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REPRESENTABLE DUALITIES BETWEEN FINITELY 
CLOSED SUBCATEGORIES OF MODULES 

RODERICK N. S. MACDONALD 

1. I n t r o d u c t i o n a n d s u m m a r y . This paper studies dualities (or contra-
var ian t category equivalences) between two categories of jR-right and 5-left 
modules which are finitely closed) t h a t is, closed under submodules, factor 
modules and finite direct sums. Omit t ing the requirement t ha t the categories 
contain all finitely generated modules from the classical Mori ta si tuation 
provides a generalization which substantially increases the number of such 
dualities. 

We prove t ha t a dual i ty between two finitely closed categories A and B of 
modules is representable if and only if A and B consist of linearly compact 
modules. This encompasses work of Mueller ([7], [8]) for Mori ta dualities and 
of Goblot ([5], [6]). A linearly compact finitely closed category of modules is 
always an AB5*-category with no infinite direct sums; we demonst ra te the 
converse for certain rings including all commutat ive ones, thus simplifying our 
characterization of representable dualities in these cases; we were however 
unable to obtain this result in general or to find a counterexample. 

2. T e r m i n o l o g y . Let R, S be two rings with identi ty and mod-i? (respec­
tively ,S-mod) the category of all R-right (respectively S-left) modules. Recall 
t ha t an abelian category C is an AB5-category if for each X £ C the subobjects 
of X form a complete lattice and for all subobjects F of X and all updirected 
families (X t) ^ of subobjects of X, U / ( X , H F) = ( U / X , ) H F. T h e dual of 
an AB5-category is called an AB5*-category. A subcategory A of mod-R is 
faithful if 3irmB(A) = {r £ R\ Xr = 0 for all X Ç A} is zero. 

A finitely closed subcategory A of mod-i^ is abelian. Finite limits and finite 
colimits of A are the same as in mod-i^. Clearly A is an AB5-category. 

If A is a finitely closed subcategory of mod-i^, then there is a right linear 
topology on R defined as follows: a right ideal / of R is open if and only if 
R/I G A. We shall refer to this topology as the A-topology. For the A -topology 
on R, dis A is the Grothendieck category of all discrete topological A -modules. 
I t is a full coreflective subcategory of mod-R, hence limits on dis A are the co-
reflections of limits in mod-R and colimits in dis A are the same as in mod-i^. 
A generates dis A, thus A contains all finitely generated modules of dis A. 

Let F : A —» B be a duali ty between finitely closed subcategories of mod-i? 
and ,S-mod, respectively. F is automatical ly an exact addit ive cont ravar iant 
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466 RODERICK N. S. MACDONALD 

functor. For any i G i the subobject lattices of X and FX are anti-isomorphic. 
Since A and B are both AB5-categories, they are also AB5*-categories. 

F 

3. Representable dualities. Let the contravariant functors A <=± B be a 
H 

duality between the finitely closed subcategories A and B of mod-R and S-mod, 
respectively. We may assume without loss of generality that both A and B are 
faithful subcategories, since we can always pass to factor rings for which this is 
true. 

There is a linear topology on S, the 5-topology, which has as a basis of zero 

the left ideals V of S such that S/V is an object of B. With respect to the 

canonical epimorphisms, the S/V form a projective system whose limit is the 

completion of S in the 5-topology. Applying the functor H to this projective 

system, we obtain a monoinductive system in A. Let QR = lim_> H (S/V), where 

the colimit is formed in mod-i?. Note that Q Ç dis A. 

LEMMA 1. There exists a ring homomorphism 2 : 5 —> homR(Q, Q), hence Q is 

an S-R bimodule. 

Proof. For s £ S, define 2(s) : QR->QR as follows: let V be an open left 
ideal of S, then s~lV = {x £ S\ xs 6 7} is also an open left ideal. Now con­
sider the family of 5-homomorphisms, ps : S/s~lV —> S /F , defined by ps(l) = s 
for each open V. Applying H we get the following: 

H(S/ V) — • H(S/s~l V) 

where 2(s) is the unique F-homomorphism making the diagram commute for 
all V. Calculation now shows that 2 is indeed a ring homomorphism. 

Lemma 1 allows one to consider hom^(—, Q) : mod-R —» S-mod as a functor 
in the standard way. 

LEMMA 2. Let Q = \im^H(S/V). There exists a monic natural transformation 
ix : F —» hom( —, Q). 

Proof. Since FX is an object of B, FX = lim_> annFX(V). Secondly, let 
J y : annF X(F) —•> horns (5 /F , FX) be the standard isomorphism, then 
Jx = lim_̂  J y : lim_̂  annF X(F) —> lim^ horns (5 /F , FX) is an isomorphism. 
Because F, H is a duality, we have an isomorphism i£ y : horns (S /F , FX) 
-» hom B ( I , ffGS/F)); thus i£x = lim_, i£F : lim_> horns(5/F, FX) -> lim_> 
homR(X, H(S/V)) is an isomorphism. Since QR = I im^i7(5 /F) , we have a 
unique map /x : lim^ homfl(X, H (S/V)) —> homi2(X, sÇ«) such that ^& r = 
h o m ^ X , lv)\ lv : H (S/V) —-> s<2# being the canonical inclusion and bv being 
the structure map of the filtered limit. Moreover, tx is a monomorphism. 
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Fôf each X £ A, define \xx = txKxJx. Thus, it is a monomorphism and is 
natural as tX} Kx and J z are. Note that ixx was really constructed as a group 
homomorphism, but simple checking shows that it is actually an S-homo-
morphism. 

Recall t h a t a Hausdorff linearly topological module X is linearly compact if 
any finitely solvable system of congruences x = ^ ( m o d Xk), where the Xk are 
closed submodules of X, is solvable. We call a subcategory A of mod-R linearly 

compact if each X £ A is linearly compact with respect to the discrete topology. 
The basic properties of linearly compact modules are developed in Zelinsky [10]. 

LEMMA 3. Let Q = lim_>H(S/V). If B is linearly compact, then \ix • FX 
—> horriflpf, Q) is an isomorphism for all X £ A. 

Proof. If X is a finitely generated module, then tx is an isomorphism, hence so 
is nx. 

Let X be any object of A, then by Lemma 2 nx '• FX —» hom^(X, Q) is a 
monomorphism. Let 07 : Xf —> X be the inclusion of a finitely generated sub-
module X r of X. Consider the following diagram: 

hom«(X, ())« — FX 

\homR(af, Q) 

homR(Xf, Q) < FX, 

Now Fdfy the dual of a monomorphism, is an onto map, and nXf is an iso­
morphism since Xf is a finitely generated module. Let $ £ hom f l (X, Q). Then 
there exists a &/ G ^ X such t ha t $ |X / = ILX F<rf(bf) for each finitely generated 
submodule Xf of X . Consider the congruence b = 6/(mod Ker /<V/), J 
running over the finitely generated submodules Xf of X. As the finitely 
generated submodules are an updirected family, this congruence is clearly 
finitely solvable. Since FX Ç B and B is linearly compact, the congruence is 
solvable. Let b be a solution; then jux(^)|X/ = </>|Xr for all finitely generated 
submodules Xf of X. Thus /ix(&) = </> and jux is an isomorphism. 

T H E O R E M 4. 4̂ duality between finitely closed subcategories A and B of mo&-R 
and 5-mod is representable if and only if A and B are linearly compact. 

Proof. Assume tha t the dual i ty between A and B is represented by the 
bimodule SQR> Let F be an object of B and ( Yf) j £ / a downdirected family 
of subobjectsof F with intersection / . Note t ha t / = \im^BYj = lim<_ s-modYj. 
By dual i ty F, / and the Yj are represented by X, F and modules X j which form 
an updirected family of quotients of X with V = ]im^AXj. For each j £ / , we 
have the exact sequence: 

Fa, 

0^>K,-+X-*X,^>0 
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Thus we have the exact sequence: 

0 -> lim_> Kj->X-> lim_> Xj = V -> 0 

with colimits taken in mod-i?. (Since A is finitely closed, colimits of this type in 
A coincide with the corresponding mod-i? colimits.) As homi2( —, Q) is exact on 
A and takes colimits in mod-R to limits in S-mod, we see that Y/I = 
lim<_ s-moaY/Yj. Thus for all downdirected families (Yj)KJ of submodules of Y 
the natural map Y —» lim<_ s-moaY/Yj is onto, hence F is linearly compact. 

In the converse direction we will prove that the bimodule SQR = Hm_> H(S/ V), 
as constructed in Lemma 1, represents the duality. 

First, F is naturally isomorphic to hom^( —, Q)\A by Lemma 3. Secondly, 
from Lemmas 1, 2 and 3 we known that H is represented by sWR = lim^ 
homR(R/I, Q). Also sQ = lim^ann0(7) since Q Ç dis A. Let / = lim^// : 
sW-> SÇ where/7 : homB(i?/J, Ç) -> annQ(J) is defined by//(</>) = </>(/). Thus 
/ is an ^-isomorphism since all the// are S-isomorphisms. We claim that/ is also 
an J?-homomorphism. Let 0 be any element of W, then 0 £ hom^i?// , Ç) for 
some J. By the definition of the ^-action on W in Lemma 1, we know 
0r £ hom^(i?/r - //, Q) and 0r(x) = </>(fx). Hence /(0r) = 0r(/~) = 0(r/~) = 
0(f) = 0(/)r = /(0)r. Thus sÇfl is isomorphic as a bimodule to SWR, and sQfl 

represents the duality. 

A module X is called finitely cogenerated if for all downdirected families 
[Xi] iU of subobjects of X with (~) Xt = 0 there exists an i Ç / with J ^ = 0. 
This is the case if and only if X is an essential extension of a finite socle (cf. 
Anderson and Fuller [1], Proposition 10.7). 

Remark. If the duality between A and B is represented by the bimodule SQR, 
then Q' = {x 6 Q| xi? G 4} and ' 0 = {* G Q| Sx G 5 } , the connections of 
Ç into dis 4̂ and dis B respectively, are S-R bimodules. Moreover 'Q = Q', and 
this bimodule represents the duality. Also each representable duality between A 
and B is represented by a unique (up to isomorphism) bimodule SQR with 
QR G dis A and/or SQ 6 dis B ; in particular, we may choose Q = lim_> H(S/ V), 
the bimodule constructed in Lemma 1. As each H(S/V) is finitely cogenerated 
(since it is dual to a finitely generated module), clearly Q is essential over its 
socle. Henceforth we will assume that the duality between A and B is represented by 
the bimodule SQR with Q Ç dis A and Q £ dis B. 

THEOREM 5. / / the duality between A and B is represented by the bimodule SQR, 

then QR (respectively SQ) is an infective cogenerator of dis A (respectively dis B). 

Proof. We show that QR is an injective cogenerator of dis A. 

Claim 1. QR is A -injective. 
Let 0 —» Y —> X be an exact sequence in A. Since Q represents the duality, 

we have the exact sequence hoirie(X, Q) —* homR(Y, Q) —> 0. Thus Q is A-
injective. 
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Claim 2. QR is dis 4-injective. 
Let 

0 >XoC >X' 

Y 

QR 

where X' G dis A, X0 is a submodule of X' and #Xo '• X —» QR is any i^-homo-
morphism. Let T = {(X, <£x)| X0 C X Ç X' and </>x|X0 = <j>x,}. Order T 
as follows: (X, <j>x) ^ ( F, 0F) if and only if X <-• F and $r |X = <j>x. Clearly 
this ordering is inductive, hence by Zorn's lemma there exists a maximal ele­
ment (M, <j>M). If M = X' we have proved the claim. 

Assume M ^ X'. Select a G X' - AT, then AT C ( ^ ) M + aiî. Consider 
the following diagram: 

M H aR C • fljR 

Y 

Note that M C\ aR and ai? are elements of A. Thus there exists a map 
f:aR-+ QR such t ha t / |M H a,R = <j>M\M C\ aR. Define h : M + ai? -> (^ by 
/&(Af + ar) = <f>M(M) + f(ar). This is a well defined i?-homomorphism. Also 
(M, 4>M) < (9e) (M + aR, h), but (M, <f>M) was maximal, a contradiction. 

Claim 3. (?# is a cogenerator of dis ^4. 
First, QR cogenerates F if and only if for each 0 9e y G F there exists a 

/ : F —> ()# such that / (^) 9e 0. Secondly, for a bimodule SQR, the natural map 
X—»X** = h o m ^ h o m ^ X , Q), (?) is a monomorphism if and only if QR 

cogenerates X. Thus QR cogenerates the category A. Let X G dis A and 
0 3̂  x G X. As X G dis ^4, xi? G 4̂ and thus there exists a map / : xR —» ()# 
such that /(x) ^ 0. By injectivity of QR, there is a map / : X —-> QR such 
that/ |xi? = / ; in particular,/(x) 9e 0. Thus QR cogenerates X. 

PROPOSITION 6. / / the duality between A and B is represented by the bimodule 
sQR then EndsQ = n n V R/V> ^e completion of R in the A-topology. 

Proof. A right ideal V of R is open in the A -topology if and only if R/ V G A. 
Consider annQ(F) = homR(R/V, Q). Clearly jannQ(^)j is an updirected family 
of 5-submodules and Q = l im^annQ(F) (as Q G dis A). As R/V ~ horns 
(homR(R/Vj Q), Q) we have horns(Qy Q) = horns (lim_̂  annQ(F) , Q) = lim<_ 
homs(homB(R/V, (?),(?) SË lim^R/V. 
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For a linearly topologized ring R, we write dis R for the Grothendieck cate­
gory of discrete modules and R for the Hausdorff completion of R. If X £ dis R 
then X can be considered as a ^-module. Hence we may identify dis R and 
dis R. Moreover, XR Ç 'dis R is a linearly compact i^-module if and only if 
XR G dis R is a linearly compact ^-module (as XR and XR have the same 
underlying group and the same submodules). 

Remark. If there is a duality between the finitely closed subcategories A and 
B of mod-i? and 5-mod (represented by the bimodule SQR) then there is a 
duality between the finitely closed subcategories A and B of mod-R and 
5-mod (represented by the bimodule SQR) where R (respectively S) is the com­
pletion of R (respectively S) in the A -topology (respectively 5-topology). 
Furthermore, if the duality is represented by Q, from Theorem 4 and Proposi­
tion 6 we have R = EndsQ, S = End QR, R linearly compact in the A-
topology and S is linearly compact in the _B-topology. 

4. Remarks on limits. 

PROPOSITION 7. Let C be an AB5-category and {uc X4 —» X} i£I an updirected 
family of subobjects of X; then lim^ jX t = U/^T t. 

Proof. Let ft : ( J f - ^ D ) e be a compatible family. For each i £ I, define 
at : Xf—> UiXf as the factorization of ut : Xt—*X through the union. To 
prove that [JiXi is the colimit we must show that there is a unique map 
/ : U/ Xi —> D making the diagram 

U jX *D 

commute for all i £ I. 

For existence of t we proceed as follows. Let (a*,/*) be the unique map de­
fined by the diagram 

r^JjX, 
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where pi and p2 are the projection maps. Note that {aufx) is a monomorphism 
as at is, and that the family {(a*,/*) : Xt-+ U / ^ i © ^ U / is updirected. 
Define (j Xi->[jIXi © D as the union of the family {(a*,/*) : X f-> 
U/ ^ i © 5} iç/. For each i Ç J define 7* : Xf -> 0 -X\ as the factorization of 
(aufi) : Xt -» U / ^ z © -D through the union 0 -XV 

Consider the following commutative diagram for each i Ç /. 

U 7 AY 

W e wish to show tha t P ] / is an isomorphism. Each X< factors through 
i m ( P i r ) , the image of P\r. A S im(P i r ) is a subobject of U / -X\ it is also a sub-
object of X. T h u s im(PiT') = U / ^ n as {JjXf is the least subobject of X 
through which Xt factors. Consequently, P\Y is an epimorphism. Let K = 
k e r P i r . Then by AB5, K = K H (J Xt = U (K C\ X,). If K ^ 0 then 
K C\ X\ 7e 0 for some i £ I, bu t this is a contradiction as at is a mono­
morphism. As C is an abelian category, a map which is a monomorphism and a 
epimorphism is an isomorphism, thus P\Y is an isomorphism. 

Define / = P2r(Pir)~1. Diagram chasing shows t ha t this is the desired map. 
For uniqueness, assume t h a t we have two maps r, s making the following 

diagram commute for all i ^ I. 

h r 

0 >K —+UiXt=ÎD 
x i s + 

^ i / 

A 
X I / 

X I / 
^ I / 

Let (K, k) be the equalizer of r and s. Hence at factors through K for each 
i G I. Note t ha t K is a subobject of X. Thus K must equal U / Xt as U / Xt is 
the least subobject of X through which each Xt factors. T h u s r = s. 

COROLLARY 8. If C is an AB5*-category and {ui. Xt—>X}z-€/ is a down-

directed family of subobjects of X, then lim<_ / X / X * = X/C\ Xt. 
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Let A be a finitely closed subcategory of mod-R. We now consider the 
relationship between limits formed in A, dis A or mod-i?. 

PROPOSITION 9. Let R be a ring, A a finitely closed subcategory of mod-R and 
dis A the category of modules discrete for the A-topology, then the embedding 
A ^ dis A commutes with limits existing in A. 

Proof. First, as dis A is a Grothendieck category, the limits in dis A of all 

diagrams exist. If D : / —> A is a diagram in A with limit (Z, 11;), then it has a 

limit («if, <t>i) in dis yl. Now the compatible family (Z, 11*) factor over (=if, <t>i) 

by a unique homomorphism II : X —><if. Also as «if is in dis ^4, «if is the filtered 

union of subobjects Yk which lie in A. The restriction of 0* to any of these Yk 

yields a compatible family; hence, it factors over (Z, II<) by a homomorphism 

/jj; : FA; —> X. As «if = U^ Yk and the/* are compatible with the order relation 

on the Yk, we obtain a homomorphism / : «if —> Z. The homomorphism / is 

easily seen to be the inverse of II. 

Definition. A is a, meager finitely closed subcategory of mod-i? if for all X £ A 

there exists a Y Ç 4 such that Z C F and Fis a finitely generated i?-module. 

PROPOSITION 10. Let A be a meager finitely closed subcategory of mod-i?. / / the 

A-topology has a basis of two sided ideals, then A is an AB5*-category, if and only 

if A is linearly compact. 

Proof. Let A be an AB5*-category and let { F7} ia be a downdirected family 
of submodules of X Ç A. X is linearly compact if and only if X/C\ YL = 
l inv mod.RX/Yf. Since A is an AB5*-category, we know \im^_AX/Yi = X/C\ Yt 

(Corollary 8). By Proposition 9 lim<_dlB AX/Yi = lim^X/Y, = X/D Yt. 
We claim that lim<_ di8 AX/Yt = lim<_ mod-ieZ/F*. As X Ç A, it is a submodule 
of a finitely generated module. As the A -topology has a basis of two-sided 
ideals, there exists an ideal F open in the A -topology such that XV = 0. Now 
linv moa-nX/Yi is a submodule of Umod.R X/Yt. But (nmod_B X/Yt)V = 0; 
hence lim^ mod-flZ/F* is an object of dis A. Therefore, lim<_ m o d .RX/Yi = 
lim^dl8 AX/Y{ = X/D Yu and Z is linearly compact. 

COROLLARY 11. If Ris commutative, a meager finitely closed AB5*'-subcategory 
of mod-i? is linearly compact. 

5. The Leptin topology. Let r be a Hausdorff linear topology on a module 
Z . Following Bourbaki [2, Chapter III, 2, Exercise 18], we define r* to be the 
linear topology on Z with fundamental system of neighbourhoods of zero the 
filter basis generated by the submodules of Z which are open under r and 
completely-meet-irreducible, r* is sometimes called the Leptin Topology. 

For a ring with topology r, dis r is the Grothendieck category of all discrete 
topological i?-modules. 

PROPOSITION 12. Let r be a linearly compact Hausdorff topology on R. If 
QR Ç dis r* is an infective cogenerator of dis r* which is essential over its socle, 
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then QR is an injective cogenerator of dis r. Also if M £ dis r is essential over its 
socle, then M G dis r*. 

Prflo/. Let M Ç dis r be essential over its socle. If x G M, then xi? is essential 
over its socle. As xR is linearly compact, socle (xR) is finite and annE(x) is the 
finite intersection of completely-meet-irreducible right ideals of R which are 
open for r*. This implies that M is an object of dis r*. 

As T* C r clearly dis r* C dis r. Moreover, dis r* and dis r have the same 
simple modules. Let E(QR) be the injective hull of QR in dis r. Since E{QR) is 
essential over its socle, it is an object of dis r*, hence equals QR. 

Definition. Two Hausdorff linear topologies on X, n and r2, are Leptin 
equivalent if n* = r2*. 

COROLLARY 13. Z,e/ n and r2 fre taw Leptin equivalent Hausdorff topologies on R, 
and let QR be essential over its socle. Then QR is an injective cogenerator in dis n if 
and only if it is an injective cogenerator in dis r2. 

Remarks. (1) Let A and A' be two finitely closed subcategories of mod-R. 
The A -topology equals the A '-topology if and only if A and A' contain the 
same finitely generated modules. Also the Leptin A -topology equals the Leptin 
A '-topology if and only if A and A' have the same finitely generated finitely 
cogenerated modules. 

(2) A completely-meet-irreducible submodule of a linearly topologized 
module is closed if and only if it is open. Thus two topologies n and r2 are 
Leptin equivalent if and only if they have the same submodules closed. If n 
and r2 are Leptin equivalent and n is topological linearly compact, then r2 is 
also. 

6. Results on rings. 

LEMMA 14. (Goblot [5], théorème 2, page 1213). Let A be a finitely closed 
subcategory of mod-R, QR an injective cogenerator of dis A which is essential over 
its socle, S = End QR and B = homR(A, Q). If A is an AB5*-category with 
no infinite direct sums, then B is a finitely closed linearly compact subcategory of 
5-mod, and hom#( —, Q) : A —> B is a duality. 

Definition. For A, a finitely closed subcategory of mod-R let AF = {Y\ there 
exists X £ A finitely generated such that Y Q X (as modules)}. 

THEOREM 15. Let A be a finitely closed AB5*-subcategory of mod-R with no 
infinite direct sums. If AF is linearly compact, then A is linearly compact. 

Proof. By the discussion following Proposition 6, we may assume that R is 
complete and Hausdorff in the A -topology. 

Let QR be an injective cogenerator in dis A which is essential over its socle, 
S = End QR and B = homR(A, Q). By lemma 14, B is a finitely closed linearly 
compact subcategory of S-mod and h o m ^ —, Q) is a duality between A and B. 
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Note that since Q is the union of submodules in A, the ^-topology on 5 is 
Hausdorff. 

Since B is dual to a finitely closed subcategory and is linearly compact, it is 
an AB5*-category with no infinite direct sums. If we prove that sQ is an in­
fective cogenerator of dis B which is essential over its socle and that R = 
Ends Q, then again by Lemma 14 homs(B, Q) consists of linearly compact 
jR-modules. This proves the theorem; for if I f i , then i : X —> X** = 
homs(hom^(X, Q), Q) is a monomorphism, but X** Ç hom s (5 , Q) is linearly 
compact, thus X is also. 

Claim 1. R = Ends Q> 
Let D = hornR(AFy Q). As AF is finitely closed, D is finitely closed. More­

over, D is contained in B. Since AF is linearly compact, the duality between AF 

and D is represented by the bimodule SQR (Sandomierski [9], Theorem 3.8). 
As R/ V Ç A implies R/V € AF, we see that dis A = dis AF. Since Q £ dis AF, 
sQ is an injective cogenerator of dis D which is essential over its socle (see 
Theorem 5 and the remark preceding it). By Proposition 6, R = Ends Q-

Claim 2. SQ is an injective cogenerator of dis B which is essential over its 
socle. 

We showed above that sQ is an injective cogenerator of dis D which is 
essential over its socle. As AF contains all finitely generated modules of A, D 
contains all finitely cogenerated modules of B. Thus the ^-topology is Leptin 
equivalent to the P-topology. From Corollary 13, sQ is an injective cogenerator 
of dis B which is essential over its socle. 

COROLLARY 16. A finitely closed AB5*-subcategory A of mod-it! without infinite 
sums is linearly compact in each of the following situations: 

(1) R is topological linearly compact and A C dis R. 
(2) R is commutative. 
(3) R is a right noetherian and right fully bounded ring. 
(4) R is semi-artinian. 

Proof. (1) X Ç dis r is finitely generated if and only if there exist Vi Ç r, 
i — 1, . . . , n, such that we have an exact sequence R/Vt © . . . © F/Vn —> 
X —» 0. Since each R/ V\ is linearly compact, X is linearly compact. Thus AF is 
linearly compact. Now apply Theorem 15. 

(2) AF is a meager finitely closed AB5-subcategory, thus by Corollary 11, 
AF is linearly compact. Now apply Theorem 15. 

(3) A right noetherian ring R is right fully bounded if and only if it has 
condition (H) ; that is, for every right ideal I there exist bi, . . . , bn G R such 
that 2LnnB(R/I) = brlI C\ . . . C\ bn-

lI (Gabriel [4], Lemma 2, page 423 and 
Cauchon [3], Corollary 2, page 1156). As R/I G A implies R/I G AF, the 
A -topology on R is also the .^-topology. If I is open for the A -topology x~lI is 
open for all x Ç R. Note that ann#(jR/7) is the largest two sided ideal contained 
in / . By condition (H), there exist b, . . . , bn such that annB (R/I) = bi~lir\. . . 
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C\ bn~
lI. As finite intersections of open ideals are open, a,nnR(R/I) is open. 

Thus the A -topology has a basis of two sided ideals. Since AF is a meager 

finitely closed AB5*-subcategory of mod-i?, AF is linearly compact (Proposi­

tion 10). Now apply Theorem 15. 

(4) This result does not depend on Theorem 15. A ring R is semi-artinian if 
every right i?-module is essential over its socle. If X £ A, then the socle of X is 
finite and X is a finitely cogenerated module. 

Let Q be an injective cogenerator of dis A which is essential over its socle, 
S = End QR and B = homR(A, Q). By Lemma 14, B is a finitely closed 
subcategory of S-mod and hom^( —, Q) : A —> B is a duality. For I f i , X 
is complete in the Q-topology since it is finitely cogenerated, and therefore X is 
(2-reflexive (Mueller [7], Lemma 1, page 61). Hence SQR represents the duality 
between A and B and thus A is linearly compact (Theorem 4). 
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