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Abstract

The myopic strategy is one of the most important strategies when studying bandit prob-
lems. In 2018, Nouiehed and Ross put forward a conjecture about Feldman’s bandit
problem (J. Appl. Prob. (2018) 55, 318–324). They proposed that for Bernoulli two-
armed bandit problems, the myopic strategy stochastically maximizes the number of
wins. In this paper we consider the two-armed bandit problem with more general dis-
tributions and utility functions. We confirm this conjecture by proving a stronger result:
if the agent playing the bandit has a general utility function, the myopic strategy is still
optimal if and only if this utility function satisfies reasonable conditions.
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1. Introduction

The bandit problem is a well-known problem in sequential control under conditions of
incomplete information. It involves sequential selections from several options referred to as
arms of the bandit. The payoffs of these arms are characterized by parameters which are typi-
cally unknown. Agents should learn from past information when deciding which arm to select
next, with the aim of maximizing the total payoffs.

This problem can be traced back to Thompson’s work [34] related to medical trials. Now it
is widely studied and frequently applied as a theoretical framework for many other sequential
statistical decision problems in market pricing, medical research, and engineering, which
are characterized by the trade-off between exploration and exploitation (see e.g. [15], [23],
and [32]).

Here we focus on the two-armed bandit problem, which is studied by Feldman [14]. For a
given pair (F1, F2) of distributions on a probability space (�,F , P), consider two experiments
X and Y (called the X-arm and Y-arm), having distributions under two hypotheses H1 and H2
as follows:

X Y
(ξ0) H1 : F1 F2

(1 − ξ0) H2 : F2 F1,

(1.1)
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where ξ0 is the a priori probability that H1 is true. In trial i, either the X-arm or Y-arm is
selected to generate a random variable Xi or Yi which describes the payoff, and ξi is the pos-
terior probability of H1 being true after i trials. The aim is to find the optimal strategy that
maximizes the total expected payoffs.

Among the many notable strategies such as the myopic strategy, the Gittins strategy, and the
play-the-winner strategy, the myopic strategy is undoubtedly one of the most appealing. With
this strategy, in each trial, agents select the arm with greater immediate expected payoff, i.e.
play each time as though there were but one trial remaining. Mathematically, let EP[· | H1] be
the expectation functional under hypothesis H1 if

EP[X1 | H1] ≥EP[Y1 | H1], (1.2)

which is equivalent to ∫
R

xdF1(x) ≥
∫
R

xdF2(x).

Then agents select the X-arm in trial i when ξi−1 ≥ 1
2 , or the Y-arm otherwise.

When the myopic strategy is optimal, it means that the optimal strategy is time-invariant, i.e.
it does not depend on the number of trials remaining. Hence the optimal strategy can be easily
implemented. Unfortunately, the myopic strategy is not optimal in general. This is mainly
because at each time the myopic strategy only considers the payoff of the next trial; however, to
maximize the total payoffs, all the remaining trials should be considered. Kelley [22] and Berry
and Fristedt [9] showed counterexamples that the myopic strategy is not optimal. It is an open
question to find out under what conditions the myopic strategy is optimal. The optimality of the
myopic strategy has always attracted attention. Bradt et al. [10] considered model (1.1) when
F1 and F2 are Bernoulli with expectation α and β respectively. They showed that the myopic
strategy is optimal when α + β = 1. Further, they conjectured that the myopic strategy is also
optimal when α + β �= 1, and verified this conjecture for n ≤ 8. For model (1.1), Feldman
[14] showed that the myopic strategy is optimal in an arbitrary number of trials. Kelley [22]
considered Bernoulli payoffs and asymmetric hypotheses and gave a necessary and sufficient
condition for the myopic strategy being optimal. Rodman [31] extended Feldman’s result to a
multi-armed setting.

The exploration of the conditions under which the myopic strategy is the optimal strategy
has not come to an end. This problem remains open under more general settings. Nouiehed and
Ross [30] studied a Bernoulli armed bandit problem and posed a conjecture that the myopic
strategy also maximizes the probability that no less than k wins occur in the first n trials, for all
k, n. They proved this conjecture for k = 1 and k = n in an n-armed bandit, and for k = n − 1
in the two-armed case, that is, model (1.1) with Bernoulli payoffs.

Why has the question in Nouiehed and Ross’s conjecture not been raised for almost 60
years? Nouiehed and Ross [30] explained that this was because in Feldman [14] and similar
studies, it was the number of times the better arm was chosen that was maximized, not the total
payoff. Although the two approaches are equivalent in [14], they are quite different when we
want to study a more general utility function.

This opens up a whole new horizon for us to study this issue. Let x be the total payoff, equal
to the sum of the generated values. All works mentioned above considered the utility function
ϕ(x) = x (e.g. [9], [14], and [22]) or ϕ(x) = I[k,+∞)(x) (e.g. [30]). So a natural question is what
conditions can guarantee the optimality of the myopic strategy for general utility functions.

In this paper we focus on the optimal strategy for the most typical case of two-armed bandit
problems (model (1.1)) proposed in the profound paper of Feldman [14]. With a general utility
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function to be considered, we obtain a necessary and sufficient condition for the optimality of
the myopic strategy. As an application, we could solve Nouiehed and Ross’s conjecture for the
two-armed case.

We consider a situation that the agent playing model (1.1) has a utility function ϕ and starts
with an initial fund of x and a strategy Mn: in trial i, play the X-arm if ξi−1 ≥ 1

2 , or the Y-arm
otherwise. The innovative aspects of the results obtained in this paper are as follows: first,
we take F1 and F2 as general distribution functions, continuous or not, rather than Bernoulli
distributions; second, we consider general utility functions that are no longer linear. This makes
Feldman’s proof method invalid and brings some additional difficulties. We shall show that
Mn maximizes the expected utility of n trials if and only if the utility function ϕ and the
distributions F1 and F2 satisfy

EP[ϕ(u + X1) | H1] ≥EP[ϕ(u + Y1) | H1] for any u ∈R. (1.3)

Condition (1.3) means that no matter how much money the agent already has, if only one trial
is to be played, playing the arm with distribution F1 is always better than playing the arm with
F2. In the case that ϕ(x) = x, condition (1.3) coincides with condition (1.2).

It is interesting that if we choose the utility function in condition (1.3) as an indicator func-
tion ϕ(x) = I[k,+∞)(x), and initial fund u = 0, we could prove Nouiehed and Ross’s conjecture
for the two-armed case immediately.

The structure of the paper is as follows. In Section 2 we review several important strategies
and compare them with the results of this paper. In Section 3 we describe the two-armed bandit
problem and some basic properties. In Section 4 we first introduce a dynamic programming
property of the optimal expected utility and then prove the main result. Finally, as a corollary,
we derive the validity of Nouiehed and Ross’s conjecture in the two-armed bandit case.

2. Related literature

After years of research, many excellent strategies have been produced. Here we review some
common strategies and illustrate how the results of this paper relate to and differ from these
strategies.

In the multi-armed bandit literature, a celebrated result is the so-called Gittins index strat-
egy introduced by Gittins and Jones [17]. Unlike the model studied in this paper, the Gittins
index strategy is used in a model with independent arms and an infinite number of trials, and
the aim is to maximize the sum of geometrically discounted payoffs. This strategy assigns to
each arm an index as a function of its current state, and then activates the arm with the largest
index value (breaking the ties arbitrarily). It optimizes the infinite-horizon expected discounted
payoffs. If the number of trials N is finite, then the Gittins index strategy can be used to approx-
imate the optimal strategy when N is large. If more than one arm can change its state at every
stage, the problem is called ‘restless’. Whittle [37] proposed an index rule to solve the restless
problem. This index is not necessarily optimal, but Whittle conjectured that it would admit a
form of asymptotic optimality as both the number of arms and the number of allocated arms in
each period grow to infinity at a fixed proportion, which was eventually proved in Weber and
Weiss [36] under some technical assumptions. The restless multi-armed bandit model can be
used in many aspects such as clinical trials, sensor management, and capacity management in
healthcare; see [3], [13], [19], [27], [28], and [35].

A major drawback of the Gittins index and Whittle index is that they are both difficult to
calculate. The current fastest algorithm can only solve the index in cubic time [16, 29]. In
contrast, the calculation of the myopic strategy is much easier. A second issue of the Gittins
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index is that the arms must have independent parameters, and the payoffs are geometrically
discounted. If these conditions are not met, as in the model studied in this paper, the Gittins
index strategy is no longer the optimal strategy [9, 18]. Therefore it is necessary to obtain
the condition that the myopic strategy is the optimal strategy when studying the model in this
paper.

Another important strategy is the UCB strategy. Lai and Robbins [25] laid out the theory of
asymptotically optimal allocation and were the first to actually use the term ‘upper confidence
bound’ (UCB). The UCB strategy is also applied to models with independent arms. Initially
the UCB strategy was used for models with an infinite number of trials, but with modifications
the UCB can also be used for models with a finite number of trials. When using the UCB
strategy, each arm is assigned a UCB for its mean reward, and the arm with the largest bound
is to be played. The bound is not the conventional upper limit for a confidence interval. The
design of the confidence bound has been successively improved [2, 4–6, 11, 20, 26]. Among
these, the kl-UCB strategy [11] and Bayes-UCB strategy [21] are asymptotically optimal for
exponential family bandit models. The improved UCB strategy is now easy to compute but is
still limited to models with independent arms.

The ε-greedy strategy [24] is widely used because it is very simple. At each round t =
1, 2, . . . the agent selects the arm with the highest empirical mean with probability 1 − ε, and
selects a random arm with probability ε. It has poor asymptotic behavior, because it continues
to explore long after the optimal solution becomes apparent. Another common strategy, in the
case of Bernoulli arms, is play-the-winner. It is a well-known strategy in which arm a is played
at time t + 1 if it resulted in success at time t. If a failure is observed at time t, then the next arm
is either chosen at random or the arms are cycled through deterministically. Play-the-winner
can be nearly optimal when the best arm has a very high success rate, but does not perform
well in most cases [9, 33].

There are also many variants of the bandit problem, such as the adversarial multi-armed
bandit with the EXP3 strategy [7] and online linear optimization with the FTL strategy [1], but
these are beyond the scope of this paper.

In fact, compared with the various classical models mentioned above, the biggest feature of
the model in this paper is the introduction of the utility function of the agent. All of the above
strategies only consider linear utility or discounted returns, but agents may have nonlinear
utility functions. For example, in Nouiehed and Ross’s conjecture, the utility of an agent will
no longer grow after a certain amount of gain. In this case, the effect of strategies such as the
Gittins index or UCB will be significantly reduced.

After the introduction of a generalized utility function, the bandit problem becomes very
complicated. To simplify the model and clearly demonstrate the ideas in this paper, we study
this two-armed bandit model. Nouiehed and Ross’s conjecture for the multi-armed bandit
machine model can also be studied with the method in this paper.

The multi-armed bandit model in Ross’s conjecture can be further generalized. For example,
when the arms have independent parameters and the discounting factor is geometric, Banks
and Sundaram [8] proved that the myopic strategy is equivalent to the Gittins index strategy
for linear utility functions. When the agent has a general utility function, does the Gittins index
still exist, and can the myopic strategy still be the optimal strategy under certain conditions?
Exploration of these issues will lead us to better understand the nature of the bandit problem.
Chen, Epstein, and Zhang [12] studied a multi-armed bandit problem where the agent is loss-
averse; in particular, the agent is risk-averse in the domain of gains and risk-loving in the
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domain of losses, and they established the corresponding asymptotically optimal strategy. This
is an important advance in this research.

3. Preliminaries

Let us start with the description of the two-armed bandit model (1.1) and the strategies.
Consider the bandit model in equation (1.1). Let {Xi}i≥1 be a sequence of random variables,

where Xi describes the payoff of trial i from the X-arm, and let {Yi}i≥1 be a sequence of ran-
dom variables selected from the Y-arm; {(Xi, Yi)}i≥1 are independent under each hypothesis.
We define Fi := σ {(X1, Y1), . . . , (Xi, Yi)}, which represents all the information that can be
obtained until trial i.

Remark 3.1. Note that in practice, regardless of the strategy chosen, the information obtained
after the ith trial is a proper subset of Fi, because for experiment j, the agent can only observe
one of Xj and Yj.

We call this model a (ξ0, n, x)-bandit if there are n trials to be played with initial fund x
and a prior probability ξ0. In the following discussion, the distributions F1 and F2 of arms are
continuous with density f1 and f2, respectively.

Remark 3.2. The same results still hold when the distributions of arms are discrete, e.g.
Bernoulli. We only need to modify the calculation of expectations in this case.

For each i ≥ 1, let θi be an Fi−1-measurable random variable taking values in {0, 1}, where
θi = 1 means the X-arm is selected for observation in trial i and θi = 0 means the Y-arm is
selected for observation in trial i. The payoff that an agent receives using θi in trial i is

Zθ
i := θiXi + (1 − θi)Yi.

For a (ξ0, n, x)-bandit and θ = {θ1, . . . , θn}, if θi ∈ σ (Zθ
1 , . . . , Zθ

i−1) ⊂Fi−1, then we call θ a
strategy. The set of strategies for a (ξ0, n, x)-bandit is denoted by 
n.

For a (ξ0, n, x)-bandit and a suitable measurable function ϕ, the expected utility obtained by
using strategy θ is denoted by

W(ξ0, n, x, θ ) =EP

[
ϕ

(
x +

n∑
i=1

Zθ
i

)]
,

where ϕ is called a utility function.
For each strategy θ ∈ 
n, let {ξθ

i }i≥1 be the sequence of the posterior probabilities that
hypothesis H1 is true after i trials. The posterior probability ξθ

1 after trial 1 with payoff s is
calculated by

ξθ
1 (s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ0f1(s)

ξ0f1(s) + (1 − ξ0)f2(s)
if θ1 = 1, i.e. the X-arm is selected,

ξ0f2(s)

ξ0f2(s) + (1 − ξ0)f1(s)
if θ1 = 0, i.e. the Y-arm is selected.

(3.1)
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We can easily obtain that for any fixed s, ξθ
1 (s) is increasing in ξ0. When the posterior

probability ξθ
i is known and the payoff of the i + 1 trial is s, there is a recursive formula

ξθ
i+1(s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξθ
i f1(s)

ξθ
i f1(s) + (1 − ξθ

i )f2(s)
if θi+1 = 1, i.e. the X-arm is selected,

ξθ
i f2(s)

ξθ
i f2(s) + (1 − ξθ

i )f1(s)
if θi+1 = 0, i.e. the Y-arm is selected.

(3.2)

Now we propose the following two-armed bandit problem.

Problem (TAB). For a (ξ0, n, x)-bandit and a utility function ϕ, find some strategy in 
n to
achieve the maximal expected utility

V(ξ0, n, x) := sup
θ∈
n

W(ξ0, n, x, θ ) = sup
θ∈
n

EP

[
ϕ

(
x +

n∑
i=1

Zθ
i

)]
. (3.3)

Note that the expected utility EP[·] depends on hypothesis H1, H2, and ξ0. In fact,

EP

[
ϕ

(
x +

n∑
i=1

Zθ
i

)]
= ξ0EP

[
ϕ

(
x +

n∑
i=1

Zθ
i

)
| H1

]
+ (1 − ξ0)EP

[
ϕ

(
x +

n∑
i=1

Zθ
i

)
| H2

]
,

where EP[· | Hi] is the expectation under hypothesis Hi (i = 1, 2).
To simplify the notation, we write EP[· | H1] as E1[·], EP[· | H2] as E2[·], and EP[·] as

Eξ0 [·]. Then the expected utility can be written as

W(ξ0, n, x, θ ) =Eξ0

[
ϕ

(
x +

n∑
i=1

Zθ
i

)]
,

where

Eξ0

[
ϕ

(
x +

n∑
i=1

Zθ
i

)]
= ξ0E1

[
ϕ

(
x +

n∑
i=1

Zθ
i

)]
+ (1 − ξ0)E2

[
ϕ

(
x +

n∑
i=1

Zθ
i

)]
.

Immediately, equality (3.3) can be written as follows:

V(ξ0, n, x) = sup
θ∈
n

W(ξ0, n, x, θ ) = sup
θ∈
n

Eξ0

[
ϕ

(
x +

n∑
i=1

Zθ
i

)]
.

Consider a strategy Mn: in trial i, play the X-arm if ξi−1 ≥ 1
2 , or the Y-arm otherwise. Our

main result is to find conditions under which Mn could solve Problem (TAB).
The following lemma shows that when calculating the expected utility, we can temporarily

fix the payoff of the first trial, calculate the expected utility as a function of the first payoff, and
then take expectation while seeing the first payoff as a random variable. This is an extension
of equation (2) in Feldman [14].

Lemma 3.1. For each integer n ≥ 2 and strategy θ = {θ1, . . . , θn} ∈ 
n, we have

Eξ0

[
ϕ

(
x +

n∑
i=1

Zθ
i

)]
=Eξ0

[
h
(
x, Zθ

1

)]
for all x ∈R, (3.4)
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where

h(x, u) =Eξθ
1 (u)

[
ϕ

(
x + u +

n∑
i=2

Zθ[u]
i

)]
,

ξ θ
1 is defined by (3.1), and θ [u] is the strategy obtained from θ by fixing the payoff of the first

trial to be u.

Remark 3.3. Eξθ
1 (u)[·] is the expected utility Eξ0 [·] replacing ξ0 with ξθ

1 (u). In integral form,
equation (3.4) is

Eξ0

[
ϕ

(
x +

n∑
i=1

Zθ
i

)]
=
∫
R

Eξθ
1 (u)

[
ϕ

(
x + u +

n∑
i=2

Zθ[u]
i

)]
(ξ0f1(u) + (1 − ξ0)f2(u)) du.

Remark 3.4. Here h
(
x, Zθ

1

)
can be seen as a conditional expectation of ϕ

(
x +∑n

i=1 Zθ
i

)
given

F1, and this lemma shows that it has the same expectation as ϕ
(
x +∑n

i=1 Zθ
i

)
. This is in fact

the tower property for conditional expectations, so we omit the proof.

We can see that the form of h(x, u) is very similar to the expected utility of the (ξθ
1 (u),

n − 1, x + u)-bandit with some strategy. There is indeed such a strategy to make the value of
h(x, u) equal to the expected utility of the (ξθ

1 (u), n − 1, x + u)-bandit.

Lemma 3.2. For any strategy θ ∈ 
n, let

h(x, u) =Eξθ
1 (u)

[
ϕ

(
x + u +

n∑
i=2

Zθ[u]
i

)]
.

Then, for any u, there exists a strategy ρ ∈ 
n−1, such that the value of h(x,u) is equal to the
expected utility of the (ξθ

1 (u), n − 1, x + u)-bandit with strategy ρ, that is,

h(x, u) =Eξθ
1 (u)

[
ϕ

(
x + u +

n∑
i=2

Zθ[u]
i

)]

=Eξθ
1 (u)

[
ϕ

(
x + u +

n−1∑
i=1

Zρ
i

)]

= W(ξθ
1 (u), n − 1, x + u, ρ).

Proof. We know that θ [u] is obtained by fixing the payoff u of the first trial, so for any
θ ′

i ∈ θ [u] it is σ (X2, Y2, . . . , Xi−1, Yi−1)-measurable. Then there are measurable functions πi,
i ≥ 2, such that

θ ′
i = πi(X2, Y2, . . . , Xi−1, Yi−1), i ≥ 2.

Define a new strategy ρ ∈ 
n−1 by

ρi = πi+1(X1, Y1, . . . , Xi−1, Yi−1), 1 ≤ i ≤ n − 1.

The fact that ρi+1 ∈ σ (Zρ
1 , . . . , Zρ

i ) can be easily verified.
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By the definition of ρ, we know that ρi has the same distribution as θ ′
i+1 in both hypotheses,

so Zθ[u]
i and Zρ

i have the same distribution. Using this fact, we can easily verify that

Eξθ
1 (u)

[
ϕ

(
x + u +

n∑
i=2

Zθ[u]
i

)]
=Eξθ

1 (u)

[
ϕ

(
x + u +

n−1∑
i=1

Zρ
i

)]
. �

Now we introduce the dynamic programming property of the expected utility, which plays
an important role in the subsequent arguments. Similar results are found in many works on ban-
dit problems, but only for the case of ϕ(x) = x (e.g. [9], [14]). Our result extends the classical
ones.

Theorem 3.1. For each ξ0 ∈ [0, 1], n ≥ 1 and x ∈R, consider the (ξ0, n, x)-bandit. The optimal
strategy θ [n] ∈ 
n exists. Then there are measurable functions

π
[n]
i : [0, 1] ×R×R

2i−2 
→ {0, 1}, 1 ≤ i ≤ n,

such that for any ξ0 ∈ [0, 1] and x ∈R, the optimal strategy θ [n] for the (ξ0, n, x)-bandit satisfies

θ
[n]
1 = π

[n]
1 (ξ0, x),

θ
[n]
i = π

[n]
i (ξ0, x, X1, Y1, . . . , Xi−1, Yi−1), i ≥ 2.

Further, the optimal expected utility satisfies the following dynamic programming property:

V(ξ0, n, x) = sup
θ∈
n

Eξ0

[
V
(
ξθ

1 , n − 1, x + Zθ
1

)]

= max

{
Eξ0

[
V

(
ξ0f1(X1)

ξ0f1(X1) + (1 − ξ0)f2(X1)
, n − 1, x + X1

)]
,

Eξ0

[
V

(
ξ0f2(Y1)

ξ0f2(Y1) + (1 − ξ0)f1(Y1)
, n − 1, x + Y1

)]}
.

Theorem 3.1 is mostly standard for a finite action and horizon dynamic programming
problem, so we omit the proof.

4. Main results

Now we are going to study the specific form of the optimal strategy, for the finite two-
armed bandit (1.1) with utility function ϕ. It is obvious that different utility functions may lead
to different optimal strategies, but we will show that when a reasonable condition is satisfied,
the optimal strategy is independent of the specific form of ϕ.

Recall that the myopic strategy for (ξ0, n, x)-bandits is Mn = {mn
1, . . . , mn

n}: in trial i, play
the X-arm if the posterior probability ξMn

i−1 ≥ 1
2 , or the Y-arm if ξMn

i−1 < 1
2 . Note that Mn ∈ 
n.

In fact, Mn can be denoted by

Mn = {
mn

1, . . . , mn
n

}
= {

g
(
ξ0
)
, g
(
ξMn

1

)
, . . . , g

(
ξMn

n−1

)} ∈ 
n, (4.1)

https://doi.org/10.1017/jpr.2023.24 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.24


A confirmation of a conjecture on Feldman’s two-armed bandit problem 129

where g(x) = 1 if x ≥ 1
2 , or g(x) = 0 if x < 1

2 . From the definition of ξMn

i−1 and mn
i , we know that

they are both independent of n and x. Hence we can write ξMn

i−1 for short as ξM
i−1, and write mn

i
as mi. Now the myopic strategy Mn is denoted by

Mn = {m1, . . . , mn}
= {

g
(
ξ0
)
, g
(
ξM

1

)
, . . . , g

(
ξM

n−1

)}
.

Next we will give a condition on ϕ which is necessary and sufficient for Mn being the optimal
strategy.

Theorem 4.1. For any integer n ≥ 1, the myopic strategy Mn is the optimal strategy of the
(ξ0, n, x)-bandit for all ξ0 ∈ [0, 1], x ∈R, if and only if

E1[ϕ(u + X1)] ≥E1[ϕ(u + Y1)] for all u ∈R. (I)

Remark 4.1. When ϕ(x) = x, condition (I) is in fact

E1[X1] ≥E1[Y1],

and Theorem 4.1 in this case is exactly Theorem 2.1 of Feldman [14].

Remark 4.2. When the two distributions F1, F2 are Bernoulli distributions, say Bernoulli (α)
and Bernoulli (β), α, β ∈ (0, 1), then condition (I) is written as

(ϕ(x + 1) − ϕ(x))(α − β) ≥ 0 for any x ∈R.

If ϕ(x) is an increasing function of x, and α ≥ β, then condition (I) holds.

Remark 4.3. Note that condition (I) here is a necessary and sufficient condition to make Mn

the optimal strategy of the (ξ0, n, x)-bandit model for any x ∈R and any ξ0 ∈ [0, 1]. However,
when condition (I) is not satisfied, it is still possible that there is a specific triple (ξ0, n, x) that
makes Mn the optimal strategy of the (ξ0, n, x)-bandit, but the optimality of Mn does not hold
for general (ξ0, n, x) triples.

To achieve our goal, we need to formulate some properties of the expected utility of Mn,
which can be considered as extensions of properties of RN , and Lemma 2.1 in Feldman’s
paper [14].

Lemma 4.1. For each n ∈Z
+, we have the following.

(1) The expected utility with strategy Mn is symmetric about ξ0 = 1
2 , that is,

W(ξ0, n, x, Mn) = W(1 − ξ0, n, x, Mn) for all ξ0 ∈ [0, 1], x ∈R. (4.2)

(2) Let us define the strategies

Ln = {
1, g

(
ξLn

1

)
, . . . , g

(
ξLn

n−1

)}
and Rn = {

0, g
(
ξRn

1

)
, . . . , g

(
ξRn

n−1

)}
,

where g(·) is the function defined in (4.1). Then

W(ξ0, n, x, Ln) = W(1 − ξ0, n, x, Rn) for all ξ0 ∈ [0, 1], x ∈R. (4.3)
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Proof. An important feature of model (1.1) is symmetry. Swapping the X-arm with the
Y-arm and exchanging hypothesis H1 with H2, we can obtain equation (4.3). Equation (4.2)
can be obtained from (4.3) and the definition of Mn. Lemma 4.1 can also be proved using
mathematical induction and Lemmas 3.1 and 3.2. �

Lemma 4.2. Consider the following strategies.
For n = 2, let U2 = {1, 0} and V2 = {0, 1}.
For each n ≥ 3, let

Un = {
1, 0, g

(
ξUn

2

)
, . . . , g

(
ξUn

n−1

)}
,

Vn = {
0, 1, g

(
ξVn

2

)
, . . . , g

(
ξVn

n−1

)}
,

where g(·) is the function defined in (4.1). Then, for each n ≥ 2, ξ0 ∈ [0, 1] and x ∈R, the
expected utilities obtained by using Un and Vn satisfy the relation

W(ξ0, n, x, Un) = W(ξ0, n, x, Vn).

Proof. For n = 2 the result is obvious. We only need to consider cases where n ≥ 3. Let
ξUn

2 (u, s) be the posterior probability given the first payoff u and second payoff s, using strategy
Un, and let ξVn

2 (s, u) be the posterior probability given the first payoff s and second payoff u,
using strategy Vn. According to (3.2), there is

ξUn

2 (u, s) = ξ0f1(u)f2(s)

ξ0f1(u)f2(s) + (1 − ξ0)f2(u)f1(s)
= ξVn

2 (s, u). (4.4)

Let the conditional strategy Un[u, s] denote the strategy Un given the first payoff u and
second payoff s, and let the conditional strategy Vn[s, u] denote the strategy Vn given the first
payoff s and second payoff u. Then, by (4.4) and the definitions of Un[u, s] and Vn[s, u], we
can easily get that these two conditional strategies are the same for i ≥ 3 trials.

Using the same techniques as in Lemma 3.1, we obtain

W(ξ0, n, x, Un)

=Eξ0

[
ϕ

(
x +

n∑
i=1

ZUn

i

)]

=
∫
R

∫
R

E
ξUn

2 (u,s)

[
ϕ

(
x + u + s +

n∑
j=3

ZUn[u,s]
j

)]
(ξ0f1(u)f2(s) + (1 − ξ0)f2(u)f1(s)) ds du

and

W(ξ0, n, x, Vn)

=Eξ0

[
ϕ

(
x +

n∑
i=1

ZVn

i

)]

=
∫
R

∫
R

E
ξVn

2 (s,u)

[
ϕ

(
x + s + u +

n∑
j=3

ZVn[s,u]
j

)]
(ξ0f2(s)f1(u) + (1 − ξ0)f1(s)f2(u)) du ds.
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Then the desired result is obtained by using (4.4) and the fact that Un[u, s] = Vn[s, u] for i ≥ 3
trials. �

For each n ∈Z
+, let Ln and Rn be the strategies defined in Lemma 4.1. For x ∈R, ξ0 ∈ [0, 1],

define the difference of expected utilities by

n(x, ξ0) := W(ξ0, n, x, Ln) − W(ξ0, n, x, Rn)

=Eξ0

[
ϕ

(
x +

n∑
i=1

ZLn

i

)]
−Eξ0

[
ϕ

(
x +

n∑
i=1

ZRn

i

)]
.

By Lemma 4.1 we can obtain n(x, ξ0) = −n(x, 1 − ξ0) and n(x, 0.5) = 0.
In the case ϕ(x) = x, there is an important recurrence formula for n(x, ξ0); see equations

(12), (13), and (14) in [14] and equation (7.1.1) in [9]. The following lemma shows that this
recurrence formula still holds for a general utility function.

Lemma 4.3. For n ≥ 2, and any x ∈R, ξ0 ∈ [0, 1], there is

n(x, ξ0) =
∫
R

I{
ξX

1 (u)≥0.5
}n−1

(
x + u, ξX

1 (u)
)(

ξ0f1(u) + (1 − ξ0)f2(u)
)

du

+
∫
R

I{
ξY

1 (u)<0.5
}n−1

(
x + u, ξY

1 (u)
)(

ξ0f2(u) + (1 − ξ0)f1(u)
)

du,

where

ξX
1 (u) = ξ0f1(u)

ξ0f1(u) + (1 − ξ0)f2(u)
and ξY

1 (u) = ξ0f2(u)

ξ0f2(u) + (1 − ξ0)f1(u)
.

Proof. Consider strategies Un, Vn defined in Lemma 4.2. Using Lemmas 3.1 and 3.2, we
can make the following two differences:

W(ξ0, n, x, Ln) − W(ξ0, n, x, Un)

=Eξ0

[
ϕ

(
x +

n∑
i=1

ZLn

i

)]
−Eξ0

[
ϕ

(
x +

n∑
i=1

ZUn

i

)]

=
∫
R

I{
ξX

1 (u)≥0.5
}n−1

(
x + u, ξX

1 (u)
)(

ξ0f1(u) + (1 − ξ0)f2(u)
)

du,

W(ξ0, n, x, Vn) − W(ξ0, n, x, Rn)

=Eξ0

[
ϕ

(
x +

n∑
i=1

ZVn

i

)]
−Eξ0

[
ϕ

(
x +

n∑
i=1

ZRn

i

)]

=
∫
R

I{
ξY

1 (u)<0.5
}n−1

(
x + u, ξY

1 (u)
)(

ξ0f2(u) + (1 − ξ0)f1(u)
)

du.

The computational details are similar to the proofs of Lemmas 4.1 and 4.2, so we omit them.
The desired formula is obtained by adding the above two equations and using Lemma 4.2. �
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The key to achieving our main theorem is to prove that for any fixed x ∈R and n ∈Z
+, the

above difference n(x, ξ0) is an increasing function of ξ0. To prove this assertion, we use a
method similar to that used by Rodman [31].

Define functions Dn(x, tX, tY ), n = 1, 2, . . . , for every tuple (x, tX, tY ) of numbers, such that
x ∈R and tX, tY ≥ 0:

Dn(x, tX, tY ) =

⎧⎪⎨
⎪⎩

(tX + tY )n

(
x,

tX
tX + tY

)
if tX + tY > 0,

0 otherwise.

From this definition we obtain immediately that

Dn(x, tX, tY ) = −Dn(x, tY , tX) and Dn(x, tX, tY ) = 0 if tX = tY .

Lemma 4.4. If condition (I) holds, then Dn(x, tX, tY ) is an increasing function of tX, when x, tY
are kept fixed.

Proof. The proof is by induction. When n = 1,

D1(x, tX, tY ) = (tX − tY )
∫
R

ϕ(x + u)(f1(u) − f2(u)) du

is clearly an increasing function of tX when x, tY are kept fixed.
Now suppose Lemma 4.4 is proved for n = k. From Lemma 4.3 we know that

Dk+1(x, tX, tY ) =
∫
R

I{tX f1(u)≥tY f2(u)}Dk(x + u, tXf1(u), tY f2(u)) du

+
∫
R

I{tX f2(u)<tY f1(u)}Dk(x + u, tXf2(u), tY f1(u)) du.

When u, x, tY are fixed,

Dk(x + u, tXf1(u), tY f2(u)) and Dk(x + u, tXf2(u), tY f1(u))

are increasing functions of tX . Moreover,

Dk(x + u, tXf1(u), tY f2(u)) ≥ 0 when tXf1(u) ≥ tY f2(u),

Dk(x + u, tXf2(u), tY f1(u)) ≤ 0 when tXf2(u) < tY f1(u).

So the two integrands in the above two integrals are both increasing functions of tX .
Hence we obtain that Dk+1(x, tX, tY ) is an increasing function of tX when x, tY are fixed,

and complete the proof. �

Now let tX = ξ0, tY = 1 − ξ0. Then

Dn(x, tX, tY ) = n(x, ξ0).

By Lemma 4.4 and Dn(x, tX, tY ) = −Dn(x, tY , tX), we get the desired fact.
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Corollary 4.1. For any fixed x ∈R and n ∈Z
+, n(x, ξ0) is an increasing function of ξ0.

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Firstly, we assume that condition (I) holds and prove the optimality of
Mn. This can be easily obtained by Theorem 3.1 and Corollary 4.1. We now use mathematical
induction.

When n = 1, by Corollary 4.1,

1(x, ξ0) =Eξ0 [ϕ(x + X1)] −Eξ0 [ϕ(x + Y1)]

is an increasing function of ξ0 for any fixed x. Since 1(x, 1
2 ) = 0, then the optimal strategy

should choose X first if ξ0 ≥ 1
2 and choose Y first if ξ < 1

2 . This means that M1 is the optimal
strategy of the (ξ0, 1, x)-bandit, for any x ∈R and ξ0 ∈ [0, 1].

Assume that for fixed k ≥ 1, the myopic strategy Mk is optimal for (ξ0, k, x)-bandits, for any
x ∈R and ξ0 ∈ [0, 1].

Now consider a bandit problem with k + 1 trials. Note that by definition of Mk+1, Lk+1, and
Rk+1, there is

W(ξ0, k + 1, x, Mk+1) =
⎧⎨
⎩

W(ξ0, k + 1, x, Lk+1) if ξ0 ≥ 1
2 ,

W(ξ0, k + 1, x, Rk+1) otherwise.

By Lemmas 3.1 and 3.2 we know that

W(ξ0, k + 1, x, Lk+1) =Eξ0

[
ϕ

(
x +

k+1∑
i=1

ZLk+1

i

)]

=Eξ0

[
W

(
ξ0f1(X1)

ξ0f1(X1) + (1 − ξ0)f2(X1)
, k, x + X1, Mk

)]
,

W(ξ0, k + 1, x, Rk+1) =Eξ0

[
ϕ

(
x +

k+1∑
i=1

ZRk+1

i

)]

=Eξ0

[
W

(
ξ0f2(Y1)

ξ0f2(Y1) + (1 − ξ0)f1(Y1)
, k, x + Y1, Mk

)]
.

By Corollary 4.1, k+1(x, ξ0) is an increasing function of ξ0, k+1(x, 1
2 ) = 0. By the

induction hypothesis, Mk is the optimal strategy of
( ξ0f1(u)

ξ0f1(u)+(1−ξ0)f2(u) , k, x + u
)
-bandits and( ξ0f2(u)

ξ0f2(u)+(1−ξ0)f1(u) , k, x + u
)
-bandits, for u ∈R. Then we have

W
(
ξ0, k + 1, x, Mk+1)
= max

{
W
(
ξ0, k + 1, x, Lk+1), W

(
ξ0, k + 1, x, Rk+1)}

= max

{
Eξ0

[
V

(
ξ0f1(X1)

ξ0f1(X1) + (1 − ξ0)f2(X1)
, k, x + X1

)]
,

Eξ0

[
V

(
ξ0f2(Y1)

ξ0f2(Y1) + (1 − ξ0)f1(Y1)
, k, x + Y1

)]}
.
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Therefore, by Theorem 3.1,

W(ξ0, k + 1, x, Mk+1) = V(ξ0, k + 1, x).

Hence Mk+1 is the optimal strategy of (ξ0, k + 1, x)-bandits, for any x ∈R and ξ0 ∈ [0, 1]. The
first part of the main theorem is proved.

Now we prove that if the strategy Mn is optimal for (ξ0, n, x)-bandits, for any integer n ≥ 1,
for all ξ0 ∈ [0, 1], x ∈R, then condition (I) holds.

Indeed, we only need to consider the case when n = 1. For any fixed x ∈R, we have

Eξ0 [ϕ(x + X1)] = ξ0

∫
R

ϕ(x + u)f1(u) du + (1 − ξ0)
∫
R

ϕ(x + u)f2(u) du,

Eξ0 [ϕ(x + Y1)] = ξ0

∫
R

ϕ(x + u)f2(u) du + (1 − ξ0)
∫
R

ϕ(x + u)f1(u) du.

Since the strategy M1 which chooses X if and only if ξ0 ≥ 1
2 is the optimal strategy, we know

that

Eξ0 [ϕ(x + X1)] −Eξ0 [ϕ(x + Y1)] ≥ 0 if ξ0 ≥ 1
2 .

Then, for any fixed x ∈R, we have

(2ξ0 − 1)

[∫
R

ϕ(x + u)f1(u) du −
∫
R

ϕ(x + u)f2(u) du

]
≥ 0 if ξ0 ≥ 1

2 ,

which leads to ∫
R

ϕ(x + u)f1(u) du −
∫
R

ϕ(x + u)f2(u) du ≥ 0.

This is clearly condition (I). �

Theorem 4.1 gives a reasonable condition on ϕ that is necessary and sufficient for the
myopic strategy Mn being the optimal strategy. With Theorem 4.1 in hand, we can imme-
diately obtain the following two corollaries. The first corollary is the same as the result of
Feldman [14], obtained by applying Theorem 4.1 on the ϕ(x) = x case. The second corollary
answers Nouiehed and Ross’s conjecture for the two-armed case.

Corollary 4.2. (Feldman.) The myopic strategy Mn is optimal for (ξ0, n, x)-bandits with utility
function ϕ(x) = x, for any integer n ≥ 1, for all ξ0 ∈ [0, 1], x ∈R, if and only if

EP[X1 | H1] ≥EP[Y1 | H1].

Corollary 4.3. (Nouiehed and Ross’s conjecture.) Consider the two-armed Bernoulli bandits.
Let the distributions F1 and F2 be Bernoulli (α) and Bernoulli (β), and α > β. Under hypoth-
esis H1, experiment X obeys Bernoulli (α) and Y obeys Bernoulli (β); under hypothesis H2, X
obeys Bernoulli (β) and Y obeys Bernoulli (α). Then, for any fixed positive integers k and n,
Feldman’s strategy Mn maximizes P(Sn ≥ k) =EP[IA], where IA is the indicator function of set
A = {Sn ≥ k}.

Proof. Note that the proof of Theorem 4.1 also holds in the case of the distributions being
Bernoulli distributions. In this case we only need to modify the calculation of expectations.
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For any fixed k, let the utility function be ϕ(x) = I[k,+∞)(x). By Remark 2, this ϕ satisfies
condition (I), so Theorem 4.1 can be applied, and hence Mn maximizes the expectation P(Sn ≥
k) =EP[IA] =Eξ0 [ϕ(Sn)]. �

Remark 4.4. An anonymous reviewer reminded us that if the utility ϕ is increasing, then
Nouiehed and Ross’s conjecture for model (1.1) is in fact equivalent to proving that the myopic
strategy maximizes Eξ0 [ϕ(x + Sn)].
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