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Abstract

Given a connected graph H which is not a star, we show that the number of copies of H
in a dense uniformly random regular graph is asymptotically Gaussian, which was not
known even for H being a triangle. This addresses a question of McKay from the 2010
International Congress of Mathematicians. In fact, we prove that the behavior of the
variance of the number of copies of H depends in a delicate manner on the occurrence
and number of cycles of 3, 4, 5 edges as well as paths of 3 edges in H. More generally, we
provide control of the asymptotic distribution of certain statistics of bounded degree
which are invariant under vertex permutations, including moments of the spectrum
of a random regular graph. Our techniques are based on combining complex-analytic
methods due to McKay and Wormald used to enumerate regular graphs with the notion
of graph factors developed by Janson in the context of studying subgraph counts in
G(n, p).

1. Introduction

The study of the asymptotic distribution of small subgraph counts in the Erdős–Rényi random
graphs G(n, p) and G(n, m) has been a topic of central interest in random graph theory. In
particular, following a long series of papers, Ruciński [Ruc88] established the optimal conditions
under which XH , the number of unlabeled copies of H in G(n, p), satisfies a central limit theorem.
Furthermore, in general the distribution of small subgraphs in G(n, p) is known to a substantial
degree of precision. We refer the reader, in particular, to the book [J�LR00] and references therein
for a more complete account.

With regards to asymptotic distributions, the state of affairs for random d-regular graphs
is substantially less satisfactory. Let G(n, d) denote a uniformly random d-regular graph. Note
that unlike G(n, p) or G(n, m), the edges in G(n, d) exhibit strong and non-obvious correlations
and therefore even the question of determining the number of d-regular graphs has a rich history
drawing on techniques ranging from switchings developed by McKay [McK85] (and refined by
McKay and Wormald [MW91]), a complex-analytic technique of McKay and Wormald [MW90],
and recent breakthroughs using fixed-point iteration due to Liebenau and Wormald [LW17]. We
refer the reader to the excellent survey of Wormald [Wor18] where the extensive history of this
problem and various related enumeration problems are discussed.
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McKay [McK10] in his 2010 International Congress of Mathematicians (ICM) survey on
graphs with a fixed degree sequence asked for an understanding of the asymptotic distribution
of subgraph counts in dense random regular graphs, noting that ‘there is almost nothing known
about the distribution of subgraph counts’ for these models; the state of affairs has remained
unchanged since. In particular, the only result which applies in this regime is work of McKay
[McK11] which computes the expectation of the number of subgraphs of a fixed size in G(n, d)
(see [IM18] for an extension to more exotic degree sequences). Our main result establishes a
central limit theorem for counting copies of connected graphs H in G(n, d) for min(d, n − d) ≥
n/ log n, and a consequence of our methods demonstrates a joint central limit theorem for so-
called ‘graph factors’ in the sense of Janson [Jan94b]. We additionally apply our techniques to
show an analogous result for moments of the spectrum.

Though such a result for dense graphs has until now been out of reach, there is a rich literature
regarding sparser graphs. A variety of results have been proven based on applications of the
moment method and taking sufficiently fast growing moments. When d is constant, the cycle
count distribution was shown to asymptotically converge to a Poisson distribution independently
by Bollobás [Bol80] and Wormald [Wor81]. This result was extended to strictly balanced graphs
near the threshold for existence by Kim, Sudakov, and Vu [KSV07], establishing a Poisson limit
theorem in general. For results regarding asymptotic normality, McKay, Wormald, and Wysocka
[MWW04] proved asymptotic normality of cycle counts for d tending to infinity sufficiently slowly,
in particular proving normality of triangle counts when d = o(n1/5). Gao and Wormald [GW08]
later improved this result for a variety of subgraph structures H by counting isolated copies,
including extending the regime for triangle counts to d = o(n2/7). This was further improved by
Gao [Gao20] who improved the range of normality for triangle counts to d = O(n1/2). Finally,
we note that the study of the asymptotic distribution of the number of spanning structures in
random regular graphs has also been of interest (see [Gao20] for further discussion).

Before stating our results let us formally define a random graph with a specified degree
sequence.

Definition 1.1. Given nonnegative sequence d = (d1, . . . , dn), let G(d) be a uniformly random
simple graph G with degree sequence d. When 2 | dn let G(n, d) be a uniformly random simple
graph on n vertices which is d-regular, and let G(n, d) be the set of possible outcomes. Given
G ∼ G(n, d) we define its density p = p(G) = e(G)/

(
v(G)

2

)
= d/(n − 1).

Our results provide a complete understanding of the small subgraph distribution for dense
random regular graphs. We first state a corollary of our main result regarding the distribution
of subgraph statistics in G(n, d). Note first that the number of stars with s ≥ 2 leaves in a
d-regular graph on n vertices is trivially always n

(
d
s

)
, so we exclude this case from consideration.

In addition, given graphs H and F let N(H, F ) be the number of unlabeled copies of F in H
(or, more precisely, the number of distinct, not necessarily induced, subgraphs of H which are
isomorphic to F ). In particular, for this definition we have that N(C5, P5) = 5, where we write
Ck and Pk for a cycle and path respectively on k vertices.

Theorem 1.2. Fix a nonempty connected graph H which is not a star and let XH denote
the number of unlabeled copies of H in G ∼ G(n, d). If n/ log n ≤ min(d, n − d), 2 | dn, and
G ∼ G(n, d) we have the following.

• If H contains a C3, then (
XH − EXH√

Var[XH ]

)
d.−→ N (0, 1)
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with

Var[XH ] = 6N(H, C3)2p2e(H)−3(1 − p)3
n2v(H)−3

aut(H)2
+ O(n2v(H)−3−1/6).

• If H contains a C4 and no C3, then(
XH − EXH√

Var[XH ]

)
d.−→ N (0, 1)

with

Var[XH ] = 8N(H, C4)2p2e(H)−4(1 − p)4
n2v(H)−4

aut(H)2
+ O(n2v(H)−4−1/6).

• If H does not contain a C3 or C4, then it contains a P4 and(
XH − E[XH ]√

Var[XH ]

)
d.−→ N (0, 1)

with

Var[XH ] = (10p2e(H)−5(1 − p)5N(H, C5)2

+ 6p2e(H)−3(1 − p)3N(H, P4)2)
n2v(H)−5

aut(H)2
+ O(n2v(H)−5−1/6).

Remark 1.3. We note that EXH = (1 + o(1))nv(H)pe(H)/ aut(H) is known due to [McK11] and,
in fact, our method can be used to compute the expectation to accuracy o(

√
Var[XH ]), but

the resulting expressions are rather involved. In addition, the above result implies that for H
being a triangle we have that the variance of XH is on the order of p3n3 for 1/ log n ≤ p ≤ 1/2,
whereas in G(n, p) the variance is of order max(p3n3, p5n4). Therefore, for the range of p under
consideration Var[XH ] is substantially lower than in G(n, p); this is unlike the results of McKay
et al. [MWW04] and Gao and Wormald [GW08] when p is sufficiently sparse. We also note that for
H not containing a triangle, Var[XH ] is, in fact, asymptotically smaller than the corresponding
variance in G(n, m). Finally, we note that the subgraph counts are not, in general, asymptotically
independent.

In general, our results are sufficiently powerful to deduce the asymptotic distribution of
statistics of fixed degree which is invariant under vertex permutation. To state our main result
we will need the notion of graph factors as defined by Janson [Jan94b]. Let xe be the indicator
random variable for whether an edge e is in included in random graph G ∼ G(n, d) and let
χe = (xe − p)/

√
p(1 − p). Note that, by symmetry, marginally each xe is distributed as Ber(p)

and, thus, χe has mean 0 and variance 1. However, as G is a random regular graph there are
substantial correlations between different edges χe.

Definition 1.4. Fix a graph H with no isolated vertices and an integer n ≥ |v(H)|. Then
define

γH(x) =
∑

E⊆Kn
E�H

∏
e∈E

χe.

Here � denotes graph isomorphism, specifically between H and the graph spanned by the edges
E. We frequently adopt the shorthand that χS =

∏
e∈S χe. We call γH(x) the graph factor cor-

responding to the graph H. When H is connected and its minimum degree is at least 2, define
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the normalized graph factor to be

γ̃H(G) = (γH(x) − EH)/σH

where σH = (nv(H)/aut(H))1/2 and EH = 0 if H is not an even cycle and

EH =
2nv(H)/2

aut(H)
=

nv(H)/2

v(H)

if it is.

Remark 1.5. In the original notion [Jan94b], all connected graphs H are needed to express sym-
metric functions of graphs. However, as we show in § 4, d-regularity means that γH for H with
a degree 1 vertex can be expressed as a linear combination of the smaller γH′ (in terms of d).
In addition, the EH (approximate expectation) term for even cycles makes an appearance due
to regularity. This is another departure from G(n, p) behavior, since in the independent setting
the expectation of every γH(x) is 0.

We now are in position to state our main result.

Theorem 1.6. Fix a collection of nonisomorphic connected graphs H = {Hi : 1 ≤ i ≤ k} each
of minimum degree at least 2. Let n/ log n ≤ min(d, n − d), 2 | dn, and G ∼ G(n, d). Then as
n → ∞ (uniformly in d), we have

(γ̃Hi(G))1≤i≤k
d.−→ N (0, 1)⊗k.

Furthermore, Var[γH(G)] = (1 + O(n−1/6))σ2
H and EγH(G) = EH + O(n−1/6σH).

Remark 1.7. The convergence in distribution can be made quantitative in terms of Kolmogorov
distance or Wasserstein distance by quantifying the convergence in moments (see, e.g., [RW19,
Theorem 4]); however, the associated rates are quantitatively quite poor.

Although Theorem 1.6 is stated in terms of graph factors, a straightforward computation
allows one to deduce the asymptotic distribution of any symmetric statistic of the edges of
bounded degree; one can think of these as the ‘building blocks’ for all such statistics in G(n, d).

Our results also imply that the traces of fixed powers of AG (the adjacency matrix of G), or
equivalently the moments of the spectrum, satisfy a joint central limit theorem. Using techniques
of Sinai and Soshnikov [SS98] along with a suitable modifications one could likely extend the
result to prove normal fluctuations for sufficiently nice test functions (e.g. analytic functions with
suitably large radius of convergence). However, given that substantially stronger results are likely
plausible using Green’s function estimates established by He [He22] and results connecting such
estimates with functional central limit theorems (see [LS20] and reference therein), we omit such
an extension. In addition, we remark that direct spectral techniques are insufficient to recover
Theorem 1.6 since graph factors which do not correspond to cycles are not purely determined
by the spectrum.

Corollary 1.8. Given k ≥ 3, there exists a positive-definite matrix Σk ∈ R
(k−2)×(k−2) such

that the following holds. For G ∼ G(n, d) with n/ log n ≤ min(d, n − d) and 2 | dn, E� =
E(tr(A�

G)), and σ2
� = Var[tr(A�

G)], we have

(σ−1
� (tr(A�

G) − E�))3≤�≤k
d.−→ N (0, Σk).

Remark 1.9. Note that tr(AG) = 0 and tr(A2
G) = dn deterministically.
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1.1 Proof techniques
Our proof uses techniques from the enumeration of dense graphs with a specific degree sequence
given by McKay and Wormald [MW90] combined with the notion of graph factors introduced
by Janson [Jan94b]. The crucial technical point is that previous work regarding asymptotic
normality relied on computing the raw moments of XH and, therefore, requires taking a number
of moments which grows with n. In our approach, one instead notices that any symmetric statistic
on d-regular graphs can be expressed in terms of simple building blocks, and we can directly prove
a joint central limit theorem for this collection. In order to prove the necessary limit theorem, we
only require an arbitrarily slowly growing moment of these graph factors and they are particularly
well-behaved when using the complex-analytic techniques developed by McKay and Wormald
[MW90]. In particular, the necessary moments of graph factors can be given a natural complex-
analytic expression using the multidimensional Cauchy integral formula. Then desired estimates
can be computed directly. In fact, certain comparisons to |G(n, d)| simplify the situation, allowing
us to avoid repeating a careful saddle point analysis as in the work of McKay and Wormald
[MW90]. The nontrivial expectation contributions EH when H is an even cycle come into play
due to counting certain even-power monomials in a polynomial expansion associated to the edges
of H.

We further believe combining the general method of considering graph factors along with
recent work of Liebenau and Wormald [LW17], which enumerates graphs of degrees of interme-
diate sparsity, can likely be used to address asymptotic distribution for regular graphs of all
sparsities, a direction we plan to pursue in future work. Finally, we note that while Theorem 1.2
can handle subgraph counts of mildly growing size, the understanding of the asymptotic distri-
butions of spanning subgraphs in dense random regular graphs is also of interest. In particular,
do analogues of the asymptotic normality results of Janson [Jan94a] regarding the number of
perfect matchings in G(n, m) exist for G(n, d)?

1.2 Organization
In § 2 we prove the main estimates regarding the expectation of χS for a fixed set of edges S via
contour integration techniques. In § 3, we deduce Theorem 1.6 via the method of moments and
a graph-theoretic argument which guarantees that the estimates in § 2 are of sufficient accuracy.
In § 4 we develop the theory of graph factors in d-regular graphs and prove that any symmetric
graph statistic of fixed degree, when evaluated on d-regular graphs, can be expressed as a poly-
nomial of graph factors that are of the type described in Definition 1.4. Finally in § 5 we deduce
Theorem 1.2 and Corollary 1.8 as straightforward consequences of our main results and the proofs
in § 4.

1.3 Notation
We use standard asymptotic notation throughout, as follows. For functions f = f(n) and g =
g(n), we write f = O(g) or f � g to mean that there is a constant C such that |f(n)| ≤ C|g(n)|
for sufficiently large n. Similarly, we write f = Ω(g) or f � g to mean that there is a constant
c > 0 such that f(n) ≥ c|g(n)| for sufficiently large n. Finally, we write f 	 g or f = Θ(g) to
mean that f � g and g � f , and we write f = o(g) or g = ω(f) to mean that f(n)/g(n) → 0
as n → ∞. We write OH(1) for some unspecified constant that can be chosen as some bounded
value depending only on H. In addition, we set k!! = 2k/2 · (k/2)! for even integers k ≥ 0. Finally,
we let [n] = {1, . . . , n} and

(
[n]
2

)
= {(i, j) : 1 ≤ i < j ≤ n}.
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2. Cancellation estimates based on contour integrals

2.1 Preliminary estimates
We first recall a number of estimates from the work of McKay and Wormald [MW90].

Lemma 2.1 [MW90, Lemma 1]. Let 0 ≤ λ ≤ 1 and |x| ≤ π. Then we have that

|1 + λ(eix − 1)| = (1 − 2λ(1 − λ)(1 − cos x))1/2 ≤ exp
(
− 1

2λ(1 − λ)x2 + 1
24λ(1 − λ)x4

)
.

Lemma 2.2 [MW90, (3.3)]. We have for xj ∈ R that∑
1≤j<k≤�

(xj + xk)2 ≥ (� − 2)
∑

1≤j≤�

x2
j ,

∑
1≤j<k≤�

(xj + xk)4 ≤ 8(� − 1)
∑

1≤j≤�

x4
j .

We also require the following elementary estimate (a variant of which appears in [MW90,
p. 8]); we provide a proof for the sake of completeness.

Lemma 2.3. We have for m ≥ m2.3 that∫ π/16

−π/16
exp(−mx2 + mx4) dx = (1 ± 2m−1)

√
π/m.

Proof. Note that for m larger than an absolute constant,∫ π/16

−π/16
exp(−mx2 + mx4) dx =

∫ m−2/5

−m−2/5

exp(−mx2 + mx4) dx ± π/8 · exp(−m1/5)

=
∫ m−2/5

−m−2/5

(1 ± 2mx4) exp(−mx2) dx ± π/8 · exp(−m1/5)

= (1 ± 2m−1)
√

π/m. �
We also use an elementary estimate bounding large moments in the following twisted

Gaussian integral.

Lemma 2.4. We have∫ π/16

−π/16
|x|k exp(−mx2 + mx4) dx ≤

√
2πkk/2m−(k+1)/2.

Proof. Note∫ π/16

−π/16
|x|k exp(−mx2 + mx4) dx ≤

∫ ∞

−∞
|x|k exp(−mx2/2) dx

= m−(k+1)/2

∫ ∞

−∞
|x|k exp(−x2/2) dx

=
√

2πm−(k+1)/2
EZ∼N (0,1)|Z|k ≤ kk/2

√
2πm−(k+1)/2. �

We will need another polynomial inequality in the real numbers.

Lemma 2.5. For x1, . . . , x� ∈ R we have

k!
∑

1≤j1<···<jk≤�

x2
j1 · · ·x

2
jk

≤
( ∑

1≤j≤�

x2
j

)k

≤ k!
∑

1≤j1<···<jk≤�

x2
j1 · · ·x

2
jk

+
(

k

2

)(
max
j∈[�]

x2
j

)( ∑
1≤j≤�

x2
j

)k−1

.
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Proof. The first inequality is trivial. For the second, consider expanding (
∑�

j=1 x2
j )k and removing

the terms which have no repeated index. For the remaining terms, remove the first term in the
sequence that later repeats and bound it by maxj∈[�] x

2
j . It is easy to check that the resulting

map on index sequences has fibers of size at most
(
k
2

)
. �

Finally, we require the main result of [MW90, Theorem 1] which provides a sharp estimate
for |G(n, d)|.

Theorem 2.6. There exists ε = ε2.6 > 0 such that for n/ log n ≤ min(d, n − d), 2|dn, λ =
d/(n − 1), and r =

√
λ/(1 − λ), we have

|G(n, d)| = 21/2(2πλd+1(1 − λ)n−dn)−n/2 exp
(
−1 + 10λ − 10λ2

12λ(1 − λ)
+ O(n−ε)

)

=
(1 + r2)(

n
2)

(2πrd)n

(
2π

λ(1 − λ)n

)n/2(
21/2 exp

(
−1 + 10λ − 10λ2

12λ(1 − λ)
+ O(n−ε)

))
.

2.2 Graph factor estimates
The crucial estimates for the remainder of the proof will be the following inequalities controlling
the behavior of the constituent expectations in a graph factor.

Proposition 2.7. There is C = C2.7 > 0 so that for a set of distinct edges S ⊆ Kn the follow-
ing holds. Let p = d/(n − 1), n/ log n ≤ min(d, n − d), and 2|dn. Recall the notation χS from
Definition 1.4.

• For any S such that |S| ≤
√

log n we have

|EG∼G(n,d)χS | ≤ Cn−|S|/2+1/4.

• For S such that |S| ≤
√

log n, and there is a connected component which is an odd cycle, we
have

|EG∼G(n,d)χS | ≤ Cn−1/4n−|S|/2.

• For S such that |S| ≤
√

log n, the set of edges form a set of vertex disjoint even cycles, and
there are � disjoint cycles, we have

|EG∼G(n,d)χS − 2�n−|S|/2| ≤ Cn−1/5n−|S|/2.

As mentioned previously, the initial reduction in the proof closely mimics that of the proof
of [MW90, Theorem 1].

Proof. Note that by complementing G(n, d) and replacing p by 1 − p, we have that

EG∼G(n,d)χS = (−1)|S|EG∼G(n,n−d−1)χS .

Therefore, it suffices to treat the case where p ≤ 1/2.
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By Cauchy’s integral formula and taking the contours for zj to be circles of radius r =√
p/(1 − p) around the origin we have

EG∼G(n,d)χS =
(2πi)−n

|G(n, d)|

∮
· · ·
∮ ∏

(j,k)/∈S(1 + zjzk)
∏

(j,k)∈S(−p + (1 − p)zjzk)/
√

p(1 − p)∏
j∈[n] z

d+1
j

dz

=
(1 + r2)(

n
2)

(2πrd)n|G(n, d)|

∫ π

−π

· · ·
∫ π

−π

∏
(j,k)/∈S(1 + p(ei(θj+θk) − 1))

∏
(j,k)∈S(p(1 − p))1/2(ei(θj+θk) − 1)

exp(id
∑

j∈[n] θj)
dθ,

(2.1)

where dz =
∏

j∈[n] dzj and dθ =
∏

j∈[n] dθj , and the product is over unordered pairs (j, k) which
can be thought of as edges of the complete graph Kn.

Step 1: localizing θ. As in [MW90, Theorem 1], which corresponds to the case S = ∅, the first
maneuver is to localize near the origin, and the techniques are similar. Let t = π/8 and fix ε to
be a small numerical constant to be chosen later (ε = 10−10 will suffice). We divide indices based
on where they lie on the circle: S1 = {j : θj ∈ [−t, t]}, S2 = {j : θj ∈ [t, π − t]}, S3 = {j : θj ∈
[π − t, π] ∪ [−π,−π + t]}, and S4 = {j : θj ∈ [−π + t,−t]}. Let R denote the set of θ such
at least one of |S1||S3| ≥ n1+ε, |S2|2 ≥ n1+ε, or |S4|2 ≥ n1+ε holds. We have by Lemma 2.1
that

∣∣∣∣ ∫
R

∏
(j,k)/∈S(1 + p(ei(θj+θk) − 1))

∏
(j,k)∈S(p(1 − p))1/2(ei(θj+θk) − 1)

exp(id
∑

j∈[n] θj)
dθ

∣∣∣∣
≤
∫
R

(1 − 2p(1 − p)(1 − cos(2t)))n1+ε/3−|S|dθ ≤ exp(−Ω(n1+ε/2)) (2.2)

and, therefore, it will suffice to consider θ /∈ R. Thus, |S2|, |S4| ≤ n1/2+ε/2. Furthermore, note
that θ /∈ R implies that |S1| ≤ nε or |S3| ≤ nε. As the integrand is invariant under θ → θ + π
(since 2|dn) it suffices to consider when |S3| ≤ nε and multiply the resulting integral by a factor
of 2.

Let R′ denote the set of θ such that θ /∈ R, |S3| ≤ nε, and there is θj /∈ [−n−1/2+ε, n−1/2+ε].
We have

∣∣∣∣ ∫
θ∈R′

∏
(j,k)/∈S(1 + p(ei(θj+θk) − 1))

∏
(j,k)∈S(p(1 − p))1/2(ei(θj+θk) − 1)

exp(id
∑

j∈[n] θj)
dθ

∣∣∣∣
≤
∫

θ∈R′

∏
(j,k)/∈S

|1 + p(ei(θj+θk) − 1)|dθ ≤ eO(|S|)
(

2π

λ(1 − λ)n

)n/2

exp(−Ω(nε)), (2.3)

where we used a slight modification of [MW90, (3.4), (3.5)] in the second inequality (namely, the
analogy to the intermediate upper bound given in [MW90] is multiplicatively stable with respect
to removal of the terms corresponding to (j, k) ∈ S).

2132

https://doi.org/10.1112/S0010437X23007364 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007364


Subgraph distributions in dense random regular graphs

Finally, let U denote the set of θ such that |θj | ≤ n−1/2+ε for all j. Combining (2.1) to (2.3),
the above symmetry observation, and Theorem 2.6 yields

EG∼G(n,d)χS ± exp(−Ω(nε))

=
2(1 + r2)(

n
2)

(2πrd)n|G(n, d)|

∫
U

∏
(j,k)/∈S(1 + p(ei(θj+θk) − 1))

∏
(j,k)∈S(p(1 − p))1/2(ei(θj+θk) − 1)

exp(id
∑

j∈[n] θj)
dθ.

(2.4)

Step 2: reducing the S contribution to a polynomial. We next apply a Taylor series transformation
in order to reduce to a more symmetric integral where the terms depending on S are polynomial
factors within the integrand. First, note that if θj , θk are sufficiently small, then

|(ei(θj+θk) − 1)(1 + p(ei(θj+θk) − 1))−1 − i(θj + θk)| ≤ |θj + θk|2.

Therefore, for θ ∈ U, we have∣∣∣∣ ∏
(j,k)∈S

(ei(θj+θk)−1)(1 + p(ei(θj+θk)−1))−1 −
∏

(j,k)∈S

i(θj + θk)
∣∣∣∣ ≤ 2|S|(2n−1/2+ε)

∏
(j,k)∈S

|θj + θk|.

Define

P1(θ) =
∏

(j,k)/∈S

(1 + p(ei(θj+θk) − 1))
∏

(j,k)∈S

(ei(θj+θk) − 1)

and

P2(θ) =
∏

(j,k)∈([n]
2 )

(1 + p(ei(θj+θk) − 1))
∏

(j,k)∈S

(i(θj + θk)).

Note the above analysis implies∣∣∣∣ ∫
U

P1(θ) − P2(θ)
exp(id

∑
j∈[n] θj)

dθ

∣∣∣∣
≤ 2|S|

∫
U

2n−1/2+ε
∏

(j,k)∈S

|θj + θk|
∏

(j,k)∈([n]
2 )

|1 + p(ei(θj+θk) − 1)|dθ

≤ 8|S|n−1/2+ε

∫
U
|θ1||S|

∏
(j,k)∈([n]

2 )

|1 + p(ei(θj+θk) − 1)|dθ

≤ 8|S|n−1/2+ε

∫
U
|θ1||S|

∏
(j,k)∈([n]

2 )

exp
(
− 1

2
p(1 − p)(θj + θk)2 +

1
24

p(1 − p)(θj + θk)4
)

dθ

≤ 8|S|n−1/2+ε

∫
U
|θ1||S| exp

( ∑
1≤j≤n

−(n − 2)
p(1 − p)

2
θ2
j + (n − 1)

p(1 − p)
3

θ4
j

)
dθ

≤ 8|S|n−1/2+ε

∫
U
|θ1||S| exp

( ∑
1≤j≤n

−(n − 2)
p(1 − p)

2
θ2
j + (n − 2)

p(1 − p)
2

θ4
j

)
dθ

� 16|S|n−1/2+εn−|S|/2|S||S|/2(2π/(p(1 − p)n))n/2,
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where we have applied Lemmas 2.1–2.4. By (2.4) and Theorem 2.6 it follows that

EG∼G(n,d)χS =
2(1 + r2)(

n
2)

(2πrd)n|G(n, d)|

∫
U

P2(θ)(p(1 − p))|S|/2

exp(id
∑

j∈[n] θj)
dθ ± n−(|S|+1)/2+2ε. (2.5)

Step 3: uniform bound on the integral. We now prove the first bullet point in Proposition 2.7.
Note that Lemmas 2.1 and 2.2 give∣∣∣∣ ∫

U

P2(θ)
exp(id

∑
j∈[n] θj)

dθ

∣∣∣∣
≤
∫
U

∏
(j,k)∈S

|θj + θk|
∏

(j,k)∈([n]
2 )

|1 + p(ei(θj+θk) − 1)|dθ

≤ 2|S|
∫
U
|θ1||S|

∏
(j,k)∈([n]

2 )

exp
(
− 1

2
p(1 − p)(θj + θk)2 +

1
24

p(1 − p)(θj + θk)4
)

dθ

≤ 2|S|
∫
U
|θ1||S| exp

( ∑
1≤j≤n

−(n − 2)
p(1 − p)

2
θ2
j + (n − 1)

p(1 − p)
3

θ4
j

)
dθ

≤ 2|S|
∫
U
|θ1||S| exp

( ∑
1≤j≤n

−(n − 2)
p(1 − p)

2
(θ2

j − θ4
j )
)

dθ

� n−|S|/2(4|S|)|S|(2π/(p(1 − p)n)))n/2,

which immediately gives the desired initial estimate noting that the final term in enumeration
count from Theorem 2.6 is bounded by n1/5 and since |S| is small.

Step 4: cancellation from odd degree terms. We next prove that any polynomial factor in terms
of the θ coefficients which is not an even polynomial exhibits additional cancellation. This will
immediately imply the second bullet point as there are at most 2|S| terms in

∏
(j,k)∈S(θj + θk)

and since there is an odd cycle component (implying every term has an index of degree 1).
In particular, it suffices to bound∫

U

∏
j∈[k] θ

�j

j

∏
(j,k)∈([n]

2 )(1 + p(ei(θj+θk) − 1))

exp(id
∑

j∈[n] θj)
dθ,

where �k = 1, and k ≤ 2|S|. For this, note that by symmetry∣∣∣∣ ∫
U

∏
j∈[k] θ

�j

j

∏
(j,k)∈([n]

2 )(1 + p(ei(θj+θk) − 1))

exp(id
∑

j∈[n] θj)
dθ

∣∣∣∣
=

1
n − k + 1

∣∣∣∣ ∫
U

(
∑

k≤j≤n θj)
∏

j∈[k−1] θ
�j

j

∏
(j,k)∈([n]

2 )(1 + p(ei(θj+θk) − 1))

exp(id
∑

j∈[n] θj)
dθ

∣∣∣∣
≤ 1

n − k + 1

∫
U

∣∣∣∣ ∑
k≤j≤n

θj

∣∣∣∣ ∏
j∈[k−1]

|θj |�j
∏

(j,k)∈([n]
2 )

|1 + p(ei(θj+θk) − 1)|dθ

≤ 2
n

∫
U

∣∣∣∣ ∑
k≤j≤n

θj

∣∣∣∣ ∏
j∈[k−1]

|θj |�j exp
( ∑

1≤j≤n

−(n − 2)
p(1 − p)

2
(θ2

j − θ4
j )
)

dθ
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=
2
n

∫
U

Es∼Rad⊗n

∣∣∣∣ ∑
k≤j≤n

sjθj

∣∣∣∣ ∏
j∈[k−1]

|θj |�j exp
( ∑

1≤j≤n

−(n − 2)
p(1 − p)

2
(θ2

j − θ4
j )
)

dθ

≤ 2
n

∫
U

(
Es∼Rad⊗n

( ∑
k≤j≤n

sjθj

)2)1/2 ∏
j∈[k−1]

|θj |�j exp
( ∑

1≤j≤n

−(n − 2)
p(1 − p)

2
(θ2

j − θ4
j )
)

dθ

≤ 2
n

∫
U

( ∑
k≤j≤n

θ2
j

)1/2 ∏
j∈[k−1]

|θj |�j exp
( ∑

1≤j≤n

−(n − 2)
p(1 − p)

2
(θ2

j − θ4
j )
)

dθ

≤ 2
n1−ε

∫
U

∏
j∈[k−1]

|θj |�j exp
( ∑

1≤j≤n

−(n − 2)
p(1 − p)

2
(θ2

j − θ4
j )
)

dθ

� n−∑j∈[k] �j/2−1/2+2ε(2π/(p(1 − p)n)))n/2

as desired, where in the last line we apply Lemma 2.4 and use that |S| is small.

Step 5: even cycles. We now handle the third bullet point, proving that the integral is sufficiently
close to the desired quantity. Using the technique in the previous step, and noting that given
a set S of � disjoint even cycles there are 2� terms in the expansion of

∏
(j,k)∈S(θj + θk) where

every vertex has even degree, we have∣∣∣∣EG∼G(n,d)χS − 2�+1(1 + r2)(
n
2)(p(1 − p))|S|/2

(2πrd)n|G(n, d)|

×
∫
U

∏
j∈[|S|/2] θ

2
j

∏
(j,k)∈([n]

2 )(1 + p(ei(θj+θk) − 1))

exp(id
∑

j∈[n] θj)
dθ

∣∣∣∣
� n−1/4−|S|/2. (2.6)

Note that EG∼G(n,d)χ∅ = 1 by definition and (2.6) applies with S empty. Subtracting, it
therefore suffices to prove∣∣∣∣ 2�+1(1 + r2)(

n
2)

(2πrd)n|G(n, d)|

∫
U

(
∏

j∈[|S|/2] θ
2
j − (p(1 − p)n)−|S|/2)

∏
(j,k)∈([n]

2 )(1 + p(ei(θj+θk) − 1))

exp(id
∑

j∈[n] θj)
dθ

∣∣∣∣
� n−1/4−|S|/2.

From Lemma 2.5 we have

(
∑

j x2
j )k − k2(maxj x2

j )(
∑

j x2
j )k−1

k!
≤

∑
j1<···<jk

x2
j1 · · ·x

2
jk

≤
(
∑

j x2
j )k

k!
,

and using our initial bounds from earlier it follows immediately that∣∣∣∣ 2�+1(1 + r2)(
n
2)
(

n
|S|/2

)−1

(2πrd)n|G(n, d)|(|S|/2)!

×
∫
U

((|S|/2)2n−1+2ε(
∑

j θ2
j )|S|/2−1)

∏
(j,k)∈([n]

2 )(1 + p(ei(θj+θk) − 1))

exp(id
∑

j∈[n] θj)
dθ

∣∣∣∣
� n−1/4−|S|/2.
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Therefore, symmetrizing over all permutations of [n] and trivially bounding some lower-order
contributions, we see it suffices to bound

2�+1(1 + r2)(
n
2)
(

n
|S|/2

)−1

(2πrd)n|G(n, d)|(|S|/2)!

×
∫
U

((
∑

1≤j≤n θ2
j )|S|/2 − (p(1 − p))−|S|/2)

∏
(j,k)∈([n]

2 )(1 + p(ei(θj+θk) − 1))

exp(id
∑

j∈[n] θj)
dθ.

Note that, once again,

∫
U

((
∑

1≤j≤n θ2
j )|S|/2 − (p(1 − p))−|S|/2)

∏
(j,k)∈([n]

2 )(1 + p(ei(θj+θk) − 1))

exp(id
∑

j∈[n] θj)
dθ

≤
∫
U

∣∣∣∣( ∑
1≤j≤n

θ2
j

)|S|/2

− (p(1 − p))−|S|/2

∣∣∣∣ ∏
(j,k)∈([n]

2 )

|1 + p(ei(θj+θk) − 1)| dθ

≤
∫
U

∣∣∣∣( ∑
1≤j≤n

θ2
j

)|S|/2

− (p(1 − p))−|S|/2

∣∣∣∣
× exp

( ∑
1≤j≤n

−(n − 2)
p(1 − p)

2
(θ2

j − θ4
j )
)

dθ. (2.7)

We now proceed via splitting (2.7) based on the size of
∑

1≤j≤n θ2
j . Defining the region S =

{θ : |
∑

1≤j≤n θ2
j − (p(1 − p))−1| ≥ n−1/3} we have that

∫
U
1θ∈S

∣∣∣∣( ∑
1≤j≤n

θ2
j

)|S|/2

− (p(1 − p))−|S|/2

∣∣∣∣ exp
( ∑

1≤j≤n

−(n − 2)
p(1 − p)

2
(θ2

j − θ4
j )
)

dθ

≤
∫
U
1θ∈S(2n2ε)|S|/2 exp

( ∑
1≤j≤n

−(n − 2)
p(1 − p)

2
(θ2

j − θ4
j )
)

dθ

≤
∫
U
1θ∈S(2n2ε)|S|/2 exp

( ∑
1≤j≤n

−(n − 2n2ε)p(1 − p)
2

θ2
j

)
dθ

≤ (2n2ε)|S|/2(1/(p(1 − p)(n − 2n2ε)))n/2

∫
Rn

1|∑j∈[n] x2
j−(n−2n2ε)|≥p(1−p)n2/3/2

× exp
(
− 1

2

∑
j∈[n]

x2
j

)
dx

≤ exp(O(n2ε)) · (2π/(p(1 − p)n))n/2
PZ∼N (0,1)⊗n

[∣∣∣∣ ∑
1≤j≤n

Z2
j − n

∣∣∣∣ ≥ n3/5

]
≤ exp(n−1/10) · (2π/(p(1 − p)n))n/2,
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which is sufficiently small as desired. For the remaining portion of (2.7) note that∫
U
1θ/∈S

∣∣∣∣( ∑
1≤j≤n

θ2
j

)|S|/2

− (p(1 − p))|S|/2

∣∣∣∣ exp
( ∑

1≤j≤n

−(n − 2)
p(1 − p)

2
(θ2

j − θ4
j )
)

dθ

≤
∫
U
1θ/∈S(4p(1 − p))|S|/2(n−1/3) exp

( ∑
1≤j≤n

−(n − 2)
p(1 − p)

2
(θ2

j − θ4
j )
)

dθ

≤
∫
U

(4p(1 − p))|S|/2(n−1/3) exp
( ∑

1≤j≤n

−(n − 2)
p(1 − p)

2
(θ2

j − θ4
j )
)

dθ

� n−2/7(2π/(p(1 − p)n))n/2,

where we have used Lemma 2.3 in the final step. The desired result follows immediately. �

3. Deduction of Theorem 1.6

In order to prove Theorem 1.6 we proceed via the method of moments. We require the following
standard result regarding converting control on moments to distributional control. This follows
immediately from the standard univariate method of moments via the Cramér–Wold device (see,
e.g., [Dur19, Theorem 3.10.6]) which shows that in order to prove convergence of a sequence
of random variables Xn → μ ∈ R

d in distribution, it suffices to prove convergence of Xn · θ →
μ · θ for all θ ∈ R

d. (A proof of the univariate case of the method of moments is standard; see
e.g. [Dur19, Section 3.3.5, Theorem 3.3.25].)

Lemma 3.1. Fix a vector μ ∈ R
d and a positive-definite matrix in Σ ∈ R

d×d. Given a sequence
of random vectors Xn ∈ R

d, suppose that for any sequence of nonnegative integers (�i)1≤i≤d that

E

[ d∏
i=1

((Xn)i)�i

]
→ EG∼N (μ,Σ)

[ d∏
i=1

(Gi)�i

]
as n → ∞. Then it follows that

Xn
d.−→ N (μ, Σ).

We also require the following graph-theoretic input which will be used when applying the
method of moments. For a multigraph G, let Esing(G) be the set of edges of multiplicity 1.

Lemma 3.2. Let H = (Hi)1≤i≤k be a sequence of connected graphs each of minimum degree at
least 2 (not necessarily distinct). Consider overlaying the Hi in order to obtain a multigraph G
(so overlaying two or more edges would give the corresponding multiplicity in G). Let Esing =
Esing(G). Then we have

v(G) − 1
2
|Esing| ≤

1
2

k∑
i=1

v(Hi)

with equality if and only if each connected component of G is either (i) a cycle of multiplicity 1
which is isolated or (ii) a multigraph with all multiplicities 2. Furthermore, in choice (i) the said
connected component arises from a single Hi which is a cycle while in choice (ii) the connected
component arises from two Hi, Hj which are isomorphic and perfectly overlaid.

Proof. Note that Esing contains precisely the edges of G without multiplicity, which therefore
arise from a single graph in H. In addition, it trivially suffices to prove the claim for each
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connected component of G individually. Equivalently, we may assume G is connected. We have

1
2

k∑
i=1

v(Hi) − v(G) +
|Esing|

2

=
∑

v∈V (G)

((
1
2

k∑
i=1

1v∈Hi

)
− 1
)

+
|Esing|

2

≥ −1
2

∑
v∈V (G)

1[|{i ∈ [k] : v ∈ Hi}| = 1] +
|Esing|

2

≥ −1
2

∑
v∈V (G)

1[|{i ∈ [k] : v ∈ Hi}| = 1] +
∑

v∈V (G)

21[|{i ∈ [k] : v ∈ Hi}| = 1]
4

≥ 0.

In the last line, the first inequality is justified as follows: consider distributing a mass of 1/2 on
each edge in Esing into 1/4 on both its vertices. Note that every vertex that appears in exactly
one Hi must be contributed by at least 2 such edges, since the minimum degree is at least 2 and
such edges clearly must be singletons.

For equality to occur note that every vertex must have H-multiplicity 1 or 2 (i.e. appears in
1 or 2 of the Hi), each singleton edge must occur between two vertices of H-multiplicity 1, and
no H-multiplicity 1 vertex has degree larger than 2. Note that as we assumed G is connected,
we must have that either all vertices have H-multiplicity 1 or all have H-multiplicity 2: if there
is an edge between the two different types of vertex, then it must be a singleton (since one of
the endpoints is H-multiplicity 1) and, hence, we have a contradiction to the required property
of singleton edges in the equality case. Now, if all vertices are H-multiplicity 1, then G must
arise from a single graph H1, and the equality case is immediately seen to be a cycle using our
assumption that G = H1 is connected and also that every vertex has degree exactly 2.

We now focus on the complementary case that every vertex has H-multiplicity 2 and, hence,
there are no singleton edges. Consider a vertex v of G and suppose without loss of generality that
it is in H1 and H2. Every G-neighbor w of v has the property that edge (v, w) is not singleton,
which implies this edge must be present in both H1 and H2. Thus, w is in H1 and H2 (and no
other Hi since it has H-multiplicity 2). Iterating this argument, and using that G is connected,
we see that every vertex of G is in H1 and H2, implying that k = 2. Since there are no singleton
edges, this must be a direct overlay of equal graphs.

Finally, we easily check that choices (i) and (ii) are easily seen to indeed give equality. �
We now prove Theorem 1.6. Given the results proven so far this is essentially a routine

computation with the method of moments.

Proof of Theorem 1.6. Fix a collection of connected graphs H = {Hi : 1 ≤ i ≤ k} of minimum
degree at least 2. In order to apply the method of moments consider fixed values �1, . . . , �k and
write

EG∼G(n,d)

[ k∏
i=1

γHi(G)�i

]
=
( k∏

i=1

σ−�i
Hi

) ∑
1≤i≤k
1≤j≤�i
Hi,j�Hi

EG∼G(n,d)

[ k∏
i=1

�i∏
j=1

χHi,j

]
. (3.1)

Here the Hi,j are embedded into Kn, and we are summing over possible simultaneous choices of
such unlabeled copies. Recall the definition of EH , σH from Definition 1.4, and note this means∏k

i=1 σHi(G)�i = Θ(n
∑k

i=1 �iv(Hi)/2) = Θ(n
∑

i,j v(Hi,j)/2).

2138

https://doi.org/10.1112/S0010437X23007364 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007364


Subgraph distributions in dense random regular graphs

We consider the terms based on the isomorphism class of G =
⋃

1≤i≤k

⋃
1≤j≤�i

Hi,j , treating
G as a multigraph. Let Esing = Esing(G), the set of singleton edges in the isomorphism class. Note
that the contribution of terms based on G is bounded by O(nv(G)n−|Esing|/2+1/3) using the first
bullet of Proposition 2.7 (and using that if an edge is repeated multiple times, the corresponding
χt

e term can be reduced to a linear combination of 1, χe with coefficients depending only on t
and p). Thus, if v(G) − |Esing|/2 <

∑
i,j v(Hi,j)/2 the terms contribute negligibly (namely,

O(n−1/6)) to the quantity (3.1), since this implies v(G) − |Esing|/2 ≤ −1/2 +
∑

i,j v(Hi,j)/2.
However, recall that by Lemma 3.2 we have v(G) − |Esing|/2 ≤

∑
i,j v(Hi,j)/2, and equality

occurs only in certain specialized cases where each graph Hi,j either (i) is a cycle and its vertices
are not used by any other Hi′,j′ or (ii) is perfectly overlaid with another Hi,j′ (with the same
isomorphism type) as equal copies. The earlier analysis shows we may restrict attention to such
equality cases, so now we more closely characterize which such terms contribute. Without loss of
generality, let us assume that H1, . . . , Hm are cycles, if any, while Hm+1, . . . , Hk are not cycles.
Note that if any �t for t ∈ [m + 1, k] is odd then it is impossible to pair up and overlay all the
Ht,i for i ∈ [�t]. This violates the equality condition, so is not possible. Thus, if �t for some
t ∈ [m + 1, k] is odd, then the total contribution to (3.1) is O(n−1/6).

Now consider Ht with 1 ≤ t ≤ m. If Ht is an odd cycle and is not overlaid with another, then
by case (i) it is isolated within G. The second bullet of Proposition 2.7 again shows the total
contribution of terms with such an unpaired Ht to (3.1) is O(n−1/6).

Finally, we have a situation where all graphs Hi,j except even cycles must be paired among
themselves and the even cycles Hi,j are either isolated in G or paired with another even cycle
Hi,j′ of the same size and overlaid. Without loss of generality let H1, . . . , Hm′ be the even cycles,
if any.

The number of choices for pairing up the graphs other than even cycles is
∏k

i=m′+1 �i!!. The
number of choices for pairing up si ≤ �i/2 even cycles for i ∈ [m′] is

∏m′
i=1

(
�i
2si

)
(2si)!!. In such a

pairing, let Ui ⊆ [�i] be the list of unpaired indices for i ∈ [m′]. We find that
∏k

i=1

∏�i
j=1 χHi,j

is
a product of various terms of the form χe for e ∈ Hi,j where i ∈ [m′] and j ∈ Ui, as well as terms
of the form χ2

e in certain connected components of G. There are
∑m′

i=1(�i − 2si)v(Hi) vertices of
the former type and

∑m′
i=1 siv(Hi) +

∑k
i=m′+1(�i/2)v(Hi) of the latter type. Note that χ2

e = 1 −
(2p − 1)χe/

√
p(1 − p), and expanding out the repeated terms in such a way yields one term of the

form
∏m′

i=1

∏
j∈Ui

χHi,j
and others with additional terms of the form (2p − 1)χe/

√
p(1 − p) tacked

on. The contribution of such other terms totals at most, by the first bullet of Proposition 2.7,

O
(
n
∑m′

i=1(�i−si)v(Hi)+
∑k

i=m′+1(�i/2)v(Hi) · n−∑m′
i=1

∑
j∈Ui

e(Hi,j)/2−1/2+1/3)
.

The exponent is bounded by v(G)/2 − 1/3 +
∑m′

i=1

∑
j∈Ui

(v(Hi,j) − e(Hi,j)/2) =
∑k

i=1 �iv(Hi)/
2 − 1/6 since Hi,j for i ∈ [m′] is a cycle, so in (3.1) this amounts to a total contribution of
O(n−1/6).

Finally, what remains is

EG∼G(n,d)

[ k∏
i=1

γHi(G)�i

]

=
( k∏

i=1

σ−�i
Hi

k∏
i=m′+1

�i!!
) ∑

si≤�i/2

∑∗

Hi,j

E

m′∏
i=1

((
�i

2si

)
(2si)!!

�i∏
j=2si+1

χHi,j

)
+ O(n−1/6),
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where
∑

si≤�i/2 denotes a simultaneous choice of such nonnegative integers si for i ∈ [m′] and
where

∑∗ denotes a sum over choices of Hi,j such that they are all vertex-disjoint other than pairs
Hi,2j−1 = Hi,2j for 1 ≤ j ≤ si/2 when 1 ≤ i ≤ m′ as well as for 1 ≤ j ≤ �i/2 when m′ + 1 ≤ i ≤ k.
This equation basically means that we can validly pair up the necessary graphs and then replace
the χ2

e terms by 1. Furthermore, it is not hard to see based on the considerations so far that we
can remove the vertex-disjointness condition between different Hi,j without changing the error
rate, and thus we can write

EG∼G(n,d)

[ k∏
i=1

γHi(G)�i

]
=
( k∏

i=1

σ−�i
Hi

k∏
i=m′+1

�i!!
((

n

v(Hi)

)
v(Hi)!

aut(Hi)

)�i/2)

×
∑

si≤�i/2

( m′∏
i=1

(
�i

2si

)
(2si)!!

((
n

v(Hi)

)
v(Hi)!

aut(Hi)

)si

(EγHi)
�i−2si

)
+ O(n−1/6),

=
k∏

i=m′+1

�i!!
∑

si≤�i/2

m′∏
i=1

(
�i

2si

)
(2si)!!(σ−1

Hi
EγHi(G))�i−2si + O(n−1/6),

using the formula for σH in the second step. Finally, the third bullet of Proposition 2.7 shows that
EγHi(G) = (1 + O(n−1/5))2n−v(Hi)/2 ·

(
n

v(Hi)

)
(v(Hi)!/aut(Hi)) = (1 + O(n−1/5))EH for i ∈ [m′].

We also know that EH = (2/v(H))1/2σH , hence we find

EG∼G(n,d)

[ k∏
i=1

γHi(G)�i

]
=

k∏
i=m′+1

�i!!
∑

si≤�i/2

m′∏
i=1

(
�i

2si

)
(2si)!!(EH/σH)�i−2si + O(n−1/6),

which can be seen to match the moments of N (EH/σH , 1)⊗m′ ⊗N (0, 1)⊗(k−m′). Using Lemma 3.1
and shifting appropriately, this implies the desired

(γ̃Hi(G))1≤i≤k
d.−→ N (0, 1)⊗k.

Finally, we briefly note that the moment computations above where �i ∈ {1, 2} and all �j = 0 for
j �= i show that the means and variances are as claimed. �

4. Computations with graph factors

We now prove that any fixed degree polynomial in the indicator functions xe ∈ {0, 1} which is
symmetric under vertex permutation can be rewritten (so that it agrees on the set of d-regular
graphs) as a function of connected graph factors of the form in Definition 1.4. The reduction
specifically to connected graph factors appears essentially in the work of Janson [Jan95, p. 347].

Lemma 4.1. Given a disconnected graph H (with no isolated vertices) with connected compo-
nents H1, . . . , Hk, γH(x) −

∏k
i=1 γHi(G) can be expressed (as a function on graphs) as a sum of

γH′ with v(H ′) < v(H) (though H ′ may be itself disconnected). Furthermore, the coefficients of
the sum are bounded by O(1/(p(1 − p))OH(1)).

This can clearly be inductively applied to show that the connected graph factors generate
all graph factors using polynomial expressions. The crucial lemma for our work is that given a
connected graph H with a vertex of degree 1, the graph factor γH(x) can be simplified further
(since our input graphs are regular).
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Lemma 4.2. Given a graph H (with no isolated vertices) with a vertex of degree 1, then γH(x)
can be expressed, as a function on d-regular graphs, as a sum of γH′(x) with v(H ′) < v(H).
Furthermore, the coefficients of the sum are bounded by O(1/(p(1 − p))OH(1)).

Proof. Let v be a vertex in H of degree 1 and (u, v) be the unique edge in H connected
to v. Note that, considering this as a sum over possible choices of v, we have

∑
v =u χ(v,u) = 0 by

d-regularity. Therefore, it follows that

γH(x) =
∑

E⊆Kn
E�H

∏
e∈E

χe =
∑

E⊆Kn
E�H

χ(u,v)

∏
e∈E\{(u,v)}

χe

=
∑

E⊆Kn
E�H

(
−

∑
u∈V (E)\{v}

χ(u,v)

) ∏
e∈E\{(u,v)}

χe

and the desired result follows immediately using that χ2
e = 1 − (2p − 1)χe/

√
p(1 − p). �

Note that iterating Lemmas 4.1 and 4.2 shows we can write any graph factor on d-regular
graphs as a function (in terms of d) of ones that are connected and with minimum degree at
least 2. (In particular, any graph factor corresponding to a tree can be expressed in terms of
graph factors with cycles as well as the constant γ∅ = 1.) However, we will not explicitly need
this fact, but rather its implication that variances of graph factors satisfy a reasonable uniform
bound. Furthermore, having a degree 1 vertex (such as with trees) leads to a natural power-saving
in this bound.

Lemma 4.3. Suppose that n/ log n ≤ min(d, n − d). Given a graph H (with no isolated vertices)
we have VarG∼G(n,d)(γH(G)) = O(nv(H)). Furthermore, if H has a degree 1 vertex, we have

VarG∼G(n,d)(γH(G)) ≤ nv(H)−2/3.

Proof. We induct on v(H). Note v(H) ≤ 2 is trivial, as in fact γH(G) is deterministic, so both
parts of the lemma are satisfied. For H being a connected graph with minimum degree at least
2, the desired result follows immediately from the moments calculation given in the proof of
Theorem 1.6. In the remaining cases, for G a d-regular graph we find that if H has connected
components H1, . . . , Hk, then γH(G) −

∏k
i=1 γHi(G) can be written as a sum of graph factors

each involving coefficients bounded by 1/(p(1 − p))OH(1) and with at most v(H) − 1 vertices by
Lemma 4.1. If there is a vertex of degree 1 in H, and hence some Hi, we can apply Lemma 4.2
and then we obtain a sum of graph factors with at most v(H) − 1 vertices after expanding
(with similar bounds on coefficients). Thus, the total variance, by induction, is (p(1 − p))−OH(1) ·
O(nv(H)−1) ≤ nv(H)−2/3, which satisfies the desired stronger bound in the case where H has a
degree 1 vertex.

Finally, if all the Hi are minimum degree at least 2, then we see that the ‘lower’ portion cor-
responding to graph factors on at most v(H) − 1 vertices contributes O(nv(H)−2/3) by induction
similar to before. Hence, the problem reduces to understanding the variance of

∏k
i=1 γHi(G). We

have

Var
( k∏

i=1

γHi(G)
)

≤ E

k∏
i=1

γHi(G)2 ≤
k∏

i=1

(EγHi(G)2k)1/k.

Again, the moment-based proof of Theorem 1.6 gives a bound of O(nv(H1)+···+v(Hk)) for
this. �
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5. Deduction of subgraph count and trace count normality

We now consider a subgraph count XH for G ∼ G(n, d) and prove the desired normality as in
Theorem 1.2. This is essentially an immediate consequence of Theorem 1.6 and expanding into
the appropriate graph factors. The precise nature of the contributing terms however depends in
an intricate manner on the precise structure of H.

Proof of Theorem 1.2. Let H be a connected graph at least 2 vertices which is not a star. For
G ∼ G(n, d) write

W = XH =
∑

H′⊆Kn

H′�H

∏
e∈E(H′)

xe.

Letting χe = (xe − p)/
√

p(1 − p) as usual, we find that

W =
∑

H′⊆Kn

H′�H

∏
e∈E(H′)

(p +
√

p(1 − p)χe)

=
∑
S⊆H

pe(H)−e(S)(
√

p(1 − p))e(S)cS,HdS,H

(
n − v(S)

v(H) − v(S)

)
γS(x), (5.1)

where cS,H = (v(H) − v(S))!aut(S)/aut(H), dS,H = N(H, S) (the number of times S appears
as a subgraph of H), and the sum is over subgraphs S (lacking isolated vertices) of H up to
isomorphism. For the empty graph, we have c∅,H = v(H)!/autH and d∅,H = 1.

Note that the graph factors γS with e(S) ≤ 2 (the empty graph, an edge, a star with two
edges, and two disjoint edges) are deterministic since G is a d-regular graph. If H contains a C3

note that all other graph factors γS in the expansion have v(S) ≥ 4, hence the corresponding
terms have variance bounded by O(n2(v(H)−v(S)) · nv(S)) = O(n2v(H)−4) by Lemma 4.3 while the
γC3 term has variance(

6(v(H) − 3)!
aut(H)

N(H, C3)pe(H)−3/2(1 − p)3/2

(
n − 3

v(H) − 3

))2

Var[γC3 ].

Since the variance determination in Theorem 1.6 allows us to compute Var[γC3 ] = (1 +
O(n−1/6))n3/6, we easily obtain the first bullet point of Theorem 1.2: we can write W = X + Y
where X is the term coming from γC3 and Y is the rest. We have that Var[Y ] = O(n−1Var[X]).
Thus, since X satisfies a central limit theorem, so does X + Y . Furthermore, the variance can
be written

Var[X + Y ] = Var[X] + Var[Y ] + 2E(X − EX)(Y − EY )

and |E(X − EX)(Y − EY )| ≤
√

Var[X]Var[Y ] by Cauchy–Schwarz, which gives an appropriate
bound for the change in the variance going from X to X + Y . In particular, Var[X + Y ] =
(1 + O(n−1/2))Var[X].

Next suppose that H contains a C4 but no C3. Then all potential contributing graph factors
which are not deterministic are on at least 4 vertices. Note that any graph factor γS with v(S) ≥ 5
has corresponding variance at most O(n2v(H)−5) by Lemma 4.3. Furthermore for v(S) = 4, note
that if some vertex has degree 1, then by Lemma 4.3 we obtain corresponding variance of order
O(n2v(H)−4−2/3). All remaining S must have 4 vertices, minimum degree at least 2, and contain
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no C3, so S = C4. The variance of the γC4 term is(
8(v(H) − 4)!

aut(H)
N(H, C4)pe(H)−2(1 − p)2

(
n − 4

v(H) − 4

))2

Var[γC4 ].

The second bullet point of Theorem 1.2 follows similar to before.
The last case is when H contains neither C3 nor C4. Since H is not a star, H contains a

P4, i.e. a path on 4 vertices. First note that graph factors γS with v(S) ≥ 6 have corresponding
variance O(n2v(H)−6) and graph factors γS with v(S) = 5 and some vertex of degree 1 have
corresponding variance O(n2v(H)−5−2/3) by Lemma 4.3. Furthermore, since H has no C3 and no
C4, we see that the only possible S with v(S) ≤ 4 for which γS is not deterministic is S = P4.
In addition, the possible S with v(S) = 5 are those with minimum degree at least 2 and no C3

and no C4, which is easily seen to force S = C5. The variance of the γC5 term is(
10(v(H) − 5)!

aut(H)
N(H, C5)pe(H)−5/2(1 − p)5/2

(
n − 5

v(H) − 5

))2

Var[γC5 ]

= (1 + O(n−1/6))
10N(H, C5)2

aut(H)2
p2e(H)−5(1 − p)5n2v(H)−5

by Theorem 1.6. The graph factor γP4 is more delicate, as we must use the observation in
Lemma 4.2 that we can reduce its complexity using

∑
v =u χ(v,u) = 0 for all fixed u. We obtain

γP4(x) =
1
2

∑
u,v,w

(
χ(u,v)χ(v,w)

∑
u′ =u,v,w

χ(w,u′)

)
=

1
2

∑
u,v,w

χ(u,v)χ(v,w)(−χ(w,u) − χ(w,v))

= −1
2

∑
u,v,w

(χ(u,v)χ(v,w)χ(w,u) + χ(u,v)χ
2
(v,w))

= −3γC3 −
1
2

∑
u,v,w

χ(u,v)

(
1 −

(2p − 1)χ(v,w)√
p(1 − p)

)
,

where the sum is over tuples of distinct u, v, w ∈ [n]. Here we have used that χ2
e = 1 − (2p −

1)χe/
√

p(1 − p) and given that γK2 , γP3 are deterministic, we find that γP4 + 3γC3 is determin-
istic. This can alternatively be deduced by noting that XP4 + 3XC3 is a deterministic function
in a d-regular graph.1 Therefore, the variance of the γP4 term is(

2(v(H) − 4)!
aut(H)

N(H, P4)pe(H)−3/2(1 − p)3/2

(
n − 4

v(H) − 4

))2

· 9Var[γC3 ]

= (1 + O(n−1/6))
6N(H, P4)2

aut(H)2
p2e(H)−3(1 − p)3n2v(H)−5.

Finally, writing X1 for the γC5 term and X2 for the γP4 term, using the moment computa-
tions in the proof of Theorem 1.6 (applied to C3 and C5) we easily find that Cov(X1, X2) =
O(n2v(H)−5−1/6). (Or, we can directly see this from the joint central limit theorem sat-
isfied by γC3 , γC5 in Theorem 1.6.) The third bullet of Theorem 1.2 follows similar to
before. �

1 We thank the referee for this remark, which provides a check for the formulas in Theorem 1.2 since we must
have Var[XP4 ] = 9Var[XC3 ].
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Finally, we prove Corollary 1.8. Again, this is mostly rearranging terms in order to apply
Theorem 1.6. Our analysis is more complicated than typical trace expansion arguments as one
cannot trivially rule out walks where an edge appears with multiplicity 1 in various expectation
computations. To perform the necessary analysis, we will need the following modified version of
Lemma 3.2 which allows for some of the Hi to be a doubled edge (but we may otherwise restrict
to cycles). As a consequence, the equality case is more complicated. Recall that for a multigraph
G, Esing(G) is the set of edges of multiplicity 1.

Lemma 5.1. Let H = (Hi)1≤i≤k be a sequence of cycles or multigraphs consisting of a dou-
bled edge. Consider overlaying the Hi in order to obtain a multigraph G. Let Esing = Esing(G).
Suppose that every connected component of G contains at least one participating cycle of H.
Then we have

v(G) − 1
2
|Esing| ≤

1
2

k∑
i=1

v(Hi) =
e(G)

2

with equality only if every connected component of G can be obtained by first taking a cycle of
H or perfectly overlaying two cycles of H, and second attaching pendant trees of doubled edges
from H (in particular, removing the cycle portion leaves a forest of doubled edges). Here e(G)
is computed with multiplicity.

Remark 5.2. We note that for any Hi which is a doubled edge, the corresponding multiedges in
G are not contained in Esing.

Proof. Without loss of generality we may assume G is connected, as this clearly preserves the
inequality as well as equality cases. In addition, the equality

∑k
i=1 v(Hi) = e(G) is trivial since

cycles and doubled edges have the same edge and vertex counts. Now let H1, . . . , Hk′ be the
cycles and the rest the doubled edges. Let G′ be the multigraph overlay of H1, . . . , Hk′ and
define E′

sing = Esing(G′). These are the edges contained in a single Hi for i ∈ [k′]. By Lemma 3.2,
we have

v(G′) − 1
2
|E′

sing| ≤
1
2

k′∑
i=1

v(Hi)

and equality can only occur if every connected component of G′ is either a single cycle Hi for
i ∈ [k′] or an overlay of 2 equal cycles Hi, Hi′ for distinct i, i′ ∈ [k′]. Furthermore, by initial
assumption k′ ≥ 1 so G′ is nonempty.

Now consider adding in the doubled edges in a specified order, starting at Gk′ = G′ and
ending at Gk = G. We choose the order as follows: at time k′ ≤ i ≤ k − 1, once we have Gi, since
we know G is connected there must be a doubled edge to add which shares a vertex with Gi;
add one of those edges. Define E

(i)
sing in the obvious way. We see that

(v(Gi+1) − v(Gi)) − 1
2(|E(i+1)

sing | − |E(i)
sing|) ≤ 1 = 1

2v(Hi+1)

since either we add 0 vertices and at worst reduce the number of singleton edges by 1, or we
add 1 vertex and, thus, leave the number of singleton edges unchanged (here we are using that
G′ is nonempty and the connected components of Gi each contain a cycle, otherwise it could be
possible to add 2 vertices at the beginning). Equality occurs here only if we add 1 new pendant
vertex.

Adding these inequalities over all i, we obtain the desired inequality. Furthermore, equality
can only occur if the connected components of G′ are single or doubled cycles, and then we
only add pendant trees of doubled edges. But since the final multigraph G is connected, this
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means we must have started with at most one component as we cannot bridge between connected
components of some Gi using a doubled edge while simultaneously increasing the vertex count
by 1. The result follows. �

Finally, we demonstrate Corollary 1.8.

Proof of Corollary 1.8. Note that deterministically we have that the all 1 vector is an eigenvector
with eigenvalue d. Therefore, we have that M := AG − pJ + pI (where J is the all 1 matrix) has
eigenvalues λi + p for 2 ≤ i ≤ n and one eigenvalue of 0.

In order to prove Corollary 1.8 it suffices to prove that if E∗
� = E tr(M �), σ∗2

� = Var[tr(M �)],
then

(σ∗−1/2
� (tr(M �) − E∗

� ))3≤�≤k
d.−→ N (0, Σk)

and σ∗
� = Θ((p(1 − p)n)�/2) for fixed � ≥ 3. To see that this implies the desired result note that

each term of
∑n

i=2(λi + p)� −
∑n

i=2 λ�
i can be represented as a degree at most � − 1 polynomial

in λi + p with coefficients bounded by Ok(pOk(1)). These terms are lower order due to the order
of the variance (and using that the first two moments of the eigenvalues are deterministic).

Given � ≥ 3, note that

tr((AG − pJ + pI)�/(p(1 − p))�/2) =
∑

u1,...,u�∈[n]

�∏
i=1

χ(ui,ui+1)

where we define χ(u,u) = 0 and take indices modulo �. The sum is over closed walks of length �.
Consider the closed walk u1, . . . , u�. As χ(u,u) = 0, we have that the walk has no self-loops

corresponding to ut+1 = ut. The edges traced out thus form a multigraph when superimposed.
Let W� be the collection of possible isomorphism types of multigraphs and for (u, v) ∈ G and
G ∈ W� let G(u, v) be the multiplicity of (u, v) in G. We see

tr((AG − pJ + pI)�/(p(1 − p))�/2) =
∑

G∈W�

cG

( ∑
V (G′)⊆V (Kn)

G′�G

∏
(u,v)∈G

χ
G(u,v)
(u,v)

)
,

where cG is the number of choices of vertices in G and closed walks of length � starting at that
vertex and traversing each edge (u, v) ∈ G in either direction exactly G(u, v) times. If G is a
simple graph, the term on the inside is just γG(x). We therefore abusively define

γG(x) =
∑

V (G′)⊆V (Kn)
G′�G

∏
(u,v)∈G

χ
G(u,v)
(u,v)

for multigraphs G without isolated vertices. However, we will later use χ2
e = 1 − (2p −

1)χe/
√

p(1 − p) and similar relations for higher powers to reduce to a linear combination of
graph factors γF .

Furthermore, every multigraph in W� can be decomposed (with multiplicity preserved) into
a collection of cycles and doubled edges: move along the walk until the first vertex repetition,
then remove a portion corresponding to a doubled edge or cycle, and keep doing this. We can
further further turn the doubled edges into a multitree by iteratively removing cycles of doubled
edges and turning them into two cycles. Given G ∈ W�, let HG be the sequence of multigraphs
thus generated. Let T� be the collection of G ∈ W� that are composed only of doubled edges,
which therefore compose a tree as G is connected.
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First consider G ∈ W� \ T�, so that HG contains at least one cycle. Let W ′
G be all possible

isomorphism classes G1 ∪ G2 for the multigraph union of two copies G1, G2 � G. We see

Var[γG] ≤ Eγ2
G �

∑
G′∈W ′

G

nv(G′) · n−|Esing(G′)|/2+1/3

by expansion and Proposition 2.7. Now consider the collection of cycles and doubled edges which
make up G′. Since they are overlaid in a way that form two copies of G, our condition on HG

implies that every connected component of G′ has at least one cycle participating in its creation.
Thus, Lemma 5.1 applies. For cases where equality does not hold, we have v(G′) − |Esing(G′)|/2 <
� since e(G′) = 2�. This implies v(G′) − |Esing(G′)|/2 + 1/3 ≤ � − 1/6. For cases where equality
does hold, by Lemma 5.1 every connected component of G′ must consist of a cycle or doubled
cycle (which come from our specified list of cycles that create G1, G2) and then pendant trees
of doubled edges. Note that G1, G2 are each connected, so we either have that these are disjoint
and of this form or they are connected and form such a graph. In the former case G is clearly
either a cycle or doubled cycle with pendant trees of doubled edges. In the latter case we easily
deduce that G is a single cycle with pendant trees of doubled edges (recalling G /∈ T�). Let C�

be the set of isomorphism classes of these more special forms, so that Var[γG] = O(n�−1/6) for
G ∈ W� \ (T� ∪ C�).

Next we study G ∈ T�, in which case � must be even (thus, � ≥ 4) and G has �/2 doubled
edges and at most �/2 + 1 vertices (being a multitree). We write

γG(x) =
∑
F⊆G

cF,G(p)
( ∑

F ′⊆Kn

F ′�F

∏
(u,v)∈F ′

χ(u,v)

)
,

where the sum is over graphs F up to isomorphism obtained by either including 1 or 0 edges
for each edge in G (without multiplicity). Here cF,G(p) are appropriately computed constants.
This is shown by expanding via χ2

e = 1 − (2p − 1)χe/
√

p(1 − p) and similar for higher pow-
ers, and collecting the patterns that can result. Note also that F may have isolated vertices,
and that it is a forest since G is a multitree. Regardless of these isolated vertices, let us abu-
sively denote the inside term as γF (x) (this agrees with the usual definition). If e(F ) ≤ 2,
then the term corresponding to F is deterministic since we are considering d-regular graphs.
Hence, we may restrict to just terms with e(F ) ≥ 3. We have for such F that

Var[γF ] ≤ Eγ2
F � max

v≥0
n2(�/2+1)−v · n−(2e(F )−max(v−1,0))/2+1/3 = max

v≥0
n�+2−e(F )+max(−v−1,−2v)/2+1/3

by Proposition 2.7: two copies of F with v overlapping vertices can share at most max(v − 1, 0)
edges. This clearly yields Var[γF ] = O(n�−2/3) and, thus, we find Var[γG] = O(n�−1/6) for G ∈ T�.

Finally, consider G ∈ C�. In γG(x), the highest degree of any term χe is 2. Using χ2
e = 1 −

(2p − 1)χe/
√

p(1 − p) and expanding out, it is easy to see similar to above that the sum of the
terms involving any −(2p − 1)χe/

√
p(1 − p) in the expansion, call this γ′

G, has total variance
bounded by O(n�−1/6). Finally, if G is a doubled cycle with pendant trees of double edges, then
the remaining term is deterministic, while if G is a single cycle with such pendant trees then the
remaining term is a cycle of say length r with (� − r)/2 isolated vertices. Finally, recall that the
variance of γCr is O(nr) by Theorem 1.6.

Overall, combining all this information and noting that a γC�
term only comes from a walk

that repeats no vertices, we see

tr((AG − pJ + pI)�/(p(1 − p))�/2) = 2�γC�
(x) +

∑
3≤r<�

r≡� (mod 2)

α�,rn
(�−r)/2γCr(x) + X�
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for some random variable X� satisfying Var[X�] = O(n�−1/6) and for appropriate combinatorially
definable rational numbers α�,r independent of n, p.

Equivalently,

tr((AG − pJ + pI)�/(p(1 − p)n)�/2) = 2�(n−�/2γC�
) +

∑
3≤r<�

r≡� (mod 2)

−α�,r,n(n−r/2γCr) + n−�/2X�

and now the result clearly follows from Theorem 1.6 as the error terms X� are negligible (using a
similar argument as in the proof of Theorem 1.2). Since this representation in terms of the cycle
graph factors is triangular, we furthermore see that the resulting Σk that arises in the limit is
indeed positive definite; here we are using that the coefficient of γC�

is a strictly positive constant,
that the α�,r are independent of p, n and of bounded size in terms of �, and that the graph factors
corresponding to cycles are jointly independently normally distributed by Theorem 1.6. �
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