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Abstract

We describe the period structure of the optimal continued fraction expansion of a quadratic surd, in terms
of the period of its nearest square continued fraction expansion. The analysis results in a faster algorithm
for determining the optimal continued fraction expansion of a quadratic surd.
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1. Introduction

In 1960, Selenius [7] introduced a new semi-regular continued fraction (SK) expansion
of a real number, arising from its regular continued fraction (RCF) expansion. Like the
RCF, Selenius’ continued fraction is periodic for quadratic surds. Selenius discussed
the SK expansion of

√
D in detail, describing its period in terms of that of the

nearest square continued fraction (NSCF) of Ayyangar [1]. Bosma and Kraaikamp [3]
studied a more accessible version of Selenius’ continued fraction, namely the optimal
continued fraction (OCF) of Bosma [2] and also discussed periodicity for a quadratic
surd. The OCF algorithm is defined in Section 2, independently of the RCF algorithm.
However, in Section 3 we present the OCF in terms of the RCF, in such as way as to
emphasize similarities with the NSCF algorithm. A connection between the OCF and
NSCF is made in Section 6 using work of Selenius, and in Section 8 we give an explicit
description of an OCF period of a quadratic surd in terms of its NSCF period. In
Section 9 our analysis results in a faster algorithm for determining the OCF expansion
of a quadratic surd, which starts with the Bosma algorithm and soon switches to the
NSCF algorithm, with perturbations in exceptional cases. This second stage avoids
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the time-consuming calculation of a second integer part in the Bosma algorithm at
step (2.3) below.

2. The optimal continued fraction

D 2.1 [2]. The OCF expansion of an irrational number ξ0 is defined
recursively as follows: first, r−1 = 1, r−2 = 0, s−1 = 0, s−2 = 1, ε0 = 1. Then for k ≥ 0,
with ξ̃0 = ξ0,

bk = bξ̃kc (2.1)

uk

vk
=

bkrk−1 + εkrk−2

bk sk−1 + εk sk−2
(2.2)

βk = vk/(2vk + sk−1)

ãk = bξ̃k + βkc (2.3)

rk

sk
=

ãkrk−1 + εkrk−2

ãk sk−1 + εk sk−2
(2.4)

tk = ξ̃k − ãk (2.5)

εk+1 = sign(tk) (2.6)

ξ̃k+1 = εk+1/tk, (2.7)

where b·c denotes the integer part.

For k ≥ 0, the OCF complete quotients satisfy ξ̃k = ãk + εk+1/ξ̃k+1, with convergents
rk/sk. We give some properties of the OCF.

L 2.2. With bk and ãk defined as in (2.1) and (2.3),

ãk =

bk if εk+1 = 1,

bk + 1 if εk+1 = −1.
(2.8)

rk

sk
=


uk

vk
if εk+1 = 1,

uk + rk−1

vk + sk−1
if εk+1 = −1.

(2.9)

If A/B is a rational number with B > 0 and H(A/B) = B|Bξ0 − A|, then

εk+1 =


1 if H

(uk

vk

)
< H

(uk + rk−1

vk + sk−1

)
,

−1 if H
(uk

vk

)
> H

(uk + rk−1

vk + sk−1

)
.

(2.10)
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P. Equation (2.8) is stated in [2, Lemma (4.6)]. Equation (2.9) follows from
(2.4), (2.8) and (2.2). Equation (2.10) follows from [2, Lemma (4.3)], which states
that

rk

sk
=

uk

vk
⇐⇒ H

(uk

vk

)
< H

(uk + rk−1

vk + sk−1

)
,

together with (2.9). �

3. The OCF algorithm via the RCF algorithm

In this section we show how the OCF expansion of an irrational number ξ0 may be
derived from the RCF expansion ξ0 = a0 + 1 | / | a1 + · · · , using the function H.

We recall that the nth RCF complete quotient ξn is defined for n ≥ 0 by

an = bξnc and ξn = an + 1/ξn+1.

The nth RCF convergent An/Bn is defined for n ≥ −2 by A−2 = 0, A−1 = 1, B−2 = 1,
B−1 = 0 and, for k ≥ −1,

Ak+1 = ak+1Ak + Ak−1,

Bk+1 = ak+1Bk + Bk−1.

L 3.1. Let h(k) be defined recursively by h(0) = 0 and

h(k + 1) =

h(k) + 1 if εk+1 = 1,

h(k) + 2 if εk+1 = −1.
(3.1)

Then

bk =

ah(k) if εk = 1,

ah(k) + 1 if εk = −1,
(3.2)

and

ξ̃k =

ξh(k) if εk = 1,

ξh(k) + 1 if εk = −1.
(3.3)

P. We prove (3.2) and (3.3) by induction on k ≥ 0. These are clearly true when
k = 0, as h(0) = 0 and ε0 = 1, so ξ̃0 = ξ0 = ξh(0) and b0 = bξ̃0c = bξ0c = a0 = ah(0). We
now assume that (3.2) and (3.3) hold. Now by (2.7), ξ̃k+1 = εk+1/(ξ̃k − ãk).

Case 1. Assume that εk+1 = 1. Then using (2.8) and (3.2),

ξ̃k+1 =
1

ξ̃k − ãk
=

1

ξ̃k − bk
=


1

ξh(k) − ah(k)
if εk = 1,

1
(ξh(k) + 1) − (ah(k) + 1)

if εk = −1,

=
1

ξh(k) − ah(k)
= ξh(k)+1 = ξh(k+1),

by (3.1).
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Case 2. Assume that εk+1 = −1. Then, again using (2.8) and (3.2),

ξ̃k+1 =
−1

ξ̃k − ãk
=

−1

ξ̃k − (bk + 1)
=


−1

ξh(k) − (ah(k) + 1)
if εk = 1,

−1
(ξh(k) + 1) − (ah(k) + 2)

if εk = −1,

=
−1

ξh(k) − ah(k) − 1
=

−1
1

ξh(k)+1
− 1

.

(3.4)

But by Equation (4.17) of [2, Proposition 4.14], namely

ah(k)+1 = 1 if εk+1 = −1, (3.5)

we have ξh(k)+1 = 1 + 1/ξh(k)+2. Hence by (3.4),

ξ̃k+1 =
−1

ξh(k)+2

ξh(k)+2 + 1
− 1

= ξh(k)+2 + 1 = ξh(k+1) + 1,

by (3.1). Thus we have shown that (3.3) holds when k is replaced by k + 1.
Also, by (2.1),

bk+1 = bξ̃k+1c =

bξh(k+1)c if εk+1 = 1,

bξh(k+1)c + 1 if εk+1 = −1,

=

ah(k+1) if εk+1 = 1,

ah(k+1) + 1 if εk+1 = −1.

Hence (3.2) holds when k is replaced by k + 1. �

We now see from Lemmas 2.2 and 3.1 how the OCF can be derived from the RCF,
in terms of the function H. With ε0 = 1, h(0) = 0, r−2 = 0, r−1 = 1, s−2 = 1, s−1 = 0 and
assuming that εk, h(k), rk−1, sk−1, rk−2 and sk−2 are defined, we define εk+1, h(k + 1) and
rk/sk as follows. Let

bk =

ah(k) if εk = 1,

ah(k) + 1 if εk = −1,

uk

vk
=

bkrk−1 + εkrk−2

bk sk−1 + εk sk−2
,

εk+1 =


1 if H

(uk

vk

)
< H

(uk + rk−1

vk + sk−1

)
,

−1 if H
(uk

vk

)
> H

(uk + rk−1

vk + sk−1

)
,
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rk

sk
=


uk

vk
if εk+1 = 1,

uk + rk−1

vk + sk−1
if εk+1 = −1,

h(k + 1) =

h(k) + 1 if εk+1 = 1,

h(k) + 2 if εk+1 = −1.

Then ãk and ξ̃k can be defined by (2.8) and (3.3).

R 3.2. Bosma [2] used the notation n(k), rather than h(k). Let n(k) = h(k + 1) − 1
for k ≥ −1 and define n(−2) = −2. Then, for k ≥ −1, it follows from (3.1) that

n(k) =

n(k − 1) + 1 if εk+1 = 1,

n(k − 1) + 2 if εk+1 = −1.

L 3.3. For k ≥ −2,
rk = An(k), sk = Bn(k).

P. This was proved for k ≥ 1 in [2, Proposition (4.14)] and is trivially true for
k = −1 and −2. It is also true for k = 0. For s0 = 1, (i) ε1 = 1 implies that n(0) = 0
and Bn(0) = B0 = 1; whereas (ii) if ε1 = −1, we have n(0) = 1 and Bn(0) = B1 = a1.
Then (2.10) with k = 0 gives H(b0/1) > H((b0 + 1)/1), which implies that ξ0 > a0 +

1/2, from which it follows that a1 = b1/(ξ0 − a0)c = 1 and again B1 = 1.
Similarly,

r0 = ã0 = bξ0 + 1/2c =

a0 = A0 if ε1 = 1,

a0 + 1 = A1 if ε1 = −1.

Hence r0 = An(0). �

We note in passing that sk > sk−1 for k ≥ 1 (see [2, Lemma (4.5)]) and that s0 = 1.
Also, in [2, Corollary (4.27)], Bosma showed that ãk ≥ 2 for k ≥ 1 and that ξ̃m >
(1 +
√

5)/2 if m ≥ 1, by [2, Proposition (4.21)].
The OCF expansion of a quadratic surd is eventually periodic, that is to say,

εi+1 = εi+p+1 and ãi = ãi+p for all i ≥ i0 (see [3, Theorem (6.1)]). The least such p is
called the period length.

From now on, ξ0 = (P0 +
√

D)/Q0 is assumed to be a quadratic irrationality in
standard form, that is, P0, Q0 and (D − P2

0)/Q0 are integers whose greatest common
divisor is equal to 1. Then if the RCF complete quotient ξn = (Pn +

√
D)/Qn is in

standard form, we have the positive and negative representations

ξn = (Pn +
√

D)/Qn = an +
Qn+1

Pn+1 +
√

D
= an + 1 −

Q
′′

n+1

P′′n+1 +
√

D
,

where (Pn+1 +
√

D)/Qn+1 > 1 and (P
′′

n+1 +
√

D)/Q
′′

n+1 > 1 are also in standard form.
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L 3.4 (Selenius). Let ξ0 be a quadratic irrational. Consider the positive–
negative representation of RCF complete quotient ξν−1:

ξν−1 = (Pν−1 +
√

D)/Qν−1 = aν−1 +
Qν

Pν +
√

D
= aν−1 + 1 −

Q
′′

ν

P′′ν +
√

D
.

(i) If aν = 1 and ν ≥ 1, then:

(a) Q
′′

ν = Qν+1;
(b) P

′′

ν = Pν+1 + Qν+1.

(ii) If ξν−1 is RCF reduced, then Q
′′

ν ≤ Qν implies that aν = 1.

P. See [7, Satz 37], where the results are proved for ξ0 =
√

D. �

By (3.1) and (3.3), we can now view the RCF to OCF transformation as a sequence
of traversals of the sequence of RCF positive and negative representations of ξh(k):

ξh(k) = ah(k) +
Qh(k)+1

Ph(k)+1 +
√

D
= ah(k) + 1 −

Q
′′

h(k)+1

P′′h(k)+1 +
√

D
, (3.6)

visiting the ξh(k), where k ≥ 0, in jumps of 1 or 2 and choosing

ξ̃k+1 =

(Ph(k)+1 +
√

D)/Qh(k)+1 if εk+1 = 1,

(P
′′

h(k)+1 +
√

D)/Q
′′

h(k)+1 if εk+1 = −1.

For if εk+1 = 1, then

ξ̃k+1 = (Ph(k+1) +
√

D)/Qh(k+1) = (Ph(k)+1 +
√

D)/Qh(k)+1.

Also if εk+1 = −1 then h(k + 1) = h(k) + 2. Moreover, by (3.5), εk+1 = −1 implies that
ah(k)+1 = 1, so by Lemma 3.4(i),

P
′′

h(k)+1 = Ph(k)+2 + Qh(k)+2 and Q
′′

h(k)+1 = Qh(k)+2,

so

ξ̃k+1 = (Ph(k+1) +
√

D)/Qh(k+1) = (Ph(k)+2 +
√

D)/Qh(k)+2 + 1 = (P
′′

h(k)+1 +
√

D)/Q
′′

h(k)+1.

L 3.5. If an > 1 for some n ≥ 1, then n = h(k) for some k ≥ 1.

P. Let an > 1 and h(k) ≤ n < h(k + 1). If h(k) < n, then h(k + 1) = h(k) + 2 and
εk+1 = −1; also n = h(k) + 1. Hence, by (3.5), we get the contradiction an =

ah(k)+1 = 1. �

E 3.6. The initial OCF expansion of ξ0 = (36 +
√

405)/81 in given in Table 2.
This is derived from the positive–negative representations of the RCF expansion
in Table 1, with line traversals indicated by 0→ 2→ 3→ 5→ 6→ 7→ 9→
11, corresponding to h(1) = 2, h(2) = 3, h(3) = 5, h(4) = 6, h(5) = 7, h(6) = 9
and h(7) = 11.
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[7] Optimal continued fraction of a quadratic surd 139

T 1. Positive–negative representations for ξ0 = (36 +
√

405)/81

i ξi ai + Qi+1/(Pi+1 +
√

D) ai + 1 − Q
′′

i+1/(P
′′

i+1 +
√

D)

0 (36 +
√

405)/81 0 − 11/(−36 +
√

405) 1 − 20/(45 +
√

405)

1 (−36 +
√

405)/(−11) 1 + 20/(25 +
√

405) 2 − 19/(14 +
√

405)

2 (25 +
√

405)/20 2 + 9/(15 +
√

405) 3 − 41/(35 +
√

405)

3 (15 +
√

405)/9 3 + 29/(12 +
√

405) 4 − 4/(21 +
√

405)

4 (12 +
√

405)/29 1 + 4/(17 +
√

405) 2 − 59/(46 +
√

405)

5 (17 +
√

405)/4 9 + 11/(19 +
√

405) 10 − 31/(23 +
√

405)

6 (19 +
√

405)/11 3 + 19/(14 +
√

405) 4 − 20/(25 +
√

405)

7 (14 +
√

405)/19 1 + 20/(5 +
√

405) 2 − 9/(24 +
√

405)

8 (5 +
√

405)/20 1 + 9/(15 +
√

405) 2 − 41/(35 +
√

405)

9 (15 +
√

405)/9 3 + 29/(12 +
√

405) 4 − 4/(21 +
√

405)

10 (12 +
√

405)/29 1 + 4/(17 +
√

405) 2 − 59/(46 +
√

405)

11 (17 +
√

405)/4 9 + 11/(19 +
√

405) 10 − 31/(23 +
√

405)

T 2. Initial segment of the OCF expansion of (36 +
√

405)/81

i ξ̃i εi ãi

0 (36 +
√

405)/81 1 1

1 (45 +
√

405)/20 −1 3

2 (15 +
√

405)/9 1 4

3 (21 +
√

405)/4 −1 10

4 (19 +
√

405)/11 1 3

5 (14 +
√

405)/19 1 2

6 (24 +
√

405)/9 −1 5

7 (21 +
√

405)/4 −1 10

4. Selenius’ algorithm

We need to show that the OCF algorithm is identical to Selenius’ algorithm, as
originally presented by Selenius [7, Section 27, V 4]. We start by identifying the
quotients uk/vk and (uk + rk−1)/(vk + sk−1) that occur in Equation (2.9) of the OCF
algorithm.

L 4.1. Let h(k) be defined as in (3.1). Let h(k) = r and Θr = H(Ar/Br). Then

uk

vk
=

Ar

Br
,

uk + rk−1

vk + sk−1
=

Ar + Ar−1

Br + Br−1
. (4.1)
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P. Observe that

uk = bkrk−1 + εkrk−2

= bkAn(k−1) + εkAn(k−2)

= bkAr−1 + εkAn(k−2).

(4.2)

Case 1. Assume that εk = 1. Then from (3.2), bk = ah(k) = ar and

h(k − 1) = h(k) − 1 = r − 1, n(k − 2) = r − 2

and (4.2) becomes uk = arAr−1 + Ar−2 = Ar.

Case 2. Assume that εk = −1. Then bk = ar + 1. Also by (3.5), ah(k−1)+1 = 1, where
h(k − 1) = h(k) − 2 = r − 2. Hence ar−1 = 1 and Ar−1 = ar−1Ar−2 + Ar−3 = Ar−2 + Ar−3.

Then (4.2) becomes uk = (ar + 1)Ar−1 − Ar−3 = arAr−1 + Ar−2 = Ar. Also in both
cases

uk + rk−1 = Ar + An(k−1) = Ar + Ah(k)−1 = Ar + Ar−1,

as required. �

C 4.2. Let h(k) = r and Θr = H(Ar/Br). Then:

(a) εk+1 = 1 and ar+1 = 1 implies that Θr < Θr+1;
(b) εk+1 = −1 implies that Θr > Θr+1.

P. This follows from (4.1) and (2.9), as (uk + rk−1)/(vk + sk−1) = Ar+1/Br+1, if
ar+1 = 1. This is indeed the case if εk+1 = −1, as by (3.5), ah(k)+1 = ar+1 = 1. �

Corollary 4.2 gives an alternative way of defining h(k), in terms of RCF
approximation constants Θr, which leads to Selenius’ algorithm.

L 4.3. Let h(k) = r and Θr = H(Ar/Br).

(a) If ar+1 > 1, then εk+1 = 1 and h(k + 1) = h(k) + 1.
(b) If ar+1 = 1; then:

(i) Θr < Θr+1 implies that εk+1 = 1 and h(k + 1) = h(k) + 1;
(ii) Θr > Θr+1 implies that εk+1 = −1 and h(k + 1) = h(k) + 2.

P. The contrapositive of (a) follows, as εk+1 = −1 implies that ah(k)+1 = ar+1 = 1,
while (b)(i) and (ii) follow on taking contrapositives in Corollary 4.2(b) and (a). �

R 4.4. In cases (a) and (b)(i), we represent the change in h(k) as a jump of one
RCF partial quotient:

−−−→ar, ar+1.

In case (b)(ii) we represent the change in h(k) as a jump of two RCF partial quotients:

−−−−−−→
ar, 1, ar+2.
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Lemma 4.3(b) tells us that the RCF to OCF transition depends on the relative sizes
of the approximation constants Θr corresponding to a unisequence, that is, a sequence
of consecutive partial quotients 1. The dependence is described in [6, Lemma 4.1] as
follows.

L 4.5. Consider the k-unisequence ar, 1, . . . , 1, ar+k+1, where ar > 1 if r > 0 and
ar+k+1 > 1.

(a) If k is odd, then

Θr > Θr+1, Θr+2 > Θr+3, . . . , Θr+k−1 > Θr+k.

(b) If k = 2t where t is even, then

Θr > Θr+1, Θr+2 > Θr+3, . . . , Θr+t−2 > Θr+t−1,

Θr+t < Θr+t+1,

Θr+t+1 > Θr+t+2, Θr+t+3 > Θr+t+4, . . . , Θr+2t−1 > Θr+2t.

(c) If k = 2t where t is odd, then

Θr > Θr+1, Θr+2 > Θr+3, . . . , Θr+t−3 > Θr+t−2,

Θr+t > Θr+t+1, Θr+t+2 > Θr+t+3, . . . , Θr+2t−1 > Θr+2t.

Further, Θr+t+1 < Θr+t+2 if t ≥ 3.

In (c), Selenius called the k-unisequence indirect (ungerade) or direct (gerade),
according to whether Θr+t−1 < Θr+t or Θr+t−1 > Θr+t.

R 4.6. From Lemmas 4.3 and 4.5, we have Selenius’ recipe for the variation in
h(k) on meeting a k-unisequence.

(a) k odd: there are (k + 1)/2 jumps of length 2.
(b) k = 2t where t is even: there are t/2 jumps of 2, then a jump of length 1, then t/2

jumps of length 2.
(c) k = 2t where t is odd.

(i) If Θr+t−1 > Θr+t, there are (t + 1)/2 jumps of length 2, then a jump of length
1, followed by (t − 1)/2 jumps of length 2.

(ii) If Θr+t−1 < Θr+t, there are (t − 1)/2 jumps of length 2, then a jump of length
1, followed by (t + 1)/2 jumps of length 2.

For example:

k = 1 :
−−−−−−→
ar, 1, ar+2;

k = 2 :
−−−→
ar, 1

−−−−→
, 1, ar+3 (indirect unisequence, Θr < Θr+1);

k = 2 :
−−−−−−→
ar, 1, 1

−−→
, ar+3 (direct unisequence, Θr > Θr+1);

k = 3 :
−−−−−−→
ar, 1, 1

−−−−−→
, 1, ar+4;

k = 4 :
−−−−−−→
ar, 1, 1

−−→
, 1
−−−−−→
, 1, ar+5;
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k = 5 :
−−−−−−→
ar, 1, 1

−−−−→
, 1, 1

−−−−−→
, 1, ar+6;

k = 6 :

(i)
−−−−−−→
ar, 1, 1

−−→
, 1
−−−−→
, 1, 1

−−−−→
, 1, ar+7 (indirect unisequence, Θr+2 < Θr+3);

(ii)
−−−−−−→
ar, 1, 1

−−−−→
, 1, 1

−→
, 1
−−−−→
, 1, ar+7 (direct unisequence, Θr+2 > Θr+3).

R 4.7. It is well known [4, p. 29] that

Θi = {[ai+1, . . . , a1] + [0, ai+2, ai+3, . . .]}−1.

As pointed out by Selenius [7], for a k-unisequence with k = 2t and t odd,

Θr+t−1 > Θr+t⇔ [ar, ar−1, . . . , a1] > [ar+2t+1, ar+2t+2, . . .] (4.3)

if r > 0.

The following result from [3] is useful in establishing inequalities between regular
continued fractions.

L 4.8. Suppose that x = [a0, . . . , ak−1, ak, . . .], x′ = [a0, . . . , ak−1, a′k, . . .] with
ak , a′k. Then ak < a′k if and only if k is even and x < x′, or k is odd and x > x′.

There is one occasion when we always have an indirect unisequence.

L 4.9. If k = 2t where t is odd, then the k-unisequence a0, (1)k, a2t+1, where
a2t+1 > 1, satisfies

Θt−1 > Θt.

P. Using the notation of Selenius [7, p. 18], where γt = Θ−1
t−1, we prove

equivalently that γt < γt+1.

γt = [at, . . . , a1] + [0, at+1, . . .]

= [(1)t] + [0, (1)t, a2t+1, . . .] = y + 1/x,

γt+1 = [(1)t+1] + [0, (1)t−1, a2t+1, . . .] = 1/y + x,

where y = [(1)t] and x = [(1)t, a2t+1, . . .]. Hence

γt < γt+1 ⇐⇒ y +
1
x
<

1
y

+ x

⇐⇒
xy + 1

x
<

1 + xy
y

⇐⇒ y < x.

Now by [7, p. 30],

y =
Ft

Ft−1
, x =

Ftξ2t+1 + Ft−1

Ft−1ξ2t+1 + Ft−2
,
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where Fn is the nth Fibonacci number (that is, F−1 = 0, F0 = 1, and Fn = Fn−1 + Fn−2

when n ≥ 1) and ξ2t+1 = [a2t+1, . . .]. Then

y < x ⇐⇒
Ft

Ft−1
<

Ftξ2t+1 + Ft−1

Ft−1ξ2t+1 + Ft−2

⇐⇒ FtFt−1ξ2t+1 + FtFt−2 < Ft−1Ftξ2t+1 + F2
t−1

⇐⇒ 0 < F2
t−1 − FtFt−2 = (−1)t−1 = 1,

as required. �

For use in Section 8, we need the following result.

L 4.10. If OCF complete quotient ξ̃m = (p − 1 +
√

p2 + 1)/2, where p ≥ 3 and
m > 0, then:

(a) ξ̃m+1 = (p − 1 +
√

p2 + 1)/p;
(b) ξ̃m starts an OCF period of length 4.

P. (a) Suppose that ξ̃m = [p − 1, 1, 1]. Then ξ̃m = ξr + 1 or ξr, where ξr =

[ar, ar+1, . . .]. In the first case, ξr = [p − 2, 1, 1, p − 1, . . .] and εm = −1. Then we
have Θr < Θr+1, as

[ar, . . . , a1] = [p − 2, . . . , a1] < [ar+3, ar+4, . . .] = [p − 1, 1, 1, . . .],

using (4.3) and Lemma 4.8. Hence εm+1 = 1.
In the second case, ξr = [p − 1, 1, 1] and εm = 1. The following cases are those that

give εm = 1:

(i) (a) r = 1 : −−−−−→a0, p−1;

(b) r > 1 : ar−1 > 1 : a0, . . . ,
−−−−−−−−→
ar−1, p−1;

(ii) (a) r = 3 :
−−−−−−−→
a0, 1, 1

−−−−→
, p−1;

(b) r > 3 : ar−3 > p − 1;

(c) ar−3 = p − 1 and Θr−3 > Θr−2 : a0, . . . ,
−−−−−−−−→
ar−3, 1, 1

−−−−→
, p−1.

These all give εm+1 = 1, using (4.3), Lemmas 4.8 and 4.9. Only (ii)(c) needs care; we
assume that Θr−3 > Θr−2. Then (4.3), with D = p2 + 1, gives

θ = [ar−3, ar−2, . . . , a1] > [ar, ar+1, . . .] = (p − 1 +
√

D)/2. (4.4)

We have to deduce Θr < Θr+1, that is,

[ar, ar−1, . . . , a1] = [p − 1, 1, 1, θ] < [ar+3, ar+4, . . .] = (p − 1 +
√

D)/2.

Happily this turns out to be equivalent to inequality (4.4).
In view of εm+1 = 1, we choose the positive representation in the equation

ξ̃m = (p − 1 +
√

D)/2 = p − 1 +
p

p − 1 +
√

D
= p −

p

p + 1 +
√

D
,

to get ξ̃m+1 = (p − 1 +
√

D)/p.
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(b) Periodicity. We have the positive–negative representation

ξ̃m+1 = (p − 1 +
√

D)/p = 1 +
p

1 +
√

D
= 2 −

2

p + 1 +
√

D
.

Then εm+2 = −1, as ãm+1 > 1 by [2, Corollary 4.27] and hence

ξ̃m+2 = (p + 1 +
√

D)/2 = p +
p

p − 1 +
√

D
= p + 1 −

p

p + 1 +
√

D
.

Also εm+1 = 1 implies that Θr < Θr+1 and using (4.3), we have Θr+3 > Θr+4 and hence
εm+3 = −1. Consequently,

ξ̃m+3 = (p + 1 +
√

D)/p = 2 +
2

p − 1 +
√

D
= 3 −

3p − 4

2p − 1 +
√

D
.

Then, as ar+3 = p − 1 > 1, by Lemma 4.3(a), we have εm+4 = 1 and hence

ξ̃m+4 = (p − 1 +
√

D)/2 = ξ̃m,

thus establishing periodicity, with corresponding section of the OCF expansion

· · ·
εm |

| p − 1
+

1 |
| 2
−

1 |
| p + 1

−
1 |
| 2

+ · · · ,

as required. �

5. The NSCF algorithm

To define the NSCF, we start with a quadratic irrationality ξ0 = (P0 +
√

D)/Q0 in
standard form, that is, D is a nonsquare positive integer and P0, Q0, (D − P0

2)/Q0

are integers, having no common factor other than 1. We define complete quotients
recursively. Suppose that ξ̃0 = ξ0 and that ξ̃m = (P̃m +

√
D)/Q̃m is in standard form and

let cm = bξ̃mc. Then we have the positive and negative representations

ξ̃m = (P̃m +
√

D)/Q̃m = cm +
Q̃m+1

P̃m+1 +
√

D
= cm + 1 −

Q̃
′′

m+1

P̃′′m+1 +
√

D
,

where (P̃m+1 +
√

D)/Q̃m+1 > 1 and (P̃
′′

m+1 +
√

D)/Q̃
′′

m+1 > 1 are also in standard form.
We choose

ãm =

cm if |Q̃′m+1| < |Q̃
′′

m+1|, or |Q̃′m+1| = |Q̃
′′

m+1| and Q̃m < 0,

cm + 1 if |Q̃′m+1| > |Q̃
′′

m+1|, or |Q̃′m+1| = |Q̃
′′

m+1| and Q̃m > 0,
(5.1)

εm+1 = sign(ξ̃m − ãm), (5.2)

ξ̃m+1 =

(P̃′m+1 +
√

D)/Q̃′m+1 if εm+1 = 1,

(P̃
′′

m+1 +
√

D/Q̃
′′

m+1 if εm+1 = −1.
(5.3)
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For m ≥ 0, we also have
ξ̃m = ãm +

εm+1

ξ̃m+1
.

If Q̃m, Q̃′m+1, Q̃
′′

m+1 are all positive, we have the simplification

ãm =

cm if Q̃′m+1 < Q̃
′′

m+1,

cm + 1 if Q̃′m+1 ≥ Q̃
′′

m+1,
εm+1 =

1 if Q̃′m+1 < Q̃
′′

m+1,

−1 if Q̃′m+1 ≥ Q̃
′′

m+1.

This will be the case for all m ≥ n if ξ̃n is NSCF reduced, or if |Q̃n| < 2
√

D (see [1,
Definition, p. 27] and [1, Theorem I, p. 22]). Such an index n always exists. The
NSCF expansion of a quadratic surd is ultimately periodic (see [1, Theorem II, p. 25]).
This is equivalent to ξ̃i0 = ξ̃i0+p, where p > 0. The NSCF reduced surds are precisely
the surds with a purely periodic NSCF expansion (see [1, pp. 101–102]).

L 5.1 (John Robertson). If ξ > 2 is RCF reduced, then ξ or ξ + 1 is NSCF
reduced.

P. This depends on the fact that if ξ is NSCF reduced, then ξ or ξ − 1 is RCF
reduced (see [6, Lemma (6.2)]). So a cycle {ξi} of NSCF reduced surds corresponds
to a subsequence {ηφ(i)} of a cycle {η j} of RCF reduced surds. If p is the RCF cycle
length, we see by Lemma 3.4 that φ(i + 1) = φ(i) + 1 or φ(i) + 2 for i (modulo p) and
in the latter case aφ(i)+1 = 1, which implies that ηφ(i)+1 = 1 + 1/ηφ(i)+2 < 2. �

C 5.2. Assume that ξ̃k is an OCF complete quotient. If ah(k) > 1 and ξh(k) is
RCF reduced, then one of ξ̃k or ξ̃k ± 1 is NSCF reduced.

P. If ξ̃k is an OCF complete quotient, then by (3.3) ξ̃k = ξh(k) or ξh(k) + 1. Then
ah(k) > 1 implies that ξh(k) > 2, so if ξh(k) is RCF reduced, Lemma 5.1 implies that ξh(k)

or ξh(k) + 1 is NSCF reduced. Hence one of ξ̃k, ξ̃k ± 1 is NSCF reduced. �

C 5.3. There exists a OCF complete quotient ξ̃k, such that ξ̃k or ξ̃k ± 1 is
NSCF reduced.

P. If ξ0 is equivalent to (1 +
√

5)/2, then ξn = (1 +
√

5)/2 for all n ≥ n0 and so
ξ̃k = (3 +

√
5)/2 for all k such that h(k) ≥ n0. Also (3 +

√
5)/2 is NSCF reduced.

Otherwise there exists n such that an > 1 and hence, by Lemma 3.5, h(k) = n for some
k. If we choose n large enough so that ξn is RCF reduced, then Corollary 5.2 gives the
desired result. �

6. Some inequalities of Selenius

In this section, we establish a connection between the OCF and NSCF algorithms,
based on a result of Selenius.

L 6.1 [7, Satz 29]. Suppose that Θr = Br |Brξ0 − Ar |, where Ar/Br is the rth RCF
convergent to ξ0 = (P0 +

√
D)/Q0. Suppose that Qr and Qr+1 are positive for all large

r ≥ 0.
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(a) If Qr+1 = Qr, then for r ≥ 1,

(−1)r(Θr − Θr−1)t > 0,

where t = sign(Q0).
(b) If r is sufficiently large (for example, BrBr+1 > |Q0|) and Qr+1 , Qr, then

Qr+1 < Qr ⇐⇒ Θr < Θr−1. (6.1)

Moreover, if ξ0 =
√

D, then (6.1) holds for r ≥ 1.

(Selenius stated his result in terms of γr = 1/Θr−1.)

C 6.2. Assume that ξh(k) is RCF reduced and ξ̃k has positive–negative
representation

ξ̃k = (P̃k +
√

D)/Q̃k = bk +
Q̃′k+1

P̃k+1 +
√

D
= bk + 1 −

Q̃
′′

k+1

P̃′′k+1 +
√

D
.

(a) Suppose that Q̃′k+1 = Q̃
′′

k+1. Then

H
(uk

vk

)
> H

(uk + rk−1

vk + sk−1

)
⇐⇒ (−1)kε1 · · · εkt = 1, (6.2)

where t = sign(Q0).
(b) Suppose that Q̃′k+1 , Q̃

′′

k+1 and ah(k)+1 = 1. Then if sk > |Q0|,

H
(uk

vk

)
> H

(uk + rk−1

vk + sk−1

)
⇐⇒ Q̃′k+1 > Q̃′′k+1.

R 6.3. If ξ0 =
√

D, then (b) holds for all k ≥ 0.

P. From (3.6), Q̃′k+1 = Qh(k)+1 and Q̃
′′

k+1 = Q
′′

h(k)+1 and both are positive if ξh(k) is

RCF reduced, by [1, Theorem I, p. 22], as then 0 < Qh(k) < 2
√

D.
For case (a), Q̃′k+1 = Q̃

′′

k+1 becomes Qh(k)+1 = Q
′′

h(k)+1. Then ah(k)+1 = 1, by
Lemma 3.4, and hence Qh(k)+1 = Q

′′

h(k)+1 = Qh(k)+2. Lemma 6.1(a), with r = h(k) + 1,
now gives

(−1)h(k)+1
(
H

(Ah(k)+1

Bh(k)+1

)
− H

(Ah(k)

Bh(k)

))
t > 0

and Lemma 4.1 gives

(−1)h(k)+1
(
H

(uk + rk−1

vk + sk−1

)
− H

(uk

vk

))
t > 0. (6.3)
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Also

(−1)h(k)+1 = Ah(k)Bh(k)+1 − Ah(k)+1Bh(k)

= (vk + sk−1)uk − vk(uk + rk−1)

= uk sk−1 − vkrk−1

= (bkrk−1 + εkrk−2)sk−1 − (bk sk−1 + εk sk−2)rk−1

= εk(rk−2sk−1 − rk−1sk−2)

= (−1)k+1ε1 · · · εk.

So inequality (6.3) gives

(−1)k+1ε1 · · · εk

(
H

(uk + rk−1

vk + sk−1

)
− H

(uk

vk

))
t > 0

and this gives (6.2).
For case (b), if ah(k)+1 = 1, we again have Q

′′

h(k)+1 = Qh(k)+2, so Lemma 6.1(b) applies
with r = h(k) + 1. We also note that

BrBr+1 = vk(vk + sk−1) =

sk(sk + sk−1) if εk+1 = 1,

(sk − sk−1)sk if εk+1 = −1.

So BrBr+1 > |Q0| if sk > |Q0|. �

The case where ah(k)+1 > 1 is easier to deal with.

L 6.4. If ξh(k) is RCF reduced and ah(k)+1 > 1, then:

(i) H(uk/vk) < H((uk + rk−1)/(vk + sk−1));
(ii) Q̃′k+1 < Q̃

′′

k+1.

P. Assume that ah(k)+1 > 1. Then we know that εk+1 = 1 and hence (i) holds.
If Q̃′k+1 ≥ Q̃

′′

k+1, then Qh(k)+1 ≥ Q
′′

h(k)+1 and so ah(k)+1 = 1, by Lemma 3.4(b)(ii). �

The phenomenon Q̃′m+1 = Q̃
′′

m+1 is now investigated in detail.

L 6.5. Suppose that ξ̃m is an OCF complete quotient for which ξ̃m + b is also
NSCF reduced for some integer b. If Q̃′m+1 = Q̃

′′

m+1, then

ξ̃m = ((2a + 1)q − p +
√

p2 + q2)/2q, p ≥ 2q > 0,

where a = bξ̃mc.

P. Suppose that Q̃′m+1 = Q̃
′′

m+1. Then from [1, Theorem 1, p. 22],

P̃
′′

m+1 + P̃′m+1 = 2Q̃
′′

m+1

P̃
′′

m+1 − P̃′m+1 = Q̃m

2P̃
′′

m+1 = Q̃m + 2Q̃
′′

m+1

P̃
′′

m+1 = 1
2 Q̃m + Q̃

′′

m+1.
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Also

D = (P̃
′′

m+1)2 − Q̃mQ̃
′′

m+1

= ( 1
2 Q̃m + Q̃

′′

m+1)2 − Q̃mQ̃
′′

m+1

= ( 1
2 Q̃m)2 + (Q̃

′′

m+1)2

= q2 + p2,

where p = Q
′′

m+1 and q = 1
2 Q̃m, where p > 0, since 0 < Q̃m <

√
D, by [1,

Theorem 1(iv), p. 22] and q > 0. Again, by [1, p. 22],

P̃m = aQ̃m − P̃′m+1 = 2aq − (p − q) = (2a + 1)q − p.

Hence
ξ̃m = (P̃m +

√
p2 + q2)/Q̃m = ((2a + 1)q − p +

√
p2 + q2)/2q.

Hence Q̃m+1 = p. Also ξ̃m + b = (P̃m + bQ̃m +
√

D)/Q̃m is a special NSCF complete
quotient ([1, Theorem IV, p. 28]), whose NSCF successor is (p + q +

√
p2 + q2/p, so

Q̃2
m + 1

4 p2 ≤ D. (6.4)

Hence (6.4) gives 4q2 + 1
4 p2 ≤ p2 + q2 and so 2q ≤ p. �

7. Occurrences of (p + q +
√

p2 + q2)/p, p > 2q > 0 in an NSCF period

Ayyangar proved that there are at most two complete quotients of the form (p + q +√
p2 + q2)/p, where p > 2q > 0, in an NSCF period (see [1, Lemma (2), p. 106]). The

case of just one occurrence was described by Ayyangar [1, 5.6.2, pp. 112–113]. In the
case where there are two occurrences, we need to know that they are separated by half
a period length. This is stated explicitly in the next result. We will also need part (d)
in the proof of Theorem 8.1.

L 7.1. Let k be the period length of the NSCF expansion of (p + q +
√

p2 + q2)/p,
where p > 2q > 0. If some ξ̃h, where 1 ≤ h < k, also has this form, then:

(a) k is even and h = k/2;
(b) Q̃v = Q̃k−v for 0 ≤ v ≤ k − 1;
(c) P̃k+1−v = P̃v for 2 ≤ v ≤ 1

2 k − 1;
(d) ãv = ãk−v, 2 ≤ v ≤ 1

2 k − 2, ãk−1 − 1 = ã1, ãk/2+1 = ãk/2−1 − 1, ãk/2 = 2;
(e) εk+1−v = εv, 2 ≤ v ≤ 1

2 k − 1, εk/2 = −1, εk/2+1 = 1, ε1 = 1, εk = −1.

P. See [5] for a proof that is an extension of the argument in [1, pp. 112–113],
which dealt with the case where there is only one complete quotient of the above type
in a period. �

E 7.2 (see Table 3). Here ξ0 = (324 +
√

81770)/283 = (p + q +
√

p2 + q2)/p,
where p > 2q > 0. Then ξ̃4 = (348 +

√
81770)/277 = (P + Q +

√
P2 + Q2)/p, where

P > 2Q > 0. Here p2 + q2 = P2 + Q2 = 81770, where p = 283, q = 41, P = 277 and
Q = 71. Also k = 8 and h = 4. The two occurrences are highlighted.
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T 3. NSCF expansion of (324 +
√

81770)/283

i ξ̃i εi ãi Q̃′i+1 Q̃
′′

i+1

0 (324 +
√

81770)/283 1 2 82 685

1 (242 +
√

81770)/82 1 6 235 347

2 (250 +
√

81770)/235 1 2 142 533

3 (220 +
√

81770)/142 −1 4 277 277

4 (348 +
√

81770)/277 1 2 142 547

5 (206 +
√

81770)/142 1 3 235 347

6 (220 +
√

81770)/235 1 2 82 653

7 (250 +
√

81770)/82 −1 7 283 283

8 (324 +
√

81770)/283 1 2 82 685

8. The structure of the OCF period of a general quadratic surd

Selenius proved periodicity with possible doubling for the SK expansion of
√

D and
stated without proof that for a general quadratic surd, the SK algorithm is periodic and
that the period-doubling phenomenon can occur (see [7, Satz 36]). This was proved by
Bosma and Kraaikamp [3, Theorem (6.1)]. We prove periodicity of the OCF algorithm
by showing how the OCF period is related to the NSCF period. We have the following
possible OCF periods.

T 8.1.

(a) If no complete quotient in an NSCF period of ξ0 has the form (p + q +√
p2 + q2)/p, where p > 2q > 0, for example, if a period contains only m-

unisequences with m odd or m ≡ 0 (mod 4), or if ξ0 is equivalent to (1 +
√

5)/2,
then the OCF and NSCF ultimately agree.

(b) Suppose there is only one occurrence in an NSCF period. We write L-RCF ,
L-NSCF , and L-OCF to denote the RCF, NSCF and OCF period lengths for ξ0.
Then:

(i) L-OCF = 2 L-NSCF if L-RCF is odd. This gives a triad reversal if
L-NSCF ≥ 3, while if L-NSCF = 2, then D = p2 + 1, p ≥ 3 and the OCF
and NSCF periods have the form

NSCF: p
∗

−
1 |
| 2
∗

+ · · · , OCF: p − 1
∗

+
1 |
| 2
−

1 |
| p + 1

−
1 |
| 2
∗

+ · · · .

(ii) L-OCF = L-NSCF if L-RCF is even. The OCF period is essentially the
same as the NSCF period, apart from a possible triad reversal.

(c) If we have two complete quotients of the form (p + q +
√

p2 + q2)/p, where
p > 2q > 0 in the NSCF period of ξ0, the periods of the OCF and NSCF will
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be essentially the same, apart from at most two reversals of triads of partial
quotients in an NSCF period, corresponding to these two complete quotients.

E 8.2. Here are some examples of the various possible OCF period structures.
For brevity, we define a special surd to be a quadratic irrationality of the form
(p + q +

√
p2 + q2)/p, where p > 2q > 0.

(a) ξ0 = (54 +
√

1584)/36. Here no complete quotient in the NSCF period is a
special surd.

NSCF: 2 +
1 |
| 2
−

1 |
| 3
∗

−
1 |
| 8
−

1 |
| 3
−

1 |
| 3
−

1 |
| 3
∗

−
1 |
| 3

+ · · ·

OCF: 3 −
1 |
| 2

+
1 |
| 2
−

1 |
| 8
∗

−
1 |
| 3
−

1 |
| 3
−

1 |
| 3
−

1 |
| 3
∗

+ · · · .

(b) In the following five examples, one complete quotient in the NSCF period is a
special surd.

(i) k′ = 5, L-RCF = 9, ξ0 = (13 +
√

697)/22 (period doubling, one reversal).

NSCF : 2
∗
−

1 |
| 5
−

1 |
| 5
−

1 |
| 3
−

1 |
| 2
∗

+ · · ·

OCF : 2 −
1 |
| 5
∗

−
1 |
| 5
−

1 |
| 3
−

1 |
| 2

+
1 |
| 2
−

1 |
| 5
−

1 |
| 5
−

1 |
| 2

+
1 |
| 2
−

1 |
| 3
∗

− · · · .

(ii) k′ = 4, ξ0 =
√

29.

NSCF : 5 +
1 |
| 3
∗

−
1 |
| 2

+
1 |
| 2

+
1 |
| 10
∗

+ · · ·

OCF: 5 +
1 |
| 2
∗

+
1 |
| 2
−

1 |
| 3

+
1 |
| 10

+
1 |
| 3
−

1 |
| 2

+
1 |
| 2

+
1 |
| 10
∗

· · · .

(iii) k′ = 2, ξ0 = 1
2

√
(2n + 1)2 + 1 where n ≥ 1.

NSCF : n + 1 −
1 |
| 2
∗

+
1 |

| 2n + 1
∗

− · · ·

OCF: n + 1 −
1 |
| 2
∗

+
1 |
| 2n

+
1 |
| 2
−

1 |
| 2n + 2

∗

− · · · .

(iv) k′ = 9, L-RCF = 12, ξ0 = (19 +
√

205)/13 (no reversal).
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(v) k′ = 3, L-RCF = 4, ξ0 = (2865 +
√

725)/1250 (one reversal).

NSCF : 2 +
1 |
| 3

+
1 |
| 5

+
1 |
| 4
∗

−
1 |
| 2

+
1 |
| 3
∗

+ · · ·

OCF : 2 +
1 |
| 3

+
1 |
| 5

+
1 |
| 3
∗

+
1 |
| 2
−

1 |
| 4
∗

+ · · · .

(c) In the following three examples, two complete quotients in the NSCF period are
special surds.

(i) ξ0 = (487 +
√

159197)/386: (no reversals)

OCF = NSCF: 2
∗

+
1 |
| 3

+
1 |
| 3
−

1 |
| 2

+
1 |
| 2

+
1 |
| 4
∗

− · · · .

(ii) ξ0 = (109 +
√

7453)/82: (one reversal)

NSCF : 2
∗

+
1 |
| 3
−

1 |
| 3

+
1 |
| 2
−

1 |
| 2
−

1 |
| 4
∗

− · · ·

OCF : 2
∗

+
1 |
| 3
−

1 |
| 2

+
1 |
| 2
−

1 |
| 3
−

1 |
| 4
∗

− · · · .

(iii) ξ0 = (−41 +
√

1961)/28: (two reversals)

NSCF: 0 +
1 |
| 9
∗

−
1 |
| 2

+
1 |
| 8

+
1 |
| 3

+
1 |
| 22
−

1 |
| 6
−

1 |
| 2

+
1 |
| 3
−

1 |
| 3

−
1 |
| 2

+
1 |
| 2
−

1 |
| 3

+
1 |
| 2
−

1 |
| 6
−

1 |
| 22

+
1 |
| 3
∗

+ · · ·

OCF: 0 +
1 |
| 8
∗

+
1 |
| 2
−

1 |
| 9

+
1 |
| 3

+
1 |
| 22
−

1 |
| 6
−

1 |
| 2

+
1 |
| 3
−

1 |
| 2

+
1 |
| 2
−

1 |
| 3
−

1 |
| 3

+
1 |
| 2
−

1 |
| 6
−

1 |
| 22

+
1 |
| 3
∗

+ · · · .

We need two preliminary results for the proof of Theorem 8.1.

L 8.3. There exists an OCF complete quotient ξ̃m such that ξ̃m is NSCF reduced.

P. By Corollary 5.3, there exists m such that ξ̃m or ξ̃m ± 1 is NSCF reduced and we
can assume that sm > |Q0| of Lemma 6.2(b) is satisfied and that ξh(m) is RCF reduced.
If Q̃′m+1 , Q̃

′′

m+1, then the OCF and NSCF make the same choice and ξ̃m+1 is NSCF
reduced.

Otherwise we have Q̃′m+1 = Q̃
′′

m+1 and hence by Lemma 6.5, with D = p2 + q2,

ξ̃m = ((2a + 1)q − p +
√

D)/2q = a +
p

p − q +
√

D
= a + 1 −

p

p + q +
√

D
, (8.1)
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where p ≥ 2q > 0. Then ξ̃m+1 = (p − q +
√

D)/p or (p + q +
√

D)/p. If p = 2q, then
p = 2, q = 1 and ξ̃m+1 = (3 +

√
5)/2, as we know that ξ̃m+1 > (1 +

√
5)/2. Then (3 +√

5)/2 is NSCF reduced.
Now assume that p > 2q. If εm+1 = −1, then ξ̃m+1 = (p + q +

√
D)/p, which is NSCF

reduced, whereas if εm+1 = 1, then

ξ̃m+1 = (p − q +
√

D)/p = 1 +
p

q +
√

D
= 2 −

2q

p + q +
√

D
.

Hence ξ̃m+2 = (p + q +
√

D)/2q, as we know that ãm+1 ≥ 2. Then ξ̃m+2 = η + 1 where
η = (p − q +

√
D)/2q is NSCF reduced, as it is the NSCF successor of (p + q +

√
D)/p,

by virtue of the positive–negative representation

(p + q +
√

D)/p = 2 +
2q

p − q +
√

D
= 3 −

3p − 4q

2p − q +
√

D

and the inequality 2q < 3p − 4q. If Q̃′m+3 , Q̃
′′

m+1, then ξ̃m+3 is the NSCF successor

of η. Otherwise (p − q +
√

p2 + q2)/2q has the form (2A + 1)Q − P +
√

P2 + Q2)/2Q,
where P ≥ 2Q > 0. Then q = Q, p = P and p − q = (2A + 1)Q − P. Hence p = A + 1,
q = 1 and p ≥ 3. Hence ξ̃m+3 = (p + 1 +

√
p2 + 1)/2 and by Lemma 4.10,

ξ̃m+4 = (p + 1 +

√
p2 + 1)/p,

which is NSCF reduced. �

L 8.4. Suppose that ξ̃m is an OCF complete quotient that is NSCF reduced. Then
ξh(m) is RCF reduced if and only if 0 < P̃m <

√
D when εm = 1, while P̃m >

√
D when

εm = −1.

P. We know that ξ̃m = ξh(m) or ξh(m) + 1, according to whether εm = 1 or −1. Also
if ξ̃m is NSCF reduced, then −1 < (P̃m −

√
D)/Q̃m < 1 (see [1, Theorem III, p. 27]).

Further, 0 < Q̃m <
√

D (see [1, Theorem IV, p. 28]) and the definition of special surd
at [1, p. 27]. Then 0 < P̃m follows from Theorem I(iv), [1, p. 22].

Case 1. Assume that εm = 1. Then P̃m <
√

D implies that −1 < (P̃m −
√

D)/Q̃m < 0,
that is, −1 < ξh(m) < 0; also ξh(m) > 1 and hence ξh(m) is RCF reduced. Also P̃m >

√
D

implies that 0 < (P̃m −
√

D)/Q̃m = ξh(m), so ξh(m) is not RCF reduced.

Case 2. Assume that εm = −1. Then P̃m >
√

D implies that 0 < (P̃m −
√

D)/Q̃m < 1,
that is, −1 < ξh(m) < 0; also ξh(m) > 1 and hence ξh(m) is RCF reduced. Also P̃m <

√
D

implies that (P̃m −
√

D)/Q̃m < 0 and hence (P̃m −
√

D)/Q̃m − 1 = ξh(m) < −1. Hence
ξh(m) is not RCF reduced. �

We now prove Theorem 8.1. We need the fact that equivalent quadratic surds
eventually have the same NSCF expansions. This can be shown to be a consequence
of the corresponding result for the RCF expansions.
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P. Find the first OCF complete quotient ξ̃m that is NSCF reduced and that satisfies
sm > |Q0| and either εm = 1 and Pm <

√
D or εm = −1 and Pm >

√
D. We show that ξ̃m

starts an OCF period of length k′ or 2k′.
If Q̃′u+1 , Q̃

′′

u+1 holds for all OCF ξ̃u in the range m ≤ u ≤ m + k′ − 1, then the OCF
and NSCF expansions will be identical for u ≥ m + 1 and ξ̃m starts an OCF period of
length k′.

Otherwise choose the first u with Q̃′u+1 = Q̃
′′

u+1, where m ≤ u ≤ m + k′ − 1. Then as
the OCF and NSCF make the same choice for ξ̃m, . . . , ξ̃u−1, it follows that ξ̃u = η̃0 is
NSCF reduced, where with D = p2 + q2,

η̃0 = ((2a + 1)q − p +
√

D)/2q = a +
p

p − q +
√

D
= a + 1 −

p

p + q +
√

D
, (8.2)

where p ≥ 2q > 0. Hence the NSCF complete quotient η̃1 is given by

η̃1 = (p + q +
√

D)/p = 2 +
2q

p − q +
√

D
= 3 −

3p − 4q

2p − q +
√

D
. (8.3)

Case 1. Assume that k′ = 1. Then η̃0 = η̃1 and p = 2q. Then η̃0 = (3 +
√

5)/2. Then
because

ξ̃u = (3 +
√

5)/2 = 2 +
2

1 +
√

5
= 3 −

2

3 +
√

5
,

and noting that ξ̃u+1 > (1 +
√

5)/2, we have ξ̃u+1 = (3 +
√

5)/2 and we have an OCF
cycle of length 1.

We can now assume that p > 2q. Then 2q < p < 3p − 4q, so for the NSCF, we take
the positive representation in (8.3), with η̃2 = (p − q +

√
D)/2q.

Case 2. Assume that k′ = 2. Then η̃0 = η̃2 = (p − q +
√

D)/2q and (2a + 1)q − p =

p − q, or p = (a + 1)q. Hence p = a + 1, a > 1 and q = 1. Then η̃0 = (p − 1 +
√

D)/2
and ξ̃u = (p − 1 +

√
D)/2. This was dealt with in Lemma 4.10 and ξ̃u starts an OCF

period of length 4.

Case 3. Assume that k′ > 2. By (8.2), if εu+1 = −1, then ãu = a + 1 and

ξ̃u+1 = η̃1 = (p + q +
√

D)/p, ãu+1 = 2, εu+2 = 1,

ξ̃u+2 = η̃2 = (p − q +
√

D)/2q.

However, if εu+1 = 1, then ãu = a and

ξ̃u+1 = (p − q +
√

D)/p = 1 +
p

q +
√

D
= 2 −

2q

p + q +
√

D
.

The OCF partial quotient ãu+1 > 1, so ãu+1 = 2, εu+2 = −1 and

ξ̃u+2 = (p + q +
√

D)/2q = η̃2 + 1. (8.4)
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Now it cannot be true that Q̃′u+3 = Q̃
′′

u+3, as this would imply that

η̃2 = (p − q +

√
p2 + q2)/2q = ((2A + 1)Q − P +

√
P2 + Q2)/2Q,

where P ≥ 2Q > 0. Hence Q = q, P = p and (2A + 1)Q − P = p − q. Hence p = A + 1,
q = 1, p > 2 and η̃2 = (p − 1 +

√
p2 + 1)/2, which has NSCF period 2, which gives the

contradiction k′ = 2.
Hence in both cases, the OCF and NSCF subsequently agree until we reach

ξ̃u+k′ = η̃k′ if k′ is odd, or ξ̃u+k = η̃k if k′ is even, where k = k′ or k′/2, according to
whether there are one or two occurrences of an equation of type (8.1).

From the NSCF period properties of Lemma 7.1(d) and [1, Section 5.6.3(ii), p. 113],
we have the NSCF period extract

η̃0 = a + 1 −
1 |
| 2

+
1 |
| a

+
y |
| . . .

.

If the OCF makes the choice ξ̃u+1 = (p − q +
√

p2 + q2)/p, then from (8.4), the OCF
makes the same choice at ξ̃u+2 as the NSCF does at η̃2 and hence ãu+2 = a + 1. Then
we have the OCF period segment with reversed triad:

· · · +
x |
| a

+
1 |
| 2
−

1 |
| a + 1

+
y |
| . . .

.

Thus we eventually get ξ̃u = ξ̃u+k′ and this turns out to signify either an OCF period
or half-period, as we now demonstrate. We now consider the various possibilities for
when we have (i) one case or (ii) two cases of (p + q +

√
p2 + q2)/p, with p > 2q > 0,

occurring in a NSCF period.
From Corollary 6.2, we saw that Q̃′u+1 = Q̃

′′

u+1 implies that

H
(uu

vu

)
> H

(uu + ru−1

vu + su−1

)
⇐⇒ (−1)uε1 · · · εut = 1, (8.5)

where t = sign(Q0). So if k′ is the NSCF period length, Q̃′u+k′+1 = Q̃
′′

u+k′+1 implies that

H
(uu+k′

vv+k′

)
> H

(uu+k′ + ru+k′−1

vu+k′ + su+k′−1

)
⇐⇒ (−1)u+k′ε1 · · · εuεu+1 · · · εu+k′ t = 1. (8.6)

However, in case (i), from [1, Section 5.6.3, p. 113], we have εu+1 · · · εu+k′ = −1
if k′ is even and the OCF period consists of a doubling of the NSCF period, with
consecutive halves differing by a reversal of a triad. This is also the situation if
εu+1 · · · εu+k′ = 1 and k′ is odd. Whereas if εu+1 · · · εu+k′ = −1 and k′ is odd, we see that
the OCF period is essentially the same as the NSCF period, apart from a possible triad
reversal. Using the equation L-NSCF + N-NSCF = L-RCF (see [6, Theorem (6.5)]),
where N-NSCF is the number of instances that εi = −1 in the NSCF period, we arrive
at the formulation in Theorem 8.1(b).

In case (ii), from Lemma 7.1(e), we have εu+1 · · · εu+k′ = 1, so the OCF period is
derived from the NSCF period by at most two reversals of triads. �
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If ξ0 =
√

D, Ayyangar proved that there are two types of NSCF expansions, where
Type I has no complete quotient of the form (p + q +

√
p2 + q2)/q, with p > 2q > 0,

while Type II has one complete quotient of this type in a least period (see [1, pp. 110–
114]). Then in view of the remark following Corollary 6.2, we have the following
result of Selenius.

C 8.5 [7, Satz 38]. The OCF expansion of
√

D is identical to the NSCF
expansion in the case of a Type I NSCF expansion. However, in the case of a Type
II NSCF expansion, a period of length 2h is formed by juxtaposing two copies of the
NSCF period, where one copy is changed by replacing the central portion

εh−1 |

| ah−1
−

1 |
| 2

+
1 |

| ah−1 − 1

by
εh−1 |

| ah−1 − 1
+

1 |
| 2
−

1 |
| ah−1

.

9. An OCF algorithm based on the NSCF algorithm

We now describe an algorithm for finding the OCF of a quadratic surd as far as the
end of a period. This algorithm eventually bypasses the bottleneck of the original OCF
algorithm of Bosma in Definition 2.1, where in step (2.3) a second integer part has to
be calculated. The algorithm starts off as the Bosma algorithm, but soon switches to
the NSCF, incorporating the differences noted in Theorem 8.1.

First find k such that sk > |Q0|, ξ̃k is NSCF reduced and either εk = 1 and P̃k <
√

D
or εk = −1 and P̃k >

√
D. This will start an OCF cycle of length k′ or 2k′. Record

s0 = (−1)kε1 · · · εkt, where t = sign(Q0).
Now loop on i ≥ k: if Q̃′i+1 , Q̃

′′

i+1, calculate ξ̃i+1 as the NSCF successor of ξ̃i.
Otherwise ξ̃i has the form (P +

√
D)/Q = ((2a + 1)q − p +

√
p2 + q2)/2q, where

p ≥ 2q > 0 and ξ̃i+1 = (p ± q +
√

p2 + q2)/p = (P1 +
√

p2 + q2)/p.
Now compute q, p and a:

q = Q/2, p =

√
D − q2, a = 1

2 (−1 + (p + P)/q),

where P1, ãi and εi+1 are determined as follows. Let s = (−1)iε1 · · · εit. Then:

(i) if s = −1, choose P1 = p − q, εi+1 = 1, and ãi = a;
(ii) if s = 1, choose P1 = p + q, εi+1 = −1, and ãi = a + 1.

Eventually we find k1 with ξ̃k1 = ξ̃k. Suppose that Q̃′i+1 = Q̃
′′

i+1 occurs only once.
Then if k1 − k is even, or else k1 − k is odd and (−1)k1ε1 · · · εk1 t , s0, we keep going
until we reach k2 where k2 − k1 = k1 − k, to get an OCF period of length k2 − k =

2(k1 − k). If these conditions are not satisfied, we have reached an OCF period of
length k1 − k.

See http://www.numbertheory.org/php/ocf3.html for a BCMATH implementation.
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