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Abstract

We study analytic properties of certain infinite products of cyclotomic polynomials that generalise some
products introduced by Mahler. We characterise those that have the unit circle as a natural boundary and
use associated Dirichlet series to obtain their asymptotic behaviour near roots of unity.
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1. Introduction
In this paper we will investigate analytic properties of certain infinite products
of cyclotomic polynomials. The power series expansions of these products have
interesting integer coefficients. We will determine those that have the unit circle as
a natural boundary and then, at least in some cases, find their asymptotic behaviour
near roots of unity. This behaviour is subtle and is controlled by the size of certain
cyclotomic integers and by the residues and special values of associated Dirichlet
series.

First we will recall the definition of the cyclotomic polynomials. For ` ∈ Z+, let ϕ(`)
be Euler’s function giving the number of positive integers less than or equal to ` that
are relatively prime to `. Let Φ`(x) ∈ Z[x] be the integral polynomial of degree ϕ(`)
with Φ`(0) = 1 whose zeros are the primitive `th roots of unity. The first few are

Φ1(x) = 1 − x, Φ2(x) = 1 + x, Φ3(x) = 1 + x + x2, Φ4(x) = 1 + x2, . . . .

Generally, for ` ≥ 2, we have

Φ`(x) =
∏

a(mod `)
gcd(a,`)=1

(x − e(a/`))

where we set e(z) = e2πiz. Thus Φ`(x) is the `th cyclotomic polynomial if ` ≥ 2, and is
minus the usual cyclotomic polynomial if ` = 1.1
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1This nonstandard convention serves to make some identities more uniform.
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[2] Infinite products 401

For a fixed prime p consider the infinite product

F(z) = Fp,`(z) =
∏
k≥0

Φ`(zpk
). (1.1)

This product defines an analytic function in the unit disc D = {z : |z| < 1}. It is given by
a power series with integer coefficients a(n) ∈ Z:

F(z) =
∑
n≥0

a(n)zn.

To see that these coefficients can be interesting let us consider some examples.
When p = 2 and ` = 1,

F(z) =
∏
m≥0

(1 − z2m
) =

∑
n≥0

(−1)tn zn = 1 − z − z2 + z3 − z4 + z5 + z6 − z7 − z8 + · · · .

(1.2)
Here tn is the Thue–Morse sequence defined by tn = 0 or tn = 1 according as the sum of
the binary digits of n is even or odd. See [1] for a survey about this important sequence.
Another interesting example occurs when p = 2 and ` = 3:

F(z) =
∏
k≥0

(1 + z2k
+ z2k+1

) =
∑
n≥0

b(n)zn = 1 + z + 2z2 + z3 + 3z4 + 2z5 + · · · . (1.3)

The coefficients b(n) define the Stern diatomic sequence [24]:

1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, . . . .

Here b(n) is the number of partitions of the integer n into powers of 2, in which no
power of 2 is used more than twice. See [23] for an account of some of the amazing
properties of this sequence. Among them are that b(n + 1) and b(n) are relatively prime
and that the sequence of quotients defined by r(n) = (b(n + 1)/b(n)) enumerates all the
positive rational numbers:

1, 2, 1
2 , 3,

2
3 ,

3
2 ,

1
3 , 4,

3
4 ,

5
3 ,

2
5 ,

5
2 , . . . .

Another well-known class of examples comes when ` is prime and p > `:

F(z) =
∏
k≥0

(1 + zpk
+ z2pk

+ · · · + z(`−1)pk
) =

∑
n≥0

a(n)zn. (1.4)

Now a(n) = 1 if the base p expansion of n has only digits less than ` and a(n) = 0
otherwise. When ` = 2 the sequence a(n) was studied by Lehmer et al. [12]. When
p = ` we have the trivial example

F(z) =
∑
n≥0

zn =
1

1 − z
, (1.5)

as follows by the uniqueness of the base p expansion of an integer.
A famous result of Carlson and Pólya (see [22]) says that a power series with

integral coefficients that converges in D either is a rational function or has the unit
circle as a natural boundary. As (1.5) illustrates, for our F(z) this dichotomy is settled
by whether or not p | `.
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Theorem 1.1. The function F(z) is rational if and only if p | `, in which case

F(z) =
1

Φm(zpr−1 )
, (1.6)

where ` = prm with r ≥ 1 and p - m. Otherwise F(z) has the unit circle as a natural
boundary.

We will prove this result, parts of which are already known, in the next section.
The main originator of this line of research was Mahler. The fact that (1.2) and (1.4)
have the unit circle as a natural boundary follows from Mahler’s early papers [13, 14],
respectively. For (1.4) one can apply the well-known result that a power series with
coefficients from a finite set is rational if and only if the coefficients are eventually
periodic (see [21, page 138, #158]). That the generating function of the Stern
sequence (1.3) has the unit circle as a natural boundary is also known (see [6]). More
generally, it follows from [10] that F(z) has the unit circle as a natural boundary when
p - ` and ` is square-free. The reader may consult [5, 20] and references therein for
background on the relation of such results to transcendence theory.

Our proof that F(z) with p - ` has the unit circle as a natural boundary is short and
uses an approach given by Mahler in one of his last papers [16]. Actually, Mahler’s
result includes the case ` = 1 but not ` > 1. By suitably modifying his method, we will
see that F(z)→ 0 as z approaches a primitive (pn`)th root of unity along a radius of
the unit circle, for any nonnegative integer n. This implies the result since the set of
such roots of unity is dense in the unit circle. In fact, this approach can be developed
much further with interesting applications. Dumas and Flajolet [10] give a very precise
asymptotic formula for the mth coefficient of the reciprocal function

F(z)−1 =
∏
k≥0

Φ`(zpk
)−1,

when p - ` and ` is square-free.2 They apply Cauchy’s formula in the manner of the
circle method and utilise asymptotic expansions of log F(z) near (pn`)th roots of unity.
Their method is a refinement of that of de Bruijn [4], who considered the case where
` = 1 and p = 2, which had been studied earlier by Mahler [15].

Our main object is to determine the asymptotic behaviour of F(z) as z approaches a
qth root of unity e(a/q) along a radius of the unit circle when p - q and q - `. We will
see that this behaviour depends on the value of the cyclotomic integer

S =

ordq(p)∏
k=1

Φ`

(
e
( pka

q

))
.

Here ordq(b) for any integer b with gcd(b, q) = 1 is the usual multiplicative order of b
modulo q. Clearly S is a nonzero real number. Set

αq = (ordq(p) log p)−1.

2Actually they allow p to be any integer greater than 1 that is prime to `.

https://doi.org/10.1017/S0004972715000039 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972715000039


[4] Infinite products 403

Theorem 1.2. Suppose that p - q and q - `. If |S | < 1 then for some constant c
depending on a/q,

F
(
e
(a
q

+ iy
))

= c + o(1)

as y→ 0+. If |S | ≥ 1 there exists a continuous 1-periodic function g(x) depending on
a/q so that as y→ 0+,

F
(
e
(a
q

+ iy
))
∼ g(αq log y)y−αq log |S |.

Now S is an element of Z[e(1/r)] where r = ϕ(`)/ordq(p). In fact, it follows from a
well-known result about resultants of cyclotomic polynomials (see [3]) that∏

a(mod q)
gcd(a,q)=1

Φ`

(
e
(a
q

))
=

pϕ(`)
1 if q/` = pm

1 for some prime p1,
1 otherwise.

In particular, if q/` is not a power of a prime then S is a cyclotomic unit. In the special
case where p is also a primitive root modulo q we see that S = 1. Some other cases
where S can be evaluated follow from the results of [11].

For example, when p = 2 is a primitive root modulo q with q an odd prime (for
example, q = 3, 5, 11, 13, . . . ) we have for the Thue–Morse function (1.2) that

F
(
e
(1
q

+ iy
))
∼ g

( log y
(q − 1) log 2

)
y−(log q/(q−1) log 2), (1.7)

while if q > 3 we have for the Stern function (1.3) that

F
(
e
(1
q

+ iy
))
∼ g

( log y
(q − 1) log 2

)
.

Example (1.7) should be compared with results about the behaviour of partial sums
of the Thue–Morse sequence in progressions first obtained by Newman [18] (see
also [8, 9] and the references cited therein).

We remark that Theorem 1.2 holds as well when p | `. Of course, after Theorem 1.1
it is not very interesting in this case.

We will see that the value of c and the Fourier expansion of g are determined by
special values and residues of Dirichlet series formed from the coefficients of F(z)
twisted by exponentials. Dirichlet series associated to more general infinite products
are studied in Section 3. The main result of that section, Theorem 3.3, is then applied
to prove Theorem 1.2 in Section 4. Some concluding remarks are made in Section 5.

2. Proof of Theorem 1.1

To prove that (1.6) holds when p | ` we need some basic results about cyclotomic
polynomials.
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Lemma 2.1. If m is odd and r ≥ 1 then

Φprm(z) =
Φm(zpr

)
Φm(zpr−1 )

.

Proof. We have the well-known identities (see [17, page 160]) for n ∈ Z+ and p a
prime:

Φpn(z) = Φn(zp) (2.1)

when p | n, and

Φpn(z) =
Φn(zp)
Φn(z)

(2.2)

when p - n. Taking n = pr−1m and applying (2.1) r − 1 times and then applying (2.2)
once, we get the result. �

If ` = prm with r ≥ 1 and p - m then by Lemma 2.1 we have the telescoping product∏
0≤k≤n

Φprm(zpk
) =

Φm(zpr
)

Φm(zpr−1 )
· · ·

Φm(zpr+n
)

Φm(zpr+n−1 )
=

Φm(zpr+n
)

Φm(zpr−1 )
.

Thus by (1.1) we get (1.6) since

Fp,prm(z) = lim
n→∞

∏
0≤k≤n

Φprm(zpk
) =

1
Φm(zpr−1 )

.

Turning to the case where p - `, we have the following estimate.

Lemma 2.2. Suppose that p - `. There is an absolute constant C > 0 so that for
gcd(a, `) = 1 and 0 < y < 1, ∣∣∣∣∣F(

e
(a
`

+ iy
))∣∣∣∣∣�p,` e−C(log y)2

.

Proof. Recall that
|Φ`(z)| =

∏
ε

|z − ε|,

where the product runs over all primitive `th roots of unity ε. Thus there is a constant
A depending only on ` so that for any such ε we have the estimate

|Φ`(εe−2πy)| ≤ A(1 − e−2πy).

Since p - ` is odd we know that e(pka/`) is a primitive `th root of unity for all k, so
that have∣∣∣∣∣F(

e
(a
`

+ iy
))∣∣∣∣∣ ≤ ∏

0≤k≤log(y−1)

A(1 − e−2π(pky))
∏

k>log(y−1)

∣∣∣∣∣Φ`

(
e
(
pk

(a
`

+ iy
)))∣∣∣∣∣

�`

∏
0≤k≤log(y−1)

(2πA)pky� e−C(log y)2
.

�
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Now it follows from (1.1) that for any n ≥ 1,

F(z) =

n−1∏
k=0

Φ`(zpk
)F(zpn

),

so by Lemma 2.2 we have that F(z)→ 0 as z approaches any primitive (pn`)th root of
unity along a radius of the unit circle. Since the set of all these points is dense in the
unit circle, F must have the unit circle as a natural boundary.

3. Associated Dirichlet series
Our proof of Theorem 1.2 makes use of analytic properties of a Dirichlet series

associated to F(z). In this section we will proceed a little more generally. Let

P(τ) =

d∑
m=0

cme(mτ)

be a trigonometric polynomial of degree d ≥ 1 with cm ∈ C and c0 = 1. Let b ≥ 2 be an
integer and consider the Fourier series defined for τ ∈ H , the upper half-plane, by

f (τ) =
∏
k≥0

P(bkτ). (3.1)

This is easily seen to define an analytic function inH by comparison with
∑

n≥0 e(bnτ).
Thus f has a Fourier expansion

f (τ) = 1 +
∑
n≥1

a(n)e(nτ), (3.2)

which converges uniformly on compact subsets ofH . Note that a(n) = a`(n) from the
introduction in the case where P(τ) = Φ`(e(τ)) and b = 2.

We are concerned with the associated Dirichlet series

ψ(s) =
∑
n≥1

a(n)n−s

and, more generally, its twist defined for a ∈ Z and q ∈ Z+ by

ψ(s, a/q) =
∑
n≥1

a(n)e(na/q)n−s.

We will show that these series converge absolutely for Re(s) sufficiently large.
Also, ψ(s, a/q) may be meromorphically continued to the entire s-plane, provided
gcd(q, b) = 1, and its possible poles lie on or to the left of

Re(s) =
log |S (a/q)|
ordq(b) log b

,

where

S (a/q) =

ordq(b)∏
k=1

d∑
m=0

cme
(
m

abk

q

)
(3.3)

and ordq(b) is, as before, the order of b modulo q.
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In particular, if S (a/q) = 0 then ψ(s, a/q) is entire. For q = 1, this last fact was
proven by Mahler [16].

Lemma 3.1. Let M = maxm |cm| and A = log M(d + 1)/ log b. Then:

(a) a(n) = O(nA); and
(b) f (τ) = O((Im τ)−A−1) for Im(τ) ≤ 1.

Proof. For statement (a), note that the number of factors in (3.1) that contribute a term
greater than one to a(n)e(nτ) in (3.2) is less than or equal to

N =
log n
log b

+ 1 =
log nb
log b

.

The number of possible products from these factors is (d + 1)N and the coefficient of
each product is bounded in absolute value by MN , so

|a(n)| ≤ ((d + 1)M)N = (d + 1)MnA.

For statement (b), we use statement (a) to obtain∑
n≥1

|a(n)||e(nτ)| ≤
∑
n≥1

nAe−2πny = O(y−A−1)

for y ≤ 1. �

Remark 3.2. If P(0) = 0, Mahler showed in [16] that for all c > 0 we have f (τ) =

O((Im τ)c), from which the fact that ψ(s) is entire follows easily from the Mellin
transform.

By Lemma 3.1(a) we see that the Dirichlet series ψ(s, a/q) converges absolutely for
Re(s) > A + 1 and that we have the Mellin representation

Ψ(s, a/q)
(def)
= (2π)−sΓ(s)ψ(s, a/q) =

∫ ∞

0

(
f
(a
q

+ iy
)
− 1

)
ys dy

y
(3.4)

also for Re(s) > A + 1.
It follows immediately from definition (3.1) that f (τ) satisfies the functional

equation
f (τ) = f (bnτ) fn(τ) (3.5)

for all positive integers n, where

fn(τ) =

n−1∏
k=0

P(bkτ).

Note that f1(τ) = P(τ) and that we may write

fn(τ) =

dn∑
m=0

cn,me(mτ), (3.6)
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where
dn = d(bn − 1)(b − 1)−1.

It is also convenient to define the Dirichlet polynomial

ψn(s, a/q) =

dn∑
m=1

cn,me
(
m

a
q

)
m−s. (3.7)

Observe that cn,m = a(m) for n > (log m/ log b).

Theorem 3.3. Suppose that gcd(b, q) = 1. If S (a/q) = 0 then ψ(s, a/q) has an
analytic continuation to an entire function. Otherwise, ψ(s, a/q) has a meromorphic
continuation to the entire s-plane with at most simple poles at

s j,k =
1

ordq(b) log b
(log |S (a/q)| + i arg S (a/q) ± 2πi j − k)

for j, k = 0, 1, 2, . . . . Moreover, there is a constant C > 0 so that for

Re(s) ≥ Re(s0,0) − 1
2

we have
(bs ordq(b) − S (a/q))ψ(s, a/q) = O((|Im s| + 1)C). (3.8)

Proof. We establish a kind of recursion formula for ψ(s,a/q) that allows us to continue
ψ(s, a/q) meromorphically in vertical strips of width one, inductively.

Set n = ordq(b), which is defined since gcd(b, q) = 1. By the functional
equations (3.5) and (3.4) we have for Re(s) > A + 1 that

Ψ(s, a/q) =

∫ ∞

0
fn
(a
q

+ iy
)[

f
(a
q

+ iybn
)
− 1

]
ys dy

y
+

∫ ∞

0

(
fn
(a
q

+ iy
)
− 1

)
ys dy

y

=

dn∑
m=0

cn,me
(
m

a
q

) ∫ ∞

0
e(imy)

[
f
(a
q

+ iybn
)
− 1

]
ys dy

y

+

dn∑
m=1

cn,me
(
m

a
q

) ∫ ∞

0
e(imy)ys dy

y

= b−ns
dn∑

m=0

cn,me
(
m

a
q

) ∫ ∞

0
e(imb−ny)

[
f
(a
q

+ iy
)
− 1

]
ys dy

y

+ (2π)−sΓ(s)ψn(s, a/q) by (3.7)

= b−ns
dn∑

m=0

cn,me
(
m

a
q

) ∫ ∞

0
[e(imb−ny) − 1]

[
f
(a
q

+ iy
)
− 1

]
ys dy

y

+ b−ns
dn∑

m=0

cn,me
(
m

a
q

) ∫ ∞

0

[
f
(a
q

+ iy
)
− 1

]
ys dy

y
+ (2π)−sΓ(s)ψn(s, a/q)
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= b−ns
dn∑

m=1

cn,me
(
m

a
q

) ∫ ∞

0
[e(imb−ny) − 1]

[
f
(a
q

+ iy
)
− 1

]
ys dy

y

+ b−ns fn(a/q)Ψ(s, a/q) + (2π)−sΓ(s)ψn(s, a/q) by (3.6).

Thus for Re(s) > A + 1 we have, upon using n = ordq(b) and (3.3), that

Ψ(s, a/q)(bns − S (a/q))
= bns(2π)−sΓ(s)ψn(s, a/q)

+

dn∑
m=1

cn,me
(
m

a
q

) ∫ ∞

0
[e(imb−ny) − 1]

[
f
(a
q

+ iy
)
− 1

]
ys dy

y
.

Now write for K a nonnegative integer

e(imb−ny) − 1 =

K∑
k=1

(−2πmb−ny)k

k!
+ EK(my)

where EK(y) = O(yK) for y ≥ 1, while for y ≤ 1,

EK(y) = O(yK+1). (3.9)

Thus for Re(s) > A + 1,

Ψ(s, a/q)(bns − S (a/q))
= bns(2π)−sΓ(s)ψn(s, a/q)

+

K∑
k=1

b−nk(−2π)k

k!
ψn(−k, a/q)Ψ(s + k, a/q) + GK(s), (3.10)

where by Lemma 3.1(b) and (3.9),

GK(s) =

dn∑
m=1

cn,me
(
m

a
q

) ∫ ∞

0
EK(my)

[
f
(a
q

+ iy
)
− 1

]
ys dy

y

is holomorphic for Re(s) > A − K.
Now bns − S (a/q) = 0 if and only if

s =
1

ordq(b) log b
(log |S (a/q)| + i arg S (a/q) + 2πi j)

for j ∈ Z.
We use (3.10) for K = 0 to define ψ(s, a/q) for Re(s) > A with possible simple poles

at these points. We then continue this process with K = 1, 2, . . . .
Finally, (3.8) follows from (3.10) and the fact that

Γ(s + k)
Γ(s)

= O(|s|k). �

https://doi.org/10.1017/S0004972715000039 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972715000039


[10] Infinite products 409

4. Proof of Theorem 1.2

In Theorem 3.3 take P(τ) = Φ`(e(τ)) and b = p. To prove Theorem 1.2 we use the
inverse Mellin transform from (3.4) to represent F(e(a/q + iy)) in terms of Ψ(s, a/q):

F(e(a/q + iy)) − 1 =
1

2πi

∫
Re(s)=c

Ψ(s, a/q)y−s ds

=
1

2πi

∫
Re(s)=c

(2π)−sΓ(s)ψ(s, a/q)y−s ds

where c is sufficiently large. Now we push the contour to the line Re(s) = Re(s0,0) −
1/2 and pick up residues at the (possible) simple poles s j,0. Using (3.8) and the
exponential decay of the gamma function on vertical lines, we now easily derive the
asymptotic formula of Theorem 1.2. Explicitly, if |S | < 1 we get the main contribution
from the pole of Γ(s) at s = 0:

F
(
e
(a
q

+ iy
))

= c + O(y−αq log |S |),

where c = 1 + ψ(0, a/q). If |S | ≥ 1 we get the Fourier expansion

g(x) =
∑
n∈Z

ρ(n)e(nz)

where
ρ(n) = res

s=sn
Ψ(s, a/q)

and
sn = αq(log |S | − 2πin).

The absolute convergence of this Fourier series follows from (3.8) and the exponential
decay of Γ(s) on vertical lines.

5. Concluding remarks

As should be clear, many of the results of this paper can be generalised in various
ways. In particular, a generalisation of Theorem 1.2 may be given for more general
products of the form (3.1). Our restriction to cyclotomic polynomials and b = p was
mainly to give easily stated and perhaps more elegant results that apply to the Thue–
Morse and Stern diatomic sequences (see [2] and [7] for related results). Also, there
could be some interest in further understanding the nature of the residues and special
values of the associated Dirichlet series ψ(s, a/q) in this case. Is it possible to express
them in terms of invariants of cyclotomic fields? The Dirichlet series used by de Bruijn
[4] and Dumas and Flajolet [10] arise from the Mellin transform of log F(z), and are
directly related to classical zeta functions. It might be interesting to try to connect them
with ψ(s, a/q).
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