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ON THE EMBEDDING OF PROCESSES IN BROWNIAN MOTION
AND THE LAW OF THE ITERATED LOGARITHM

FOR REVERSE MARTINGALES

D.J. SCOTT AND R.M. HUGGINS

Techniques from martingale theory are used to obtain the

Skorokhod embedding of reverse martingales in Brownian motion.

This result is then used to obtain a functional law of the

iterated logarithm for reverse martingales.

1. Introduction

It is well known that for ordinary discrete time square integrable

martingales there exists a sequence of stopping times on Brownian motion

such that the stopped Brownian motion has the same distribution as the

martingale. Also for continuous path square integrable martingales there

exists a Brownian motion and a time change process such that the martingale

is almost surely the same as the time changed Brownian motion; see Kunita

and Watanabe [S], Knight [7]. In the first section of this paper we use

a theorem of Heath [4] which enables us to exploit the continuous time

results to obtain an embedding of reverse martingales in Brownian motion.

A previous attempt to obtain a reverse martingale embedding was made

by Loynes [9] who considered the stopping times of Root [72] and attempted

to construct stopping times in the following manner.

We may consider a reversed martingale {S , F ; n > l} as a

martingale indexed by the negative integers, that is, set S' = S ,
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F' = F , n 2 - 1 . Therefore for each n 5 -1 the process

\S'., ¥'., n < j < - l } i s a martingale which may be embedded in a Brownian
3 3

motion via a finite sequence of stopping times \T. ; n 5 j 5 -If . A

quick consideration shows that we do not necessarily have 7. = T. ,
3 3

n # m . A counter example may be easily provided by showing that the sum

of two stopping times which are defined as the first hitting times of

barriers, that i s , Roots stopping times, need not be the first hitting time

of a barrier. Thus we may take 1 ~ to be the first hitting time of a

(-2)
barrier whilst T need not be such a hitting time,hence

(-1) (-2)
-1 T -1

We have therefore a triangular array of stopping times

-1

J-2) J-2)
-2 -1

To obtain the reverse martingale embedding from this approach we thus

require that T\"' -£+ T. as n -*•-**> for each 3 - -1 . All that is
3 3

known about these stopping times is that they exist and have the same first

moment. The obvious, and seemingly only possible, way of proceeding is to

try to show compactness of an appropriate space of stopping times and the

results of Root [7 2] give some hope of this. The problem therefore reduces

to considering a subspace a of the space S of all stopping times on

our Brownian motion where o = {x £ S : Ex S K] equipped with the metric

d(T, T) = inf{e : P( |T-2"| > e) < e} , that is the metric of convergence in

probability. To prove the reverse martingale embedding we require that

this space be compact and it does not seem possible to prove this as

results which give necessary and sufficient conditions for convergence are

inapplicable in this case. See for example, Theorem 18, p. 297, of Dun ford
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and Schwartz [2] .

This and Loynes1 unsuccessful attempt lead us to conclude that the
usual construction of stopping times in the martingale embedding does not
provide enough structure to yield the necessary compactness results and a
stronger form of the martingale embedding is required. Such an embedding
is the subject of the next section of this a r t ic le .

For discrete time martingales previous embedding results have been
used to obtain various limit results , for example, Strassen [16], Scott
[73], Heyde and Scott [6] , Hal! and Heyde [3] . The connection between the
original martingale and the stopping times is made via conditional moment
inequalities which we obtain here from a theorem of Mi liar [ ? ! ] . The
conditional moment inequalities given here are more general than those
usually associated with the Skorokhod embedding as they hold for any
O-fields with respect to which the process is a martingale (or a reverse
martingale) instead of those generated by the process. The proof given
here is quite straightforward and f i l l s a noticeable gap in the l i terature
concerning the Skorokhod embedding.

The basic statement of the continuous time embedding result , which is
contained in Theorem 3.1 of Kunita and Watanabe [S] and Theorem 1 of Knight
[7] is as follows.

THEOREM A. Let \Y , G; t > 0} be a square integrable martingale,

2
is, EY, < °° for all t , defined on a complete probability space

F, P) . Suppose {¥.•, t - 0} has continuous paths and the family

\G ; £ > 0} of a-fields is right continuous. Then there exists a

Brownian motion {B(U), F*; u > 0} and a process x = {T ; M > 0}

satisfying

(i) for each u € [0, °°) , T is a stopping time with

respect to the family of a-fields {F*; u ^ 0} and

(ii) for almost all OJ € SI , u € [0, °°) •* x € [0, °°) is a

continuous and non-decreasing function,
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(Hi) Y. = B(T ) almost surely, G c F* , and
t t" t T

(iv) lY.-T , G • t - o| is a martingale.

The original result of Kunita and Watanabe was restricted to

martingales without intervals of constancy however this restriction was

removed by Knight. As observed by Meyer ['<?], p. 92, the process

T = \T ; M > 0} is just the quadratic variation of the martingale \Y ,}
u t

Note that the quadratic variation of a square integrable martingale is

defined as the limit of the sums

i=0

over partitions (i , i , . . . , t ) of [0, t] which become arbitrarily

fine. We shall denote the quadratic variation by Q, and note that Q

is purely a function of the paths of the process. The above embedding in

the continuous case differs from the usual discrete time versions in that

the stopping times are natural, being the quadratic variation of the

martingale, and the Brownian motion is defined in terms of these stopping

times and the original martingale whereas in the usual discrete time case

the stopping times are constructed.

We exploit the fact that our stopping times in continuous time

correspond to the quadratic variation of a martingale via the following

theorem due to Millar [ " ] .

THEOREM B. Let { Ĵ-> G, ; t > 0} be a square integrable martingale

with almost surely continuous paths. Then for 1 < p < °° there exist
positive constants M and N depending only on p such that

The result of Heath [4] which is the key part of our embeddings is as

follows.

THEOREM C. If {S , F^; n > 1} is a martingale on (fi, F, P) there

is then [on a possibly enlarged version of (SI, F, P) ) a martingale
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{¥+, G ; t > 0} such that 1. has continuous paths and for n > 1 ,

Y = S and F c G .n n n — n

The proof of this theorem depends on constructing 0-fields

Gn = Fn v °{B3(-S^' 0 S s < co, J > «} if n = 1, 2, ...

ajs [ t ] + i+B[ t l + 1 (( i ) (s)) ; 0 < s < * - [ t ] | , t not an integer,

and

where \B (t); k > 1} is a countable family of Brownian motions
independent of each other and of F^ = V F . The function <(> is any

continuously differentiable function on (0, l] for which <|>(0+) = +°° and

4>(l) = 0 with <(>' < 0 . The martingale Y^. is constructed as a separable

version of the process given by X^. = ff{5j. , |G,} . See Heath [4] for

details of the proof.

2. Discrete time embedding results

We now utilise the theorems in our introduction to obtain embeddings

for martingales, reverse martingales and doubly infinite martingales. We

take (ft, F, P) to be a complete probability space. The definition

relating to martingales, reverse martingales, stopping times and Brownian

motion are sufficiently well known for us to need not mention them here.

THEOREM 1. If {S , F ; n > 1} is a square integrable martingale,

that is, ES < °° for each n , then [on a possibly enlarged version of

(ft, F, P) ) there exists a Brownian motion \B(u), ¥*-, u 2 0} and a non-

decreasing sequence of stopping times {T ; n > if such that F cz f* and
n

B(T ) = 5 almost surely. Furthermore there exists an increasing family

of a-fields G such that T is G measurable and the following

results hold:
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(2.D *(vviiG«-ii • E{K-snJ2K-i] almost

and for 1 < p < °° there exist positive constants M and N depending

only on p such that

(2.2) MEUT-T , ) P / 2 | G \ s 2 ? f | S - S J P | F \
p {*• n n-\> ' n-X) [' n n-X* ' n-X)

< N E\ (T -T -,)P/'2|G \ almost surely.
p p n n-\' ' n-X) a

Proof. The actual embedding follows directly from Theorem C and

Theorem A, as noted in Heath [4] , once i t is observed that we may take the

O-fields {G.} associated with Theorem C to be right continuous. To do

t h i s , replace G by G, = fl G . I t is then easy to show that
* * + s>t S

E{Y \G } = Y almost surely; that i s , Y. is s t i l l a martingale with

respect to the a-fields G .

To obtain the conditional moment results first note that (iv) of

Theorem A implies that, as Y = S ,

2-T \G _\ = E\E\S2-X \G, ^ \\G \
n ni n-X) \ \ n nx («-l)+j ' n-X)

= S . - T . almost surely

so that

H5«-S»-l|Gn-l} ° *lVVllG»-l) almDSt

Using the martingale property and the fact that by construction

G , = F . v A , where A is independent of the 0-field generated
n-X n-X n-X n-X * °

by S , S ., and F ., the equality (2.1) follows from the above,
n ' M-l n-X

The condition moment inequalities, (2.2), are obtained in the

following manner. Consider the martingale {Y, , Ĝ .; t > o} . For any

fixed n and any A € G the process I(A) [Y.-Y ) , t > n-X , ip

s t i l l a martingale as, for t 2 s > n ,
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The quadratic variation of this martingale is just I(A) {Q^-Q ,) •

Therefore from Theorem B we have that, considering the left hand

inequality, for any A € G and t > w-1 ,

Hence using the definition of conditional expectation, for any

A i G we have

f M E \ \ Q + - Q J P / 2 | G W < ( E U Y . - Y \ P \ G \dP .f
iA P

We may rewrite this as, for any A € G ,

By choosing

i t follows immediately from (2.1+) tha t P(4) = 0 . Hence

(2.5)

As Sn=Yn > Sn-l = y«-l • \ = «„ a n d Tn-1 = V l We h a v e

M E{\X -T JP/2 |G I s f f f l 5 - 5 JP|G nl almost surely,p ^' n n-V ' n-lj ^' n w-11 ' n-lj

Similarly we have for the other part

E{\S S \P\G \<NE[\X-T AP/2\G \ .
y n n-11 n-lj p y n n-V ' n-lj

To complete the proof of (2.2) we have only to note that as above

Gn-1 = Fn-1 V \ - l w h e r e A
n_i i s independent of the O-field generated by

Sn'Sn-X a n d Fn-1 s o t h a t

This method of proof extends quite easily to reversed martingales.

https://doi.org/10.1017/S0004972700025946 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700025946


4 5 0 D . J . S c o t t a n d R .M . H u g g i n s

THEOREM 2. Let \ s , F ; n > 1} be a reverse martingale with

p

ES-. < °° and suppose without loss of generality that Sm = 0 [if not

consider the reverse martingale S - Sm ) . Then [on a possible enlarged

version of (ft, F, P) ) there exists a Brownian motion {B(u), F*; u > 0}

and a non-increasing sequence of stopping times \i ; n > 1} such that
F c F * , B(T ) = S almost surely. Furthermore there exists a

n

decreasing family of a-fields G such that T is G measurable and

the following results hold:

(2-6) ^ V V l ' V l J = E{K-Sn+J2K+l} ^rnost surely

and for 1 < p < °° there exist positive constants M and N depending

only on p such that

(2.7) ME{[T -T ^f/2\G \ < J | S -S . |P |F ^

Proof. Firstly note that we may consider a reverse martingale as a
martingale indexed by the negative integers.

LEMMA 1. If {s , F ; n > l} i s a reverse martingale and we set,

for n < -1 3 S' = S , F ' = F there is then [on a possibly enlarged

version of (ft, F, P) ) a martingale {Y. , G, ; t 5 - l } such that Y. has

continuous paths and for n s -X , S' = Y . F ' c G .
^ J n n ' n n

Proof. The lemma is the obvious reverse martingale analogue of

Theorem A. We set

G = F' V O[EP(S); 0 2 s < <*>, -» < j 2 n] i f n = - 1 , - 2 , . . .

and

[t]
= G[t] v a|5[ t ] + 1+B[ t ] + 1(<j)(s)); 0 < s 5 *-[*]} if t < -1 ,}

t not an integer.
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For t 5 0 , [t] denotes the greatest negative integer not exceeding

t . Also {a ( t ) ; k S - l} is a countable family of Brownian motions

independent of each other and of F , whilst <j> is any continuously

differentiable function on (0, l ] for which 4>(0+) = +°° and 4>(l) = 0

with ()>' < 0 as in Heath [4].

Now Heath's Theorem 1 depends only on reasoning on the interval

[ 0 , 1 ] so we may now follow his proof, that i s , le t Y. be a separable
v

version of the process given by Y. = SJS! + •>_,.-, |GJJ , t < -1 , and the

lemma follows as in [ 4 ] .

To find our Brownian motion define / = k o h o g : [_oos _j_] •+ [o, 00]

by l e t t i n g g : [-», - l ] + [ -1 , -\] be given by g(t) = t / ( l + | * | ) ,

h • [ - 1 . -h] + [0, 1] be given by h(t) = 2(t+l) and k : [0, l ] •*• [0, »]

be given by k( t ) = 1/(1-*) . For * € [0, °°) l e t Y. = Y and
t rx()G. = G n . Then ]Y,, G,; t > 0} i s a square integrable martingale

t ri{t) t t

and using our Theorem A we may find a Brownian motion \B(U), F*; u > o};

with stopping times {T.; t > 0} such that Y = B{T) almost surely and

G+ c F* , t ( [0, ») . Now for n £ -1 , S = 5 ' = Y = Y.. > almost
t -tj. -n n n J(MJ

siorely and F = F ' c G = ^f(M) s o t h a t t y s e t t i n g > for

h a v e S U = S^/(-n)) = *f(-n) = Sn aXmost s u r e l y -
Similarly set

The argument used in Theorem 1 to obtain the conditional moment

resutls is again applicable and the proof is complete.

As a consequence of the preceding two theorems i t is a straightforward

matter to show the following.

THEOREM 3. If \S , F ; -» < n < «>} is a square integrable doubly

infinite martingale with S = lim 5 = 0 almost surely, then [on a

possibly enlarged version of {0., F, P) ) there exists a Brownian motion

\B(u), F*; u > 0} and a non-decreasing sequence of stopping times
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{T ; -°° < w < <*>} such that B{X ) = S almost surely, F c F* ,

n

-00 < n < °° . Furthermore there exists an increasing family of a-fields

G such that x is G measurable and the following results hold:

(2.8) f I V V l l G n - l l = E | W 2 | U almost surely;

and for 1 < p < °° there exist positive constants M and N depending

only on p such that

(2.9) M 4 - T ,1P/2|G ."UEJIS-S JP|F \
p {*• n n-1- ' n-1) { n n - 1 ' ' n - l j

^ N E<{T -x J P |6 n l almost surely.

The proof of t h i s theorem follows quite easi ly from the above i f we

change the function / of the proof of Theorem 2 to f' = hog and for

n > 2 put S* = S , t ha t i s , the part of the martingale indexed by the

negat ive in tegers i s contained in the in te rva l [0, l ] , S - S* and the

r e s t of the martingale S* i s as above.

3. The law of the iterated logarithm for reverse martingales

As an application of the previous results we obtain a functional law

of the iterated logarithm for reverse martingales. This result is new and

unlike the central limit theorem cannot be obtained from the corresponding

result for ordinary martingales.

Let {B{t); t > 0} be a Brownian motion on [0, <*>) starting from 0

and define

(3.1) 5J*) = [2« loggM"1] B(ut)

for t € [ 0 , 1 ] and u < e"1 .

Denote by (C, p) the Banach space of continuous real valued

functions on [0, l ] with

p(x, y) = sup \x(t)-y{t)\ , x, y € C .
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Let K tie the se t of absolutely continuous x € C such that x(0) = 0

r 1 . 2
and [x(t)] dt 5 1 where x denotes the derivative of x with respect

J0
to Lebesque measure and determined almost everywhere.

THEOREM 4. With probability one the set \t, ; u < e~H is

relatively compact and the set of its limit points as u tends to 0 is

K .

The proof of this theorem depends on noting that for any constant c ,

-h h
c B(ct) and c B(t/c) have the same distribution. The proof then

follows that of Theorem 1 of Strassen [15] as Strassen's proof depends on

estimates of probabilities which by the above have the same distribution as

those that we require.

For the iterated logarithm law for reverse martingales we use a

formulation similar to that of Hall and Heyde [3] which allows the use of

random and deterministic norming sequences. Let {S , F : n > l} be a

reverse martingale, with EST < °° , on a probability space (fi, F, P) .

For » > l put Xn = Sn - Sn_± , l£ = I E{£\FJ+1} and

Note that Sm = lim S almost surely always exists for a reverse

00

m a r t i n g a l e , 5 - Sm = £ X. and s •*• 0 as n •*• » .

For a non-increasing sequence of positive random variables

\W ; n 2 l} such that without loss of generality W7 < e~ define

(3 .2 ) u(M) =

= 0 , u > W^ ,

where

p = p(w) = maxta : W. > u\
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and

(3.3) vn(t) = 4>[(^]y[(^t] , t i [o, l ]

THEOREM 5. Suppose that {s ; n > l) is a random sequence (not

necessarily even a reverse martingale) such that S = B(T ) for some

sequence of non-increasing, non-negative random variables [T ; n > l} ,

the Brownian motion being defined on the same probability space. If

(3.1*) T < e , T •+ 0 almost surely, T~ T ->• 1 almost surely,

and

( 3 - 5 ) T~ W -*• 1 almost surely,

then

\)i(u)-B(u) I = o\\u logpM almost surely as u -*• 0

and with probability one the sequence fy ; n > l} is relatively compact

in C , the set of its limit points coinciding with K .

Proof. The condition on {T } and the defini t ion of y give

| H ( M ) - B ( M ) | 5 max{|s(r ( M ) ) - B ( M ) | , \B

with

u T , •. -*• 1 almost surely and u 21 , > ->• 1 almost surely as u -*• 0 .

A su i t ab l e modification of p . 217 of Strassen [/5] then yie lds the theorem.

See a lso Hall and Heyde [ 3 ] .

THEOREM 6. Let \z ; n > l } be a sequence of non-negative random

variables and suppose Z and W are F . measurable. If

(3'6) i i ( 2 ) fel
 k{k k ] k [ k fcW

almost surely,
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almost surely,

(3.8) I ^ E | ^ J - ( | ^ | 5 Zfc)|Ffc+1} < °° almost surely,

(3.9) lim W~+1
W = ! almost surely and W ->• 0 almost surely

probability one the sequence {\i ; n > l] is relatively compact

in C and the set of its limit points coincides with K .

Proof. We follow the proof of Theorem 1 of Hal I and Heyde [3] fairly

closely with appropriate changes so in some places only a sketch of the

proof is needed.

Set

(3.10) X = XI{\X\ 5 Z ) ,
d o J o

and

00 OO e *

Let S* = I X* , vf = £ E\Xf\Fi+1\
 a n d f o r u € [ 0 '

3=n J j=n J '

where I = l(n, u) = m a x i j > n : uW < w.\ .

I n jj

Note that both S and S* are reverse martingales with respect to

the same a-field {F ; n > 1} .

Now
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sup \\i(u)-\i*(u)\

sup

sup
n<k«*>

j=k

3=k

[X.-X*)

lxfx.i{\x.\ ,fx.

sup £ [ x i [ \ x \ > z ) - i
3=k 3 0 0

-*• 0 almost surely,

using (3.6).

We now introduce the Skorokhod embedding for the reverse martingale

{5* fn; n > l} . From Theorem 2 there exists a Brownian motion and a

sequence of stopping times T such that S* = B[T ) almost surely. Also

there exist a-fields 6 such that T is G measurable and if we let

t = T - T . then
n n n+X

(3-12) E\t \G } = E]X* |F \ almost

and

for some constant C depending only on p .

From Theorem 5 and the condition on W we need only show

(3.lit) W~2T •* 1 almost surely

and as a first step we obtain

(3.15) W~2 \T -V*2\ ->• 0 almost surely.

n { n n j
We have
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and hence, from (3.8),

0 0 J ( i ^
(3.16) £ W.EiX*. | F. V < co almost surely.

-•_^ 3 \ 3 3+i-)
3

Clearly if (3.16) holds then

(3.17) Y E\X* \* • if < °° almost surely.
3=1 V ° 3 }

Also Lemma 2 below gives

oo

(3.18) Y W~2£p-E{t.\G. }] < « almost surely

and
00

(3.19) Y [*,--ff{*.,-1 GJ. •> U< °° almost surely.

Finally an application of Lemma 1 of Heyde [5] gives

00

(3.20) W~2 Y \f~E{t.\G. }] •*• 0 almost surely
n 3=n ° ° °

which is equivalent to (3.15).

The following result which we used above is the reverse martingale

analogue of Corollary 2.8.5 of Stout [J4] and the martingale proof may be

duplicated using the notion of starting times instead of stopping times.
(For {F.; 3' - l} a decreasing sequence of O-fields a random variable T

3
i s a s t a r t i ng time i f {T S j} € F. .)

3
LEMMA 2. Suppose {x., F . ; j > l} is a reverse martingale

3 3
difference sequence. If for some p , \ < p < 2 3

< oo
. "1 '".I1 ' -7+11

J= 1

then

(3.22) " s.. - Y, x- converges almost surely.
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The proof of the theorem wi l l now be complete provided we show

(3.23) W~2V^ ->• 1 almost surely

which i s e s sen t i a l ly what condition (3-7) says.

To see t h i s observe tha t

_ ? P —pw ^v*^ = w d
n n n

^ 1 w>2]

so (3.23) follows. This completes the proof.
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