, we have

V{ + adXi ^ v, — 2a6, and vt + adSi ^ v, — 2a6.

Using these facts, one can easily prove the following lemma.

LEMMA 4 . 3 . Let h{a) be defined as (17). Then, f['(a) < 262ip"(vm - 2a5).

In order to find an appropriate value for the step size a, we use the convexity of
/ i (a ) . One knows that for a convex function h(t), the first derivative h'(t) is nonpositive
for all values of t less than or equal to the minimiser of h(t). Thus, using this property
of / i (a ) and Lemma 4.3, we establish the following lemma that allows us to define the
default value for the step size.

LEMMA 4 . 4 For any a that satisfies the inequality

(20) -ip'{vt - 2a5) + ij)'{v.) ^ 26,

we have f[(a) ^ 0.
P R O O F : Using Lemma 4.3 and (19), we have

f[(a) = f[(0) I
Jo

= -2S2 -6 f ip"(v. - 2&)d{v, - 2£8) = -2S2 - 6(ip'{vt - 2a5) - </>>.))•

Therefore, f[(a) ^ 0 holds if a satisfies (20). D

We note that xp"{t) ̂  1, and therefore the function -(ip'(t))/2 is invertible on E + + .

Suppose that p : [0,oo) -> (0,1] is the inverse function of the restriction of -(i / /(£))/2

on the interval (0,1]. We solve inequality (20) for the largest possible a, irrespective
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to the value of v,. Since ip"{t) is a decreasing function, the derivative of the expression
at the left hand side in (20) with regard to v» is negative. In order to have equality in
(20) with fixed <5, we must find the minimum value of il>'(v.) and the maximum value of
ip'{v. - 2a6). Thus,

and equality holds if and only if v* is the only coordinate in v that differs from one, and

v, < 1. Hence the worst situation for the step size occurs when vm satisfies

(21) -\i>\v.) = 8.

Observe that in this case, ip'(vt) has the minimum value, and the inequality (20) reduces
to

--i>'(v, - 2a6) ^ 28.

The first derivative of the left hand side of this inequality with respect to a is positive.
Thus, the largest possible value of a satisfying the inequality (21) must satisfy

(22) -\tf{v. - 2a5) = 25.

Due to the definition of p, equations (21) and (22) can be rewritten as

(23) v, = p(S), and v, - 2a6 = p{28).

Let a be the largest possible solution of the inequality (20). Thus, (23) implies

(24) a = ± [«. - p(26)} = ̂  [p(S) - p(26)] = i j ' p\a)da.

In the worst case, this step size is the largest possible solution of (20). From the definition
of p, we have

-rl/{p(S)) = 26.

Taking the derivative of this equality with regard to 6, p?(6) = —2/(tp"(p(5)))/2 < 0 is

obtained. Then, using (24), we have

( 2 5 )

The following lemma summarises this discussion.

LEMMA 4 . 5 Let p : [0, oo) -¥ (0,1] denote the inverse function of the restriction

of - (ip'{t)) /2 to the interval (0,1]. Then, a, the largest possible solution of the inequality

(20), satisfies (25).
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5. DECREASE OF THE PROXIMITY FUNCTION AND THE COMPLEXITY OF THE

ALGORITHM

In this section, we first aim to estimate the decrease of the proximity function $(v)

defined by (12) during the default step size given by

(26) 5 = k
Note that 5 ^ 5 . Then, we present the complexity of Algorithm 1 which employs the
proximity function defined by (12).

5.1. ESTIMATED VALUE OF / (5) . To obtain an estimated value for /(5), we need
the following technical lemma ([7]).

LEMMA 5 . 1 . Let h(t) be a twice differentiable convex function with h(0) = 0,
h'(0) < 0 that attains its (global) minimum at t* > 0. If h"(t) is an increasing function

on [0,f], then

The following lemma presents an upper bound for / ( a ) .

LEMMA 5 . 2 . If the step size a satisfies a ^ a, then / ( a ) ^ — a62.

PROOF: Let the function h(t) satisfy

h(0) = /i(0) = 0, h'(0) = /{(0) = -262 and h"{a) = 2 < $ W - 2a6).

From Lemma 4.3, we have /"(a) ^ h"(a) and consequently, f[(a) ^ h'(a) and / I (Q)
^ h(a). Thus, h'(a) can be rewritten as:

h'(a) = -2S2 + 2<52 f ip"(v. - 2£5)d£ = -252 - S(i>'(v. - 2a6) - ip'{vt)).
Jo

Therefore, from Lemma 4.4, h'(a) ^ 0 holds, for all a ^ a. On the other hand, since
ip"{t) is a decreasing function, h"(a) is increasing in a. From Lemma 5.1,

Ma) < h(a) ^ \ah'{Q) = -aS2,

which completes the proof, since / ( a ) ^ fi{&). D

As a consequence of Lemma 5.2, we have

<27> « 5 » < -

Now, we apply the results obtained so far on proximity functions (12). First, we

need to compute p(25). Assuming s = p(2<5), we have -ip'(s) = 46. Therefore, from (14)

and (26), we may write

( 2 8 ) a = iF{s) = l + qs-l-«e>-<-1'

(29) e3"1-1 =46 +s ^46 + 1,
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and from (29), s~9 ^ log (48 + 1) + 1 implies

Substituting this inequality and (29) in (28), we conclude that

1
a ** 1 + q(46 + 1)(1 + log (45 +

Thus, using Lemma 5.2, we obtain the following estimate for f(a)

5.2. ITERATION COMPLEXITY. According to Lemma 4.2, after the update of fi to
(1 — 0)fj,, we have

6

At the start of an outer iteration, inequality ^(v) ^ r holds. We assume that r = 0(n)
and 0 = 0(1). To count the inner iterations, we must return to the situation $(v) ^ r
after the update of /i to (1 — 0)^i. Let $o be the value of ^f(v) after the ^-update, with
the subsequent values denoted by #*, A; = 1,2,..., K; where if denotes the total number
of inner iterations in an outer iteration. Lemma 4.2 implies

(31)

The decrease on each inner iteration is given by (30), that is,

where 7c is some positive constant. Thus, the decrease depends monotonically on S.
Consequently, from Lemma 3.3 and assuming

1 ^ T

we may express the decrease in terms of *. In other words,

(32) tffc+i ^

where

and K is some positive constant. To complete the complexity analysis, We need the
following technical lemma ([5]).
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LEMMA 5 . 3 . If a 6 [0,1], then

(1 + t)a ^ 1 + at, V t ^ - 1 .

The following lemma is important for deriving the number of inner iterations of
generic primal-dual interior point methods using the proximity function defined in (12).

LEMMA 5 . 4 . Considering (32), we have

where K denotes the total number of inner iterations in an outer iteration.

PROOF: According to (32), we have

(33) A*, = /(*f cK/ 2,

where /(<£) = 0(l/(g(log^')1+'1/^) is a monotonically decreasing function. Substituting
(33) in (32) leads to

which implies

where the last inequality holds by Lemma 5.3. Since / (* ) is a monotonically decreasing
function, we have

and consequently

With k = K, this inequality leads to

0 ^

Thus,

where the equality follows from (33). That completes the proof.
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Relation (31) proves ty0 = O(n). Thus, Lemma 5.4 implies that the number of inner
iterations is bounded above by

The iteration complexity of the algorithm is obtained by multiplying this number by the
number of outer iterations, which is bounded above by G(logn/e) ([9]). Neglecting the
integer brackets, which does not change the order of complexity, the iteration complexity
is

(34) O(qjn(logn)l+W<hog-).

6. CONCLUSION

In this paper, we provided an analysis for the complexity of the generic primal-dual
interior point methods based on the proximity functions induced by the new family of
kernel functions. The complexity has been improved in comparison with the classical
results given in [9] with the assumption q ̂  1. Under the conditions

1. ip"{t) is monotonically decreasing;

2. ijj{t) is exponentially convex;

3. ip(t) is superconvex, that is, tp"(t) ^ 1 for all t > 0,

the resulting large-update primal-dual interior point method can be easily analyzed. The
results in Sections 2 and 3 were based only on these three properties. In particular, we
presented an estimate for the decrease of the proximity function in terms of the induced
kernel functions based on their first and second derivatives only. We also obtained the
iteration complexity for these kernel functions.
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