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1. Introduction

A graph G is said to possess a perfect matching if there is a subgraph of G
consisting of disjoint edges which together cover all the vertices of G. Clearly
G must then have an even number of vertices. A necessary and sufficient
condition for G to possess a perfect matching was obtained by Tutte (3). If S
is any set of vertices of G, let p(S) denote the number of components of the
graph G — S with an odd number of vertices. Then the condition

for all S, p(S) g | 5 |

is both necessary and sufficient for the existence of a perfect matching. A
simple proof of this result is given in (1).

We consider certain conditions which are sufficient although not necessary.
Roughly speaking, G will have a perfect matching if there are enough edges.
For example, if | V(G)\ = n, n even, where V(G) denotes the set of vertices of
G, and if each vertex is of degree ^ \n, i.e. if each vertex has at least \n edges
incident with it, then it is almost trivial (see § 3) to show that G has a perfect
matching. Instead of looking at each vertex separately, we can put a condition
on the vertices collectively. If X denotes any subset of V(G), let

F(X) = {ye V{G): y is joined by an edge to at least one vertex in X}.

Following Woodall (4), we define

melt (G) = max {c: VXczV(G), \ T(X)\ ^ min (c | X |, | V{G)\)}.

Thus melt (G) is the largest number c such that any k vertices of G are collectively
adjacent to at least min (ck, n) vertices. We have already (1) shown that, if n
is even,

melt (G) 2: f => G has a perfect matching. (1)

We note that this condition implies that each vertex is of degree ^ \n. Indeed,
we have in general

c —1Lemma. If melt (G) ^ c>\, then each vertex of G has degree S; n
c

where n = \ V{G)\.
c— 1

Proof. Suppose there is a vertex v of degree ^ n. Then there are
c
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^ - vertices none of which is joined by an edge to v. But these vertices must
c

be joined to at least c. - = n vertices, a contradiction.
c

In the next section, we combine the two types of condition above to prove

Theorem 1. Let G have n vertices, n even. Let c be any fixed number,
| g c ^ | , and suppose that

(i) each vertex is of degree ^ en,

(ii) melt (G) ^ ^—£.
2 —2c

Then G possesses a perfect matching.

Note 1. c = i gives the trivial result mentioned above, and c = \ gives the
result (1).

Note 2. The theorem is also true for other values of c, but if c>\ condition (i)
by itself is sufficient, whereas if c<\ then condition (ii) by itself
suffices.

Note 3. Condition (ii) implies, by the lemma, that each vertex has degree
1 —2c> n, but this is less than en if c> l .

- 3-4c

Note 4. The result is best possible. If A, B are graphs let A+B denote the
graph obtained by joining every vertex of A to every vertex of B.
Take A = aK3\jbKi and B = (a + b-2)K1 where Kn denotes the
complete graph on n vertices.

Following the suggestion of the referee, who is to be thanked for his careful
consideration of the original version of this paper, we shall deduce Theorem 1
from the following stronger theorem which is proved along the same lines but
more simply.

Theorem 2. Let G have n vertices, n even, and suppose that

for all sets X of vertices of G. Then either G has a perfect matching or there
exist subsets X, Y of V(G), X $ Y, such that

\x\ = K3n-6), | Y | = i(3«-2), | rpo | = 21 x \- •?, | r(Y)| = 21 y | - 1

An example of a graph in which the second possibility occurs is G = 3K3

Theorem 2 is proved in the next section, but we now show that
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Theorem 2 implies Theorem 1. We assume Theorem 2 and the hypotheses
of Theorem 1. Let W be any set of vertices of G. If | W\>(l-c)n, then,
since the degree of each vertex of G is ^ en, we cannot have a vertex of G
joined to no vertex of W. Thus | Y(W)\ = V(G). So suppose | W | ^ (1 -c)n.
Then

| T(W)\ ^ ^ ^ | W | £ 2 | W | - - . (2)
2 —2c 2

It follows from Theorem 2 that G possesses a perfect matching unless there
exist two sets X, Y as in Theorem 2. Then, by (2),

\W\=2\W\-$
3-4c
2-2c ' ' ' ' 2

for W = Z and for W= Y, giving 1^1 = | Y\, a contradiction.
Theorem 2 is proved in the next section. In the remainder of this paper we

shall generalize in one theorem both Theorem 1 and a result of Woodall (4)
concerned with the maximum number of disjoint edges in a graph with no
perfect matching. Woodall's argument was based on that of (1), and now we
in turn extend his result.

2. Proof of Theorem 2
We suppose there is no perfect matching of G. Then by Tutte's theorem

there is a set S of vertices of G for which p(S)>\ S \. Using the fact that
p(S) = | S | (mod 2), we must then have

p(S)^ | 5 | + 2.

Case 1. Suppose that | S \ ̂  i(n — 6). Let m denote the number of 1-
components of G — S (i.e. the number of components with just one vertex).
Then

m) (3)

whence
n-mg$n-2|S|-3. (4)

But, if m>0,

n-m ^ | T(G-S)| ^ 2 | G-S \- -

I I 2

whence
n-m^in-2\S\. (5)
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Since (4) and (5) contradict one another, we must have m — 0. Thus, from
(3),

« ^ 4 | S | + 6
i.e.

\S\£#n-6),
whence

|S| = i(«-6).
Equality here implies that each component of G— S must have exactly 3 vertices.
If we let X denote the set of vertices in all but one of these components we then

have | X\ = i (3«-6) and | F ( Z ) | g | X | + | S \ = n - 3 = 2 | X \- - . Simi-

larly, if Y denotes the same set with one more vertex of G—S added, then we

also have | Y\ = \Qn-2) and | T(Y)\ ^ | Y j + | S ) = n-l = 2 \ Y \ - - .

Case 2. Suppose now that | S\<i(n — 6). Let h denote the number of
vertices in all but the smallest component of G—S. Since there are S | S \ + 2
components of G — S, containing between them n — \S\ vertices, we must have

|S|) . (6)

These h vertices can be adjacent to at most h + \ S \<n vertices; on the other

hand, they are by hypothesis joined to at least 2h vertices. Thus

h£\S\+l (7)

From (6) and (7), eliminating h, we obtain

|S|^i(«-6),
a contradiction.

3. Extension to imperfect matchings
A related question is the following. Given a condition on a graph G which

does not imply that G possesses a perfect matching, can we estimate how many
disjoint edges can be found in G ? Corresponding to the two types of condition
already studied, we have the following results for a graph with n vertices.

1. If each vertex is of degree ^ c«, 0 g c | i , then we can find at least
\cn\ disjoint edges.

2. If melt (G) ^ c, then there are at least
c

c+1

3c-2

n disjoint edges if 0 < c g £ (8)

3c J
n disjoint edges if 1 <c <; f. (9)
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Result 2 is due to Woodall (4), with (1) as the special case c = f. Result 1 is
almost trivial (although best possible—consider a bipartite graph). For suppose
that each vertex is of degree S; k, and that h<k disjoint edges have so far been
found. If no two remaining vertices are joined by an edge, select any two of
them, say vl and v2. Then it is easy to see that there must be a pair v3, vA of
vertices, joined by one of the edges already chosen, such that »t is joined to
v3 and v2 to v4. With this new pairing we now have h + 1 disjoint edges, and
the process can be repeated if h +1 < k. We now state

Theorem 3. Let G be a graph with n vertices. Suppose that
(i) each vertex is of degree ^ dn,

(ii) melt (G) ^
2 —2a

where 4d+3f^ 1, 2d+3f^ 1, d ^ 0, / ^ 0. Then G possesses at least

disjoint edges.j (I-f)! disjoin

The special case/ = 0 is Theorem 1, and the case/ = ^(1 — 4d) is WoodalPs
result (9). The referee has suggested that it may be possible to deduce this
result from an analogue to Theorem 2 in the same way as Theorem 1 was
deduced from Theorem 2. However, we preserve here our original proof.
Instead of Tutte's condition we use Berge's extension ((2); see also (4) for a
simpler proof): for G to possess at least t disjoint edges, it is necessary and
sufficient that p(S)- \ S \ ^ n-2t for all sets S of vertices of G. We shall in
fact prove that, for all S,

since this will imply that there are at least - (1 —/) — f and hence at least

- (1 —/) disjoint edges.

4. Proof of Theorem 3
In view of the above remarks, we may suppose that there exists a set S of

vertices of G such that
p(S)>\S\ + nf+i (10)

and show that this leads to a contradiction.

Case 1. | S | 2: dn. Let m denote the number of 1-components in G—S.
Mm = 0,

n^\S \ + 3p(S)>4 | S \ + 3fn ^ (4d + 3f)n ^ n,

so we must have m > 0. Thus

n-m ^ | F(G-S) | ^ 3 ~ 4 ^ ~ 3 / ( / i - | S |),
2 —2a
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whence

~ 2-2d ' ' 2-2d

But we also have, from (3), ignoring the term f in (10),

i.e. n>4\ S\-2m + 3nf,

w>2|5|-i(l-3/>. (12)

Eliminating m from (11) and (12), we obtain | S \<dn, a contradiction.

Case 2. \ S \<dn. Here there can be no 1-components, so that each odd
component contains at least

max (3, <*i-1 5 | + 1) (13)

vertices. From now on we can assume that 4d+ 3/> 1.

Case 2{a). Suppose there is at least one 3-component. Then (13) yields
dn-\S\=P, 0<p ̂  2. (14)

Then (3) and (10) give

n>4\S\ + 3nf+5 = (4d+3f)n-4p + 5
so that

n(4d+3f-l)<4p-5. (15)

Considering on the other hand all but one of the odd components we have,
from the definition of melt (G),

n-3>3~4d-3f(n-\S\-3).
~ 2-2d ' '

Substituting for | S | from (14), this gives

n(\-d)(4d+3f-X) ^ (3-P)(4d+3f-l)-6d+2p>2p-6d.

Thus, by (15), we must have

2p-6d<(l-d)(4p-5)
whence

d>h
It follows that

4d+3f-l>$. (16)

(15) and (16), with ft ^ 2, now yield «<9, and a contradiction easily follows.

Case 2 (b). Suppose now there is no 3-component. Here we shall show
that | S | is bounded. First of all, if | S \<$dn, then

so that
\dn | S | < | 5 |(2 + \dn) <«(1 - / - $ d - \fdri). (17)

https://doi.org/10.1017/S0013091500009809 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500009809


SUFFICIENT CONDITIONS FOR MATCHINGS 135

IfVn<4then|S|<l whereas, if rfn ̂ 4,thenifdn ^ 2/and (17) yields | 5 |<6.
Secondly, if \dn ^ \S\<dn, then

whence

\ id+f
Thus

40>(6d+5f-l)n>in,
so that n< 80. But

so we must have | 5 | ^ 11.
Thus in any case, | S | ^ 11. It remains finally to consider each possible

value of | 5 | in turn. In each case we argue as follows.
Let h denote the number of vertices in all but one of the odd components

o f G - 5 . Then

2-2d
whence

\s\
1 ' - 2-2d

Thus

For any specific value of | S |, (18) gives a lower bound for d, and so for dn.
For example, if | S | = 5, (18) yields

d ^ f-f/
and

dn ^ | « - | 0
where 9 = fn. Having obtained this bound for dn, we obtain a contradiction
by estimating n in two different ways. For we have

and also

With | S | = 5, these give
«>35 + 50 (19)

and

n< 9 0 + 7 4 e + 1 2 ° (20)
20 + 7 V

(19) and (20) contradict one another. The theorem is now proved.
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