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Abstract  Let D be a division ring whose group of units satisfies a non-trivial group identity w. Let «
be the sum of positive degrees of indeterminates occurring in w. If the centre of D contains more than
3a elements, then D is commutative.
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Given a unital ring R, the set U(R) of its units (invertible elements) forms a group,
called the group of units of R. The group U(R) is said to satisfy a group identity if there
exists a non-trivial word w(z1, ..., z,) in the free group generated by x1,...,x,,... such
that w(uq,...,u,) =1for all uy,...,u, € U(R). The study of certain rings R (especially
group algebras) with U (R) satisfying group identities has experienced significant progress
in the past decade [5,6,9-12].

The group identities are special cases of rational identities that were thoroughly inves-
tigated by Amitsur [1], Bergman [3,4] and Valitskas [14]. As an application of his theory
of rational identities, Amitsur proved that a division ring D with centre Z(D) infinite
and U(D) satisfying a group identity is commutative (see [1] and [13, Theorem 8.4.2]).
This extends a classical result due to Hua, who showed that a division ring D with Z(D)
infinite and U(D) solvable is commutative (see [7] and [13, Corollary 8.4.3]). In this
note we study division rings D with Z (D) not necessarily infinite and U (D) satisfying
a group identity. We show that D is commutative so long as Z(D) contains sufficiently
many elements.

In what follows, we denote the ring of polynomials by D[z] and the ring of Laurent
series by D((z)) in a central indeterminate x over a division ring D. It is well known
that D((z)) is a division ring and that D[z] C D((x)). Hence every non-zero polynomial
is invertible in D((z)). In particular, for any a € D, 1 + ax is invertible in D((x)) and,
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more explicitly, its inverse is given by [13, Remark 8.2.10]

1+ Z(—a)iaci.
i=1

As a matter of fact, D[z] is a principal left ideal domain (PLID) [13, Proposition 8.2.2],
so it has a division ring D(z) of fractions. Moreover, we have D[z] C D(z) C D((z)).

We begin with an elementary fact about Dz] that plays an important role below.
Since D[z] is a PLID, for any non-zero r1,79 € D[z], there exist non-zero sy, 2 € D[x]
such that sory = syre [13, Proposition 8.2.3]. If both r; and ry are linear, we can also
choose s; and s9 to be linear.

Lemma 1. Let D be a division ring. For any r1 = 1+ ax, 7o = 1 + bx € D[z], there
exist s1, 52 € Dlz] of degrees at most 1 such that riry ' = sy sy (in D(z)).

Proof. If a = b, take s; = s2 to be any element in D[x] of degree at most 1. So we
may assume that a # b. Let s; = 1+ (b—a)a(b—a) 'z and so = 1 + (b—a)b(b—a) ‘.
We leave the verification that sor1 = s179 to the reader. O

Corollary 2. Let D be a division ring, r; = 1 + a;x € D[z] and r = r]'r3* -+ rm,
where ~; are non-zero integers. Let I = {i | ¢« = 1,...,m, v >0}, J = {i | i =
L...,m, % <0},a=3%,;viand B=—3 ;7. Thenr= sy 's1 (in D(x)), where s,

is a polynomial of degree at most « and so is a polynomial of degree at most (3.

We will also need another auxiliary result which follows from a Vandermonde argument
[13, Propositions 2.3.26 and 2.3.27].

Lemma 3. Let D be a division ring with centre F and let f(z) be a polynomial in D|x]
of degree n. Suppose that f(c) =0 for all c € F. Then F contains at most n elements.

With all these on hand and using some ideas of [13, Theorem 8.2.11], we are now ready
to prove our main result of this note.

Theorem 4. Let D be a division ring with centre F. Suppose that the group U(D)

of units satisfies a non-trivial group identity w(z1,...,zm) = 2{* -z}, where the ~;
are non-zero integers and the z; are not necessarily distinct. Let I = {i |i=1,...,m,

v >0h J={ili=1,....m, <0}, a=>,;viand f=—> ;7. If F contains
more than 3min{«, B} elements, then D is commutative.

Proof. fa—f3 =7 #0,weget y?” = 1forally € U(D) by setting z; = -+ =z, =y €
U(D) inw(z1,...,%n) = 1. Then it follows from Jacobson’s Theorem [8, Theorem 12.10]
that D is commutative. Hence we may assume that a = .

By Amitsur’s Theorem cited earlier [13, Theorem 8.4.2], we are done if F' is infinite. So
it suffices to consider the case where F' is finite. If F' is finite and D satisfies a non-trivial
polynomial identity (PI), then by a theorem due to Kaplansky [2, Theorem 6.1.10], D
is finite dimensional over F' and so D is finite. Thus D is commutative by Wedderburn’s
Theorem [8, Theorem 13.1].

Therefore, we shall assume in what follows that o = (3, that F' is finite and that D
does not satisfy any non-trivial PI.
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Let S = F{y1,...,Ym} be the free algebra in indeterminates yi, ..., Y., over F, where
y; = y; if z; = zj in w(z1,. .., zm) and y; does not commute with y; if z; # z;; and let
T = S((x)) be the ring of Laurent series in a central indeterminate « over S. Note that
we are assuming that x commutes with each y; for all ¢ =1,...,m.

Let H be any non-commutative division ring with centre F'(z), the rational function
field over F. Since w(z1,...,2m) is a non-trivial word, there exist non-zero uy, ..., u,, €
H such that w(uy,...,uy,) # 1 in view of Amitsur’s Theorem. Or, equivalently,
w(l+wvy,...,14+v,)#1 for some vy,...,v, € H with v; # —1 for all : = 1,...,m.
Hence, w(1+yi, ..., 14+Ynm) does not coincide with 1 identically. As a consequence, we see
that the rational expression w(1+yiz,...,1+ ymz) does not coincide with 1 identically.

Note that each 1 4 ygx is invertible in S((x)) and its inverse is given by

o0
L) (—yn)'a’.
i=1
Replacing each (1+yrz)~ ! in w(1+y12,...,1+yn,z) by the above expression, we obtain
o0
wl+wyz,...,1+ynx)=1 +Zfi(y1,...,ym)xl,

=1

where each f;(y1,...,ym) is a polynomial in the non-commuting indeterminates y1, ...,
Ym over F. Since w(l4yiz,. .., 1+y,x) does not coincide with 1 identically, we conclude
that some of the polynomials f;(y1,...,¥Yn) must be non-zero.

For u1,...,um € D we have w(l + w1z, ...,1+ uyz) € D(z) C D((x)) and

w(l+uiz,...,1+upx) = 1+Zfi(u1,...,um)xi.

i=1

If w(l+ww,...,1+upz) =1 for all uy,...,uy € D, then fi(uy,...,uy) = 0 for

all ¢ = 1,2,.... Thus D satisfies some non-trivial PT f;(y1,...,ym), contradicting our
assumption. Hence, w(l+ujx, ..., 1+uyx) # 1 for some uq, ..., u,, € D. By Corollary 2,
w(l + uix,...,1 + uy,x) can be written as go(x) gy (x), where gi(x) and go(z) are

polynomials in D[xz] of degrees at most «.

For any ¢ € F with 1 4+ u;c # 0 for all i = 1,...,m, we have g2(c)"1g1(c) = w(l +
uiC, ..., 1+ ume) = 1 since w(zy, ..., zm,) is a group identity for U (D). Note that m < 2«
and, since F' has more than 3« elements, by Lemma 3 there exists ¢ € F such that
1+ujc#0foralli=1,...,m and g(c) — ga(c) # 0, contrary to go(c)~'gi(c) = 1. Thus
the theorem is now proved. O
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