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ABSTRACT 
The early consideration of human factors in product development hugely favours the development of 
products, which excel with a positive user experience. The virtual environment of product development 
however, still has significant gaps in the virtual assessment and simulation of human factors, especially 
for user-product interactions composed of human movements. This motivates us to introduce a concept 
for data-driven prediction and analysis of user-product interactions. Heart of the concept is a predictive 
component that models the interaction between the user, represented by a musculoskeletal model, and 
the product, represented by product characteristics. We describe the implementation of this concept 
based on a pilot study for a lifting task. Motion capturing was performed to build a database and compare 
the results of our novel approach. The resulting kinematic and dynamic quantities show similar curve 
profiles with a small constant offset to the measured data. This indicates that the concept enables the 
virtual comparison of different designs or concepts regarding human factors. 
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1 MOTIVATION 

The early consideration of human factors in product development hugely favours the development of 

products, which excel with a positive user experience. As an example, it is important to avoid the 

occurrence of unexpected discomfort during product use, since this usually results in a negative user 

experience (Bubb, 2015). In order to ensure a good user experience in current product developments, 

human factors related requirements (like the absence of discomfort or ergonomics) are usually 

assessed with user tests. These however, require a physical test environment, prototypes or a 

predecessor as well as many subjects and are therefore time-consuming and costly. Furthermore, the 

gathered results are usually subjective. Hence, the results are not holistically back traceable to product 

characteristics. The main disadvantage of (user-) tests is that the results are created using a physical 

mock-up (prototype) for whose development certain decisions have already been made. In times of 

drastically decreasing development times, the tests’ results can therefore only have a marginal 

influence on the final design. This general problem applies to many engineering disciplines and has 

been known for decades. In order to cope with this problem, digital models are utilised to predict the 

prospective product behaviour virtually. Accordingly, digital models provide information about the 

consequences of decisions, regarding product characteristics, in the early phase of product 

development (Vajna et al., 2018). This approach is already successfully applied in the fields of 

structural mechanics or dynamics. However, the virtual assessment of a product’s design with regard 

to human factors requires a virtual model of the user-product interaction. The schema shown in 

Figure 1 generally represents the relationship between a user and a product. The product with its 

technical, economical and human-related properties interacts with the user, described by demographic 

and psychographic characteristics, via a process of perception and response (Seeger, 2005). In order to 

model the user-product interaction holistically, models are necessary that represent the product, the 

user and the way these models interact. Depending on the assessment’s purpose, the models need a 

different level of detail.  

  

Figure 1: Model of human-product relationships based on (Seeger, 2005) and their virtual 
representation 

An existing CAE solution for the consideration of human factors are anthropometric human models 

(e.g. Siemens Jack or Human Builder). These are applicable for the execution of space requirement 

analyses, movement range analyses or visual analyses. These models are usually part of common 

CAD-tools. The interaction is modelled by the relative positioning of the human model (in certain 

postures) to the CAD-model (Miehling et al., 2013). Unfortunately, anthropometric human models 

lack a sufficient level of detail, concerning the assessment of “dynamic” human factors like discomfort 

or ergonomics. This especially applies for user-product interactions composed of human movements. 

According to Zhang et al. (Zhang et al., 2016) discomfort is composed of Fatigue, Restlessness, Pain/ 

Biomechanics, Strain and Circulation. Although anthropometric digital human models allow for 

rudimental biomechanical analyses, their applicability is limited to postures, since movements are 

modelled quasi-static. Thus, they do not consider the velocity, acceleration, and resulting inertia forces 
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and moments, which are crucial for biomechanical movement analysis (Wagner et al., 2007). As 

Rasmussen (Rasmussen, 2005) claims, discomfort is quantifiable through the utilization of 

musculoskeletal human models. Musculoskeletal human models represent the biomechanical 

locomotion apparatus using a multi-body dynamics approach. Musculoskeletal simulation tools like 

the AnyBody Modelling System (Damsgaard et al., 2006) allow the computation of biomechanical 

quantities (like muscle and joint-reaction forces), which can serve as indicators to assess pain, fatigue 

or strain dynamically. Musculoskeletal simulations however, rely on experimental data. To analyse a 

particular movement, motion capture data needs to be acquired in a specially instrumented movement 

laboratory. This procedure corresponds to the execution of user tests. Accordingly, musculoskeletal 

simulation currently lack the necessary predictive character to use it as a CAE tool in early product 

development phases (Miehling et al., 2015). In order to establish musculoskeletal simulation as a 

CAE-tool nevertheless, a movement prediction component is necessary, which replaces the need for 

experimental motion capture data. 

The understanding and prediction of human movement is subject to many scientific investigations. In 

character animation, data-driven approaches, using artificial neural networks and reinforcement 

learning, are showing promising results (Holden et al., 2016; Peng et al., 2018). These methods are 

applied with the objective of synthesising movements, which appear realistic. They are therefore not 

inevitably dynamically consistent and physiologically valid, which is necessary for biomechanical 

analysis. In biomechanics however, numerical approaches using constrained optimization are 

preferred, since they ensure dynamic consistent and physiological movements, by including the 

limitations of the human locomotor apparatus via a musculoskeletal model (Farahani et al., 2016; 

Ackermann and van den Bogert, 2010). These approaches are promising, but they are not yet 

applicable for product development, since they are too demanding in modelling effort and computation 

time. Even more problematic is the fact, that these approaches commonly model specific and barely 

interactive movements such as gait, jumping or running. They are not able to model the choice 

between different movement strategies. For the purposes of product development, an interaction model 

is necessary, which predicts physiological movements, depending on user and product characteristics. 

This motivates us to introduce a concept for prediction and analysis of user-product interactions. Heart 

of the concept is a predictive component that models the interaction between the user, represented by a 

musculoskeletal model, and the product, represented by product characteristics. This predictive 

component combines a data-driven method with a constrained optimization algorithm and shall qualify 

musculoskeletal simulation as a CAE tool. 

2 METHODS 

2.1 Overall concept  

The overall concept, depicted in Figure 2, consists of two main parts, the data acquisition part 

(DAP) and the tool for prediction and analysis of user-product interactions (TPUPI). The DAP 

has to be executed once in order to build a database, containing different movements of the same 

interaction. The DAP follows the standard workflow of musculoskeletal simulation: Experimental data 

(motion capture data) and the musculoskeletal human model serve as input for a kinematic analysis, 

which computes the movements expressed in the coordinates of the musculoskeletal model (positions/ 

joint angles). Those kinematic results are further processed and generalized to form the database, which 

is later used by a regression model, serving as the data-driven part of the predictive component. 

The TPUPI provides the possibility for movement prediction and analysis. The TPUPI is thus the 

actual CAE tool. In principle, the TPUPI follows the same procedure as the DAP, except no 

experimental data is used as kinematic input. Instead, the predictive component, consisting of two 

parts, predicts the movement strategy for one particular interaction. The interaction is defined using 

so-called user-product interaction factors, which also serve as interface for the prospective users of the 

CAE tool (further explanations in chapter 2.2). The regression model predicts the movement strategy 

expressed by position-time-curves and/or joint-angle-time curves, based on the movement strategies 

stored in the database and the user-product interaction factors. The second predictive part is a 

kinematic movement prediction approach, which transforms these kinematic position-time curves into 

a whole-body movement expressed in the coordinates of the musculoskeletal model (positions/ joint 

angles).  

4031

https://doi.org/10.1017/dsi.2019.410 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.410


   ICED19 

 

Figure 2. Schematic of the overall concept and approach of this contribution. The dark blue 
blocks mark the parts of the predictive component. “Start” marks the later usage of the tool, 

when the database is already build. 

The resulting movement can be analysed via an inverse dynamic approach. This approach enables the 

computation of the desired biomechanical results (muscle and joint-reaction forces). In the same way, 

the experimental movement data used in the DAP can be dynamically analysed. This provides the 

opportunity to compare the results of the standard workflow of musculoskeletal simulation with our 

new approach (CAE-tool). As a pilot study, this concept was implemented for a symmetrical lifting 

task (lifting of an object in the sagittal plane).  

2.2 Data collection using motion capture 

In order to model the choice between different movement strategies with data-driven approaches, 

training data is required, which contains various movements for different scenarios of the same 

interaction. For the pilot study, the predictive component of the approach shall “learn” the movement 

strategies of human symmetrical lifting. For the pilot study, it is assumed that the choice of a 

movement strategy is influenced by the following user-product interaction factors: 

 The anthropometry of the user 

 The movement task, which needs to be fulfilled 

 The stress, the user is exposed to during interaction 

Based on these user-product interaction factors, a design of experiments (DoE) was set up for a motion 

capturing study of different lifting movements. To represent the lifting movements quantitatively, the 

body height of the subjects abstracted the anthropometry, spatial specifications (depicted in Figure 3) 

abstracted the movement task and the weight of the lifting object abstracted the stress. Two healthy 

subjects (1 female/ 1male, age 24/25 years, body height 1.74m/ 1.96m) volunteered for the motion 

capture study. Since it is the concept of DoE to describe an entire system behaviour with as little 

experimental data as possible, three completely different movement tasks were chosen to cover the 
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possible design space of a symmetric lift in the best possible way (Figure 3). The object weight was 

varied in three steps: 2kg, 10kg, and 20kg. Using a full factorial design (3x3x2 levels), 18 unique 

lifting movements were captured. The motion capturing was performed, using a Qualisys motion 

capture system. 34 reflective markers were attached to the subjects. Of these, eight markers were 

attached to each upper extremity, five to each lower extremity, and four to the front and rear of the 

upper body. Nine infrared high-speed cameras (sampling rate 60 Hz) recorded the marker trajectories. 

The kinematic data was stored in 18 C3D-files using the Qualisys Track Manager 2.11.  

 

Figure 3. Three different lifting tasks, abstracted with quantitative spatial specifications                 
a) standard lift; b) edge lift; c) shortened lift 

The test persons were instructed to perform the lift with a straight back from the legs without taking a 

step forward. In addition, they were instructed to adhere to these guidelines only as long as they felt 

safe with it, in order not to endanger their health. In the end, five movements could not be performed 

in accordance with these guidelines. Subject 2 was not able to perform the edge lift with 20 kg without 

an additional step forward. Likewise, subject 1 had to perform a step forward to execute the edge lift 

with 2, 10 and 20 kg as well as the standard lift with 20 kg. 

2.3 Data acquisition part 

The trajectory data stored in the 18 C3D files was further processed using the AnyBody Modelling 

System (Damsgaard et al., 2006). The GaitFullBody-Model from the AnyBody Managed Model 

Repository (AMMR) 1.6.3. was utilized to animate the musculoskeletal model using the marker 

trajectories. In a first step, the musculoskeletal model was scaled to the anthropometries of the subjects 

using the parameter identification method (Andersen et al., 2010). In a second step, the experimental 

movement data was fitted upon the scaled models using an inverse kinematic analysis. Output of this 

analysis is the full-body movement expressed in the coordinates of the musculoskeletal model (time 

series of joint angles and time series of the relative position of the pelvis to a global coordinate system).  

Additionally, time series of the x- and y-position of the centre of mass (CoM) and of the hands over 

time were computed via the kinematic analyses. Those data series, together with the joint angle values 

of the knee and elbow flexion, were extracted from the kinematical results. The extracted data (18x6 

data series with different durations) has been normalized in time. In addition, the values of the position 

data series were generalized. The data series containing movements with a “step forward” were sorted 

out, since they would bias the database and therefore the regression model. The joint angle data was 

stored in the database directly. In contrast, the x- and y-position data of the CoM and the Hands were 

stored indirectly as a degree of fulfilment (DF) according to Formula 1. 

i
i

DP
DF

TV
 (1) 

The degree of fulfilment defines which proportion of the target value (TV) the data point (DP) has 

reached at a certain time step i. The target value of the data series of the box in y-direction (height) is 

for example the final height of the object (e.g. 0.66m for the standard lift scenario). This relative 

consideration was introduced to increase the stability of the kinematic movement prediction approach 

(of the TPUPI) since this approach uses the target values in its objective function. Processed in this 

way, the data of the remaining movements were stored in the database (13x6 data series). Additionally 

to every movement, the abstracted user-product interaction-factors as well as the movements’ 

durations were stored, in order to assign the kinematic data to their associated interactions. 
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2.4 Tool for prediction and analysis of user-product interactions  

The user-product interaction factors introduced in chapter 2.2, also serve as an abstract virtual product 

representation:  

 The anthropometry describes the product’s target group  

 The movement task describes the product’s kinematics  

 The stress contains the forces and moments a user must exert in order to use a product  

With the same kind of abstraction as with the DoE, these factors enable the product designer to 

rudimentarily describe relevant product characteristics with a user-product interaction. Via the 

assignment of concrete (scalar) values to these factors, a particular interaction is specified, for which 

the predictive component of the TPUPI is supposed to predict a unique movement. The dynamic 

results of the corresponding movement analysis are therefore holistically back traceable to the 

product’s characteristics. This way, different product designs and concepts become comparable with 

respect to discomfort and other human factors, since the user-product interaction factors are coupled to 

the product characteristics. 

2.4.1 Regression model 

The regression model is the first part of the predictive component. Purpose of the regression model 

is predicting unique and physiologically reliable kinematic data (movement strategy) for any set of 

feasible user-product interaction-factors. In the pilot study, a Support Vector Machine (SVM), a 

supervised machine learning tool used in classification and regression (Vapnik, 2000), was used as 

regression model. For training, the user-product interaction factors, describing the interactions of the 

experimental data, served as predictors, while the experimental movement data served as target values. 

Once trained, the SVM is able to predict movement strategies (position-time-curves/ joint-angle-time 

curves) for arbitrary feasible user-product interaction-factors (which define new unknown 

interactions). Since the movement data in the data base is normalized regarding time, the regression 

model additionally predicts the movements’ durations.  

For a first evaluation of the predictive component, the SVM was trained with the database using a 

polynomial kernel function and an automatic kernel scale. The trained SVM was utilized to 

reconstruct the captured movements, which are described in chapter 2.2. To do so, user-product 

interaction factors representing the captured movements were defined as predictors, to compute new 

elbow/ knee flexion angles and x- and y-positions for the hands and the CoM (18x6 data series).  

2.4.2 Movement prediction approach 

The movement prediction approach is the second part of the predictive component, with the purpose 

of computing a whole-body movement from the few kinematic data series provided by the regression 

model (which contain the movement strategy).  

The movement prediction approach is based on a method presented in one of our previous 

contributions (Wolf and Wartzack, 2018). The approach itself depends on the hypothesis that not the 

complete kinematic data, describing the degrees of freedom of the human model, has to be present a 

priori in order to produce a physiologically plausible and physically consistent movement. Rather, it 

may be sufficient to kinematically drive certain “leading parts” of the human body (Bubb et al., 2006). 

The regression model predicts the data that drives these leading body parts. These are defined as major 

constraints in an over-determinate kinematics analysis (Andersen et al., 2009), which is implemented 

in the AnyBody Modelling System. The joint angles of the human body contain dummy values, which 

are defined as minor constraints in the over-determinate kinematic analysis. This method allows the 

computation of the best possible fit between kinematic constraints in a kinematically over-determinate 

system (more kinematic constraints than degrees of freedom). It additionally allows the definition of a 

weight function for each constraint, what enables the definition of major and minor constraints.  

In the pilot study, the hands, the feet and the CoM, as well as the elbow and knee flexion, were 

considered as the “leading body parts” of the symmetric lifting movement. The feet were constrained 

to stay on the ground. The time dependent positions of the hands and the CoM, as well as the time 

dependent joint angles of the elbow and the knee were constrained to the data series predicted from the 

regression model. The undefined joint angles remaining, adjust to the principle of skeletal support. 

This principle rests upon the assumption, that the human body chooses movement strategies in such a 

way, the skeletal system maximally absorbs the external strain. Accordingly, the approach results in 
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movement strategies trying to flex the joints as little as possible from the “neutral position”. When all 

joints are in the “neutral position”, the musculoskeletal model takes an upright posture with hanging 

arms. This principle was implemented by constraining each dummy value of the joint angles to the 

neutral position. These constraints were defined with a minor weight, so they can be violated in order 

to obey the major constraints of the leading body parts. Additionally, these minor constraints were 

weighted differently to each other. “Strong” joints (joints actuated by strong muscles) were weighted 

weaker than “weaker” joints (joints actuated by weaker muscles respectively). This ensures that a 

“strong” joint flexes more likely than a “weak” joint. With this movement prediction approach, 18 

lifting movements (full body kinematics described in joint angles/ pelvis position) were predicted 

based on the data series computed by the regression model.  

2.4.3 Dynamic analysis  

Finally, an inverse dynamic analysis was performed to compute dynamic biomechanical quantities like 

muscle- and joint reaction forces. Additional to the kinematics (movement), the dynamic interaction 

with the environment (external forces and moments) is a necessary input for the inverse dynamic 

analysis (Damsgaard et al., 2006). For the pilot study, a predictive contact model (Fluit et al., 2014) 

was used to compute the ground reaction forces. Default reaction forces modelled the weight of the 

object acting on the hands. The muscles were modelled using the AnyMuscleModel. In order to 

identify the muscular forces, the default muscle recruitment solver of the AnyBody Modelling System 

(Damsgaard et al., 2006) was used. The inverse dynamic analysis was performed for all the captured 

lifting movements (DAP) and all the predicted lifting movements (TPUPI).  

3 RESULTS  

3.1 Kinematic results 

Figure 4 compares selected kinematic results of the data acquisition part (based on the captured data) 

with the kinematic results of the tool for prediction and analysis of user-product interactions.  

 

 

Figure 4. Comparison of the computed ankle- and glenohumeral flexion angles from the 
DAP and the TPUPI for both subjects and different weights. The shaded area represents the 

range between the left and the right extremities’ joint angles of the experimental data. 

The figure shows that the TPUPI results in similar joint angle curve profiles to the DAP, which though 

differ in magnitude. All the predicted joint angles have a certain and mostly constant offset to the 

measured data. Exceptions are the elbow and the knee flexion. They have nearly the same curve 

DAP subject 1 DAP subject 2 TPUPI subject 1 TPUPI subject 2
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profile and the same magnitude, since these, as well as the positions of the hands, feet and CoM are 

constrained directly to the data predicted by the regression model. This shows that the regression 

model was able to reproduce the cases it was trained with. It additionally leads to the conclusion that 

the principle of skeletal support “chooses” a different kinematic chain (which describes the joint 

angles from the feet to the hands) from the range of possibilities to fulfil the movement task (Figure 

5). As observable from Figure 4 g), subject 1 did a step forward during the motion capturing of this 

particular movement. Although this data was excluded when training the regression model, Figure 4 

c)/ g) shows that the predicted curve profile of subject1 differs insignificantly from the predicted curve 

profile of subject 2. The comparison with the curves in Figure 4 a)/ d) and b)/ c) indicates that the 

regression model works well for new “unknown” cases. The predicted interaction durations in Figure 

4 b)/ c), however, indicate that the regression model needs more data to predict the interactions 

duration more accurately. 

3.2 Dynamic results 

Figure 5 shows the dynamically analysed movement of the TPUPI and the DAP and compares a 

predicted movement with the measured one at certain percentages of the movement’s duration.  

 

Figure 5. Results of the dynamic analysis using experimental data (top) and the introduced 
movement prediction approach (bottom) for the standard lift of subject 1 with 10kg 

Figure 6 compares the computed intradiscal compression force between the fourth and the fifth lumbar 

vertebrae (an indicator for discomfort in the spine) and the computed residual forces. For better 

comparability, the graph shows the time integral (area beneath the curve) of the L4-L5 compression 

force and the time integral of the residual force vector. The residual forces are responsible for 

balancing any dynamic inconsistencies. If the human model drops out of dynamic equilibrium 

(balance), due to measurement errors or movement fitting losses, the residual forces intervene to 

maintain the dynamic equilibrium. These are therefore an indicator of whether a movement prediction 

was successful. Since the residual forces support and relieve the body during movement, the dynamic 

results are biased to certain extent (depending on the residual forces’ magnitude) in the time intervals 

they act. During the lifting movements, the residual forces occur only in the time interval during the 

forward bending (to put the box down). The forces are correspondingly high when interacting with the 

20kg object. This applies for the DAP results as well as for the TPUPI results. While the residual 
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forces are low (as they are during the lifting interval), the calculated L4/L5 compression forces of the 

TPUPI show a constant offset (with higher forces) to the results of the DAP. 

The “step forward”-movement highlighted in Figure 6 shows a new predicted movement, since the 

corresponding data was sorted out for the regression model training. The residual forces of this 

movement are very high. This shows that this particular interaction is actually out of the design space, 

covered by the current abstraction of the movement task (chosen user-product interaction factors). In 

order to predict this interaction, the musculoskeletal model, should be allowed to take a step forward 

in order not to lose its balance. To extend the model in this sense, the step forward would have to be 

considered in the abstraction of the movement task. In addition, the regression model would have to be 

additionally trained with position data of the foot, which also would have to be considered as leading 

body part in the movement prediction component. 

 

Figure 6. Comparison of the L4-L5 compression forces and residual forces  

4 DISCUSSION 

The pilot study provides initial indications whether the presented approach is valid. The suitability of 

the predictive components (SVM as regression model and the movement prediction approach) need to 

be evaluated separately, using sensitivity and validation studies. In addition, it must be determined 

whether more “leading body parts/ joint angles” in the movement prediction part guarantee a more 

stable/ better prediction. The overall concept needs to be validated using different training and test 

datasets. Motion capturing and musculoskeletal simulations are demanding and time consuming. To 

demonstrate feasibility within the presented pilot study, all available data were used to train the 

regression model in order to achieve the best possible prediction outcome. 

Nevertheless, the results of the pilot study show that the overall concept produces first reasonable results. 

The kinematic and thus the dynamic results show a constant offset to the results computed via the standard 

workflow of musculoskeletal simulation. The predictive component generates physiological reasonable 

movements with mostly low residual forces, but is not yet able to find the most efficient movement 

possibility. While the regression model was able to reproduce the interaction behaviour well, the principle 

of skeletal support does not seem to model real movement strategies satisfactorily. The specification of a 

fixed value (neutral position) as a target value seems to generate the offset between the generated joint 

angles and the measured ones. The offset in the dynamic results is a consequence of this kinematic offset. 

Further research is required to explore appropriate objective functions. The approach with the strength-

weighted joints proves to be promising, since the predicted joint angle curve profiles show clear similarities 

with the measured ones. Although the absolute result values of the TPUPI and the DAP differ in 

comparison, the relative differences between the individual interactions are similar. Therefore, the tool 

seems to compare different designs and their matching interactions reliably. 

5 SUMMARY AND OUTLOOK 

The overall concept may enable product developers to virtual assess discomfort and other human 

factors quantitative and holistically back traceable. Since the modern product development is 

characterized by the reuse and adaptation of existing solutions/designs (Gunduz and Yetisir, 2018), a 

one-time training and modelling effort seems worthwhile to avoid users test, with all its drawbacks. 
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The presented CAE tool can enrich the virtual environment of product development by offering the 

possibility to address human factors in early product development phases.  
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