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REPRESENTING A DISTRIBUTION BY STOPPING A
BROWNIAN MOTION: ROOT'S CONSTRUCTION

SHEY SHIUNG SHEU

A closed subset (C of [0,»] x [-»,»] is called a barrier if

(i) (=»x) €EC ,¥x ,

(ii) (t,x>) € (C ,¥t ,

(iii) (t,x) € ¢ implies (s,x) €C ,¥s =21 .

Given a Brownian motion (B(¥)) starting at the origin and a
barrier C , let T(C) be inf{t : (¢£,B(t)) € C} . A random
variable X (or a distribution F ) is called achievable if there
exists a barrier C so that B(1(()) is distributed as X(F)
In this paper we shall show that if X is bounded above or below
with finite mean or if X has zero mean and E(|X| log+[X|) < @
then X 1is achievable. This result gives a partial answer to a

problem raised by Loynes [7].

1. Introduction

In dealing with various limit theorems for sums of independent
random variables, Skorohod (see [9], page 163) introduced a method to
imbed a mean-zero random variable X into a Brownian motion B(%t) ,t = 0,
starting at the origin; that is, he found a stopping time 1 (relative
to a filtration generally larger than the Brownian filtration) so that

BT has the same distribution as X (denoted by BT ~ X ) and, furthermore,

E(Xz) = E(1) . 1If one requires 1T to be a stopping time relative to the
Brownian filtration ( T depends only on Brownian paths), whether such 1

can be still constructed has been a research problem for many authors
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(see Root [8], Dubins [6], Chacon and Walsh {4], Azéma and Yor [/], Bass
{2), vallois [10], etc.). BAmong these constructions, Root's seems

most intuitive. His stopping time is the hitting time of a certain set

in the compactified time-state space H = [0,»] x [-»,©] . A closed set

C in H will be called a barrier if

(i) (»,x) € C for all x €C( ,
(ii) (t,*») € ¢ for all t ,

(iii) (t,x) € ¢ implies (8,x) € ¢ for all s =2t .

The space of barriers will be compact under the Hausdorff metric. For

a barrier (€ , let 1(C) = inf{t , B(T)) € C} . Root proved that if X
has zero mean and finite variance, then there exists a barrier C so
that B(t(C)) ~ X , and E(1(C)) = E(Xz) . lLoynes [7] defines a random
variable X to be achievable if there exists a barrier C so that
B(t(C)) ~ X . He posed the problem of finding conditions for X to be
achievable. 1In this respect, any X with zero mean and finite variance
is achievable; any degenerate random variable is achievable and,
therefore, being zero-mean is not a necessary condition. In fact,
Loynes [7] showed that if X is concentrated on a half line (-«,b] and
E(X) 20 , or on [a,») and E(X) <0 , then X is achievable. He

also pointed out that if X is achievable, then E(|X|p) < o for all
P, 0 <p <1 . Unfortunately, Loynes' results do not cover important
cases such as Poisson distributions ( X concentrated on the positive

half line but E(X) > 0 ) . 1In this paper, we shall improve his results.

2. Main results
Call a sequence of random variables {Xn} stochastically bounded

if ¥e >0, @A >0 such that P(|X |>4) <e for all 7.

<«

LEMMA 2.1. Let {c } _, be a sequence of barriers such that
c,>¢C, - Then the corresponding hitting times t(C ) 7 T(C) in
probability. In particular, if C_ consists of points at « only ,

then t(C,) is not stochastically bounded.

Proof. This is just a rephrase of Lemma 1 in Loynes [7]. O
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@©

LEMMA 2.2. Let {Xn}n=1 be a sequence of random variables such

©

that X  converges to X in distribution. Let {Ch}n=l be a
sequence of barriers such that ¢, > C_ and C_ consists of at least

one finite point. If BT ~ Xh , 1 <n<wo, then BT ~ X

() ) e

Proof. By Lemma 2.1, T(C,) * t(C_) in probability. By assumption,
P(T(Cw) < w) = 1 . Therefore, there exists a subseguence T(Cn,) -> T(Cm)
almost surely. By the continuity of Brownian paths, we conclude

BT(C)~X°°' o

w0

THEOREM 2.3. Any random variable X bounded below or above with
finite mean is achievable. In particular, the Poisson random variable

18 achievable.

Proof. without loss of generality, we may assume that X 2 b > - .

By loynes' results, we may also assume M = E(X)> 0 . Let
. o 1 1
kM with probability 3(1 -E)
y =0 b with probability (1 -1
n 2 n

——;—-(n—l) (kM + b) with probability = ,

S|

where k is chosen so that k >0 , (k-2)M+b > 0 . Since Yn has _

mean zero and finite variance, it is achievable and the barrier can be

expressed as {(£,x) : £t >0 , x = kM or - %(n-l)(kM+b)} U

{(t,x) :t>tn,x=b} for some tn>0. Let Xn=X if X<n ;

Xn=n if X > n , and let Mn=E(Xn) . Let

Xn with probability

[
'
L

-(n - l)Mn with probability %
Zn has mean zero and finite variance and hence, is achievable. The
corresponding barrier can be expressed as Cn ={(t,x) : bs<zx<n,

t > tn(x)} U{(t,x) : t20 , x = -(n-—l)Mn} . For n=2kM , let
t!-= inf(t (z) : b<z < kM) . since n > kM, -(n-1)M_ > —%(n-l)(kM-fb) ,
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we have té < tn . But Yh converges in distribution to Y , where

P(Y=kM) = P(Y=Db) = % . Therefore, tn will converge to a finite

number and consequently, Cn will not diverge to infinity. Since Zn

converges to X in distribution, X is achievable by Lemma 2.1 and

Lemma 2.2. o

THEOREM 2.4. If X <& a random variable satisfying EX) =0 ,
E(|X| 1og"|X|) <« , then X is achievable.

Proof. we may assume that X is neither bounded above nor bounded

below. Then there exist sequences aq, > -* , bn + o such that if X =X,

n
when a <X<b ;X =0 ,vwhen X<a or X>b ,and EX ) =0.
n ”n n n n n

Of course, Xn is achievable. Let T, = T(Cn) be the stopping time

such that Br ~ Xn and E(Tn) = E(Xi) . By the famous Burkholder-Gundy's
n
inequality (see Theorem 6.1 in Buxkholder ([3]), we have

E(/%;') <cE ( sup |BY)

<1

By Doob's inequality (see Doob [5}, page 317) and the fact that

sup |B(t)| is bounded, we have

O<t<Tn
E(O:tgn |B(£) |) <-ef_l+e_fl_E(|Xn| log+lxn|)
< %+ 2o B(Jx] 109" XD
< ®

Hence, {E(VTn)} is bounded, which implies {Tn} is stochastically
bounded. Since Xﬁ converges to X in distribution, X is achievable

by Lemma 2.1 and Lemma 2.2. o
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