ASYMPTOTIC RESULTS FOR CLASS NUMBER DIVISIBILITY IN CYCLOTOMIC FIELDS

BY
FRANK GERTH III

Abstract

Let $n \geq 3$ and $m \geq 3$ be integers. Let K_{n} be the cyclotomic field obtained by adjoining a primitive nth root of unity to the field of rational numbers. Let K_{n}^{+}denote the maximal real subfield of K_{n}. Let h_{n} (resp., h_{n}^{\dagger}) denote the class number of K_{n} (resp., K_{n}^{+}). For fixed m we show that m divides h_{n} and h_{n}^{+}for asymptotically almost all n. Also for those K_{n} and $K_{n}{ }^{+}$with a given number of ramified primes, we obtain lower bounds for certain types of densities for m dividing h_{n} and h_{n}^{+}.

1. Introduction. Let $n \geq 3$ be an integer, and let ζ_{n} be a primitive nth root of unity. Let h_{n} denote the class number of the cyclotomic field $K_{n}=\mathbf{Q}\left(\zeta_{n}\right)$, and let h_{n}^{+}denote the class number of the maximal real subfield K_{n}^{+}of K_{n}. It is well known that $h_{n}^{+} \mid h_{n}$. Recently Cornell and Rosen [1] have announced that if n is divisible by at least five distinct odd primes, then $2 \mid h_{n}^{+}$(and of course $2 \mid h_{n}$). Hence asymptotically $2 \mid h_{n}^{+}$and $2 \mid h_{n}$ for almost all n. Now let $m \geq 3$ be an integer. Cornell and Washington [2] have recently given sufficient conditions for $m \mid h_{n}^{+}$and $m \mid h_{n}$. In section 2 we describe the results of Cornell and Washington. In section 3 we obtain an asymptotic result which indicates that for fixed m almost all K_{n}^{+}and K_{n} have class numbers divisible by m. In section 4 we consider those K_{n}^{+}and K_{n} with a fixed number of ramified primes and obtain lower bounds for certain types of densities for $m \mid h_{n}^{+}$and $m \mid h_{n}$.
2. Results of Cornell and Washington. Let notations be as in section 1. First we consider $m \mid h_{n}^{+}$. Let

$$
M= \begin{cases}4 m & \text { if } m \text { is odd } \tag{2.1}\\ 2 m & \text { if } m \text { is even } .\end{cases}
$$

Let r be the number of distinct primes congruent to $1(\bmod M)$ that divide n, and let $p_{i_{1}}, \ldots, p_{i_{r}}$ denote these distinct primes. Then the proofs in [2] show that $m \mid h_{n}^{+}$if
(i) $r \geq 4$, or
(ii) $r=3$ and at least two of $\left(p_{i} / p_{i}\right)=1$ or $1 \leq l<j \leq 3$, where $\left(p_{i} / p_{i}\right)$ is the Legendre symbol. Alternately we may describe the situation as follows. If
$m \nmid h_{n}^{+}$, it is necessary that
(a) $r \leq 2$, or
(b) $r=3$ and at most one of $\left(p_{i,} / p_{i}\right)=1$ for $1 \leq l<j \leq 3$.

Since $h_{n}^{+} \mid h_{n}$, we see that condition (i) or (ii) is sufficient for $m \mid h_{n}$. Equivalently condition (a) or (b) is necessary for $m \nsucc h_{n}$. However when m is odd, the proofs in [2] indicate more restrictive necessary conditions for $m \npreceq h_{n}$. Let s be the number of distinct primes congruent to $1(\bmod m)$ that divide n, and let $p_{i_{1}}, \ldots, p_{i_{s}}$ denote these distinct primes. Then if m is odd and $m \nsucc h_{n}$, it is necessary that one of the following conditions be satisfied:
(c) $s \leq 1$
$\left(\mathrm{d}_{1}\right) s=2$, and both $p_{i_{1}} \equiv 1(\bmod 4)$ and $p_{i_{2}} \equiv 1(\bmod 4)$
$\left(\mathrm{d}_{2}\right) s=2$, exactly one of $p_{i_{1}}$ and $p_{i_{2}}$ is congruent to $1(\bmod 4)$, and $\left(p_{i_{2}} / p_{i_{1}}\right)=$ -1
$\left(\mathrm{e}_{1}\right) s=3$, each $p_{i_{\mathrm{i}}} \equiv 1(\bmod 4)$ for $j=1,2,3$, and at most one of $\left(p_{i_{j}} / p_{i_{1}}\right)=1$ for $1 \leq l<j \leq 3$
$\left(e_{2}\right)$ exactly one of $p_{i_{1}}, p_{i_{2}}, p_{i_{3}}$ is congruent to $3(\bmod 4)$, say $p_{i_{1}},\left(p_{i_{i}} / p_{i_{1}}\right)=-1$ for $j=2,3$, and $\left(p_{i_{3}} / p_{i_{2}}\right)=1$.
3. $m \mid h_{n}^{+}$and $m \mid h_{n}$ for almost all n. Let notations be as in previous sections. In section 1 we remarked that $2 \mid h_{n}^{+}$(and $2 \mid h_{n}$) if n is divisible by at least five odd primes. So if $2 \nmid h_{n}^{+}$, it is necessary that n be divisible by at most four odd primes. If x is a positive real number and $B_{x}=\{n \leq x: n$ is divisible by at most four distinct odd primes\}, then it can be proved by standard techniques that

$$
\left|B_{x}\right| \ll \frac{x(\log \log x)^{3}}{\log x}
$$

In particular $\left|B_{x}\right|=o(x)$, from which it follows that $2 \mid h_{n}^{+}$(and $2 \mid h_{n}$) for asymptotically almost all n.

Now suppose $m \geq 3$ is an integer. From section 2 we know that if $m \nmid h_{n}^{+}$, it is necessary that n be divisible by at most three distinct primes congruent to 1 $(\bmod M)$, where M is given by (2.1). Our goal in this section is to prove the following theorem.

Theorem 1. Let $m \geq 3$ be an integer, and define M by (2.1). Let x be a positive real number, and let $C_{x}=\left\{n \leq x: m \nmid h_{n}^{+}\right\}$. Then

$$
\left|C_{x}\right| \ll \frac{x(\log \log x)^{3}}{(\log x)^{1 / \varphi(M)}}
$$

where φ is the Euler φ-function, and where the constant implied by the symbol << depends only on M. In particular, for fixed $m,\left|C_{x}\right|=o(x)$. Hence for fixed $m, m \mid h_{n}^{+}$and $m \mid h_{n}$ for asymptotically almost all n.

The proof of Theorem 1 depends on certain sieve estimates. Let z be a positive real number and b a positive integer. Let $A(x)=\{n \leq x\}, A_{b}(x)=$ $\{n \in A(x): \quad n \equiv 0 \quad(\bmod b)\}, \quad P=\{$ primes $p \equiv 1 \quad(\bmod M)\}, \quad P(z)=\Pi_{p \leq z}^{p \in P} p$, $S(A(x), P, z)=|\{n \in A(x): \quad(n, P(z))=1\}|$. We shall need the following lemma, which follows immediately from [5], Corollary 2.3.1.

Lemma 1. Let G be a set of primes with

$$
\begin{equation*}
\sum_{\substack{p \in G \\ p \leq x}} \frac{1}{p} \geq \frac{1}{\varphi(M)} \log \log x-a \tag{3.1}
\end{equation*}
$$

for some constant a. Then

$$
\begin{equation*}
\mid\{n \in A(x):(n, p)=1 \text { for all } p \in G\} \left\lvert\, \ll \frac{x}{(\log x)^{1 / \varphi(M)}}\right. \tag{3.2}
\end{equation*}
$$

where the constant implied by the << symbol depends only on a.

Now we let

$D=\mid\{n \in A(x): n$ is divisible by at most three distinct primes in $P\} \mid$. We claim that

$$
\begin{equation*}
D \leq F_{0}+F_{1}+F_{2}+F_{3} \tag{3.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& F_{0}=S\left(A(x), P, x^{1 / 4}\right) \\
& F_{1}=\sum_{\substack{p \in P \\
p \leq x^{1 / 4}}} S\left(A_{p}(x), P-\{p\},\left(\frac{x}{p}\right)^{1 / 4}\right) \\
& F_{2}=\sum_{\substack{p_{1}, p_{2} \in P \\
p_{1}, p_{2} \leq x^{1 / 4}}} S\left(A_{p_{1} p_{2}}(x), P-\left\{p_{1}, p_{2}\right\},\left(\frac{x}{p_{1} p_{2}}\right)^{1 / 4}\right) \\
& F_{3}=\sum_{\substack{p_{1}, p_{2}, p_{3} \in P \\
p_{1}, p_{2}, p_{3} \leq x^{1 / 4}}} S\left(A_{p_{1}, p_{2} p_{3}}(x), P-\left\{p_{1}, p_{2}, p_{3}\right\}, \frac{x}{p_{1} p_{2} p_{3}}\right) .
\end{aligned}
$$

If n is divisible by no prime in P, then n is counted in F_{0}. If n is divisible by exactly one prime in P, then we see that n is counted in F_{0} or F_{1}. If n is divisible by exactly two distinct primes in P, then we see that n is counted in F_{0}, F_{1}, or F_{2}. Finally if n is divisible by exactly three distinct primes in P, we see that n is counted in F_{0}, F_{1}, F_{2}, or F_{3}. Thus Inequality 3.3 is valid. We also note that

$$
\begin{aligned}
& S\left(A_{p}(x), P-\{p\},\left(\frac{x}{p}\right)^{1 / 4}\right)=S\left(A\left(\frac{x}{p}\right), P-\{p\},\left(\frac{x}{p}\right)^{1 / 4}\right) \\
& S\left(A_{p_{1} p_{2}}(x), P-\left\{p_{1}, p_{2}\right\},\left(\frac{x}{p_{1} p_{2}}\right)^{1 / 4}\right)=S\left(A\left(\frac{x}{p_{1} p_{2}}\right), P-\left\{p_{1}, p_{2}\right\},\left(\frac{x}{p_{1} p_{2}}\right)^{1 / 4}\right) \\
& S\left(A_{p_{1} p_{2} p_{3}}(x), P-\left\{p_{1}, p_{2}, p_{3}\right\}, \frac{x}{p_{1} p_{2} p_{3}}\right)=S\left(A\left(\frac{x}{p_{1} p_{2} p_{3}}\right), P-\left\{p_{1}, p_{2}, p_{3}\right\}, \frac{x}{p_{1} p_{2} p_{3}}\right) .
\end{aligned}
$$

We first use Lemma 1 with $G=\left\{p \in P: p \leq x^{1 / 4}\right\}$. The well-known formula

$$
\sum_{\substack{p \in P \\ p \leq x}} \frac{1}{p}=\frac{1}{\varphi(M)} \log \log x+0(1)
$$

implies that

$$
\begin{aligned}
\sum_{\substack{p \in G \\
p \leq x}} \frac{1}{p}=\sum_{\substack{p \in P \\
p \leq x^{1 / 4}}} \frac{1}{p} & =\frac{1}{\varphi(M)} \log \log \left(x^{1 / 4}\right)+0(1) \\
& =\frac{1}{\varphi(M)} \log \log x+0(1)
\end{aligned}
$$

So Inequality 3.1 is satisfied with a constant a that depends on M. Thus from Inequality 3.2,

$$
F_{0}=S\left(A(x), P, x^{1 / 4}\right) \ll \frac{x}{(\log x)^{1 / \varphi(M)}}
$$

Next we use Lemma 1 with $G=\left\{q \in P-\{p\}: q \leq(x / p)^{1 / 4}\right\}$. Since

$$
\sum_{\substack{q \in G \\ q \leq x / p}} \frac{1}{q}=\frac{1}{\varphi(M)} \log \log \left(\frac{x}{p}\right)+0(1)
$$

then

$$
S\left(A\left(\frac{x}{p}\right), P-\{p\},\left(\frac{x}{p}\right)^{1 / 4}\right) \ll \frac{x}{p(\log (x / p))^{1 / \varphi(M)}} .
$$

For $p \leq x^{1 / 4}$, we have

$$
\frac{1}{\left(\log \left(\frac{x}{p}\right)\right)^{1 / \varphi(M)}} \ll \frac{1}{(\log x)^{1 / \varphi(M)}} \text { and } \sum_{\substack{p \in P \\ p \leq x^{1 / 4}}} \frac{1}{p} \ll \log \log x
$$

So

$$
F_{1}=\sum_{\substack{p \in P \\ p \leq x^{1 / 4}}} S\left(A\left(\frac{x}{p}\right), P-\{p\},\left(\frac{x}{p}\right)^{1 / 4}\right) \ll \frac{x \log \log x}{(\log x)^{1 / \varphi(M)}} .
$$

Next with

$$
G=\left\{q \in P-\left\{p_{1}, p_{2}\right\}: q \leq\left(\frac{x}{p_{1} p_{2}}\right)^{1 / 4}\right\},
$$

Lemma 1 gives

$$
S\left(A\left(\frac{x}{p_{1} p_{2}}\right), P-\left\{p_{1}, p_{2}\right\},\left(\frac{x}{p_{1} p_{2}}\right)^{1 / 4}\right) \ll \frac{x}{p_{1} p_{2}\left(\log \left(x / p_{1} p_{2}\right)\right)^{1 / \varphi(M)}} .
$$

For $p_{1} p_{2} \leq x^{1 / 2}$, we have

$$
\frac{1}{\left(\log \left(\frac{x}{p_{1} p_{2}}\right)\right)^{1 / \varphi(M)}} \ll \frac{1}{(\log x)^{1 / \varphi(M)}} \text { and } \sum_{\substack{p_{1}, p_{2} \in P \\ p_{1}, p_{2} \leq x^{1 / 4}}} \frac{1}{p_{1} p_{2}} \ll(\log \log x)^{2} .
$$

So

$$
F_{2}=\sum_{\substack{p_{1}, p_{2} \in P \\ p_{1}, p_{2} \leq x^{1 / 4}}} S\left(A\left(\frac{x}{p_{1} p_{2}}\right), P-\left\{p_{1}, p_{2}\right\},\left(\frac{x}{p_{1} p_{2}}\right)^{1 / 4}\right) \lll \frac{x(\log \log x)^{2}}{(\log x)^{1 / \varphi(M)}} .
$$

Finally with

$$
G=\left\{q \in P-\left\{p_{1}, p_{2}, p_{3}\right\}: q \leq \frac{x}{p_{1} p_{2} p_{3}}\right\},
$$

Lemma 1 gives

$$
S\left(A\left(\frac{x}{p_{1} p_{2} p_{3}}\right), P-\left\{p_{1}, p_{2}, p_{3}\right\}, \frac{x}{p_{1} p_{2} p_{3}}\right) \ll \frac{x}{p_{1} p_{2} p_{3}\left(\log \left(x / p_{1} p_{2} p_{3}\right)\right)^{1 / \varphi(M)}} .
$$

For $p_{1} p_{2} p_{3} \leq x^{3 / 4}$, we have

$$
\frac{1}{\left(\log \left(\frac{x}{p_{1} p_{2} p_{3}}\right)\right)^{1 / \varphi(M)}} \ll \frac{1}{(\log x)^{1 / \varphi(M)}} \text { and } \sum_{\substack{p_{1}, p_{2}, p_{3} \in P \\ p_{1}, p_{2}, p_{3} \leq x^{\prime \prime / 4}}} \frac{1}{p_{1} p_{2} p_{3}} \ll(\log \log x)^{3} .
$$

So

$$
F_{3}=\sum_{\substack{p_{1}, p_{2}, p_{3} \in P \\ p_{1}, p_{2}, p_{3} \leq x^{1 / 4}}} S\left(A\left(\frac{x}{p_{1} p_{2} p_{3}}\right), P-\left\{p_{1}, p_{2}, p_{3}\right\}, \frac{x}{p_{1} p_{2} p_{3}}\right) \ll \frac{x(\log \log x)^{3}}{(\log x)^{1 / \varphi(M)}} .
$$

Then from Inequality 3.3, we have

$$
D \ll \frac{x(\log \log x)^{3}}{(\log x)^{1 / \varphi(M)}} .
$$

Since $\left|C_{x}\right| \leq D$, we have proved Theorem 1 .
4. Density results. We let notations be the same as in previous sections. In this section we shall suppose that n is divisible by exactly t distinct primes. So $n=p_{1}^{e_{1}} \cdots p_{t}^{e_{t}}$, where p_{1}, \ldots, p_{t} are distinct primes and each $e_{i} \geq 1$. We note that the conditions in section 2 do not distinguish between $m \mid h_{n}^{+}$for $n=$ $p_{1} \cdots p_{t}$ and $m \mid h_{n}^{+}$for $n=p_{1}^{e_{1}} \cdots p_{t}^{e_{t}}$ if each $e_{i} \geq 1$. Similarly the conditions in section 2 do not distinguish between $m \mid h_{n}$ for $n=p_{1} \cdots p_{t}$ and $m \mid h_{n}$ for $n=p_{1}^{e_{1}} \cdots p_{t^{e}}^{e^{\prime}}$ if each $e_{i} \geq 1$. Hence we shall consider only square-free integers n with t prime factors. Let x be a positive real number, and let $R_{t, x}=\{n \leq x$: $n=p_{1} \cdots p_{t}$ with primes $\left.p_{1}<p_{2}<\cdots<p_{t}\right\}$. If T_{x} is a subset of $R_{t, x}$ for each x,
we define a density

$$
d\left(T_{x}\right)=\lim _{x \rightarrow \infty} \frac{\left|T_{x}\right|}{\left|R_{t, x}\right|}
$$

provided the limit exists. We define a lower density

$$
\mathbf{d}\left(T_{x}\right)=\liminf _{x \rightarrow \infty} \frac{\left|T_{x}\right|}{\left|R_{t, x}\right|} .
$$

If $d\left(T_{x}\right)$ exists, then of course $\mathbf{d}\left(T_{x}\right)=d\left(T_{x}\right)$. We also note the well-known asymptotic formula

$$
\begin{equation*}
\left|R_{t, x}\right| \sim \frac{x(\log \log x)^{t-1}}{(t-1)!\log x} \tag{4.1}
\end{equation*}
$$

as $x \rightarrow \infty$ with t fixed. Our main result in this section is the following theorem.
Theorem 2. Let $m \geq 3$ and $t \geq 3$ be integers. Define M by (2.1). Let $V_{m, t, x}=$ $\left\{n \in R_{t, x}: m \mid h_{n}\right\}$ and $V_{m, t, x}^{+}=\left\{n \in R_{t, x}: m \mid h_{n}^{+}\right\}$. Then
(i) $\mathbf{d}\left(V_{m, t, x}\right) \geq \mathbf{d}\left(V_{m, t, x}^{+}\right) \geq 1-y_{m, t}$, where

$$
\begin{aligned}
y_{m, t}=\frac{(\varphi(M)-1)^{t-3}}{(\varphi(M))^{t}}\left[(\varphi(M)-1)^{3}+t(\varphi(M)-1)^{2}+\frac{t(t-1)}{2}(\varphi(M)-1)\right. & \\
& \left.+\frac{t(t-1)(t-2)}{12}\right] .
\end{aligned}
$$

If m is odd, we have the stronger result (ii) $\mathbf{d}\left(V_{m, t, x}\right) \geq 1-z_{m, t}$, where

$$
\begin{aligned}
& z_{m, t}=\frac{(\varphi(m)-1)^{t-3}}{(\varphi(m))^{t}}\left[(\varphi(m)-1)^{3}+t(\varphi(m)-1)^{2}+\frac{t(t-1)}{4}(\varphi(m)-1)\right. \\
&\left.+\frac{7 t(t-1)(t-2)}{384}\right] .
\end{aligned}
$$

Now let $t=2$ and let m be odd. Then (iii) $\mathbf{d}\left(V_{m, t, x}\right) \geq \frac{1}{2(\varphi(m))^{2}}$.
Proof. For $t \geq 3$, let $Y_{m, t, x}=\left\{n \in R_{t, x}: n\right.$ satisfies condition (a) or (b) of section $2\}$ and $Z_{m, t, x}=\left\{n \in R_{t, x}: n\right.$ satisfies one of the conditions $(c),\left(d_{1}\right),\left(d_{2}\right),\left(e_{1}\right),\left(e_{2}\right)$ of section 2\}. To prove (i) and (ii) of Theorem 2, it suffices to show that $d\left(Y_{m, t, x}\right)=y_{m, t}$ and $d\left(Z_{m, t, x}\right)=z_{m, t}$. Now

$$
\begin{equation*}
\left|Y_{m, t, x}\right|=\sum_{p_{1} \cdots p_{t} \leq x} \delta_{0}+\sum_{p_{1} \cdots p_{t} \leq x} \delta_{1}+\sum_{p_{1} \cdots p_{1} \leq x} \delta_{2}+\sum_{p_{1} \cdots p_{t} \leq x} \delta_{3} \tag{4.2}
\end{equation*}
$$

where for $0 \leq i \leq 2$,

$$
\delta_{i}=\left\{\begin{array}{l}
1 \text { if exactly } i \text { of } p_{1}, \ldots, p_{t} \text { are congruent to } 1(\bmod M) \\
0 \text { otherwise }
\end{array}\right.
$$

and

$$
\delta_{3}=\left\{\begin{array}{l}
1 \text { if condition (b) of section } 2 \text { is satisfied } \\
0 \text { otherwise }
\end{array}\right.
$$

Now for fixed M and t, standard calculations show

$$
\begin{equation*}
\sum_{p_{1} \cdots p_{t} \leq x} \delta_{0}=\sum_{\substack{p_{1} \cdots p_{1} \leq x \\ \operatorname{each} p_{i} \neq 1(\bmod M)}} 1 \sim\left(\frac{\varphi(M)-1}{\varphi(M)}\right)^{t} \frac{x(\log \log x)^{t-1}}{(t-1)!\log x} . \tag{4.3}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\sum_{p_{1} \cdots p_{t} \leq x} \delta_{1} \sim\binom{t}{1} \frac{1}{\varphi(M)}\left(\frac{\varphi(M)-1}{\varphi(M)}\right)^{t-1} \frac{x(\log \log x)^{t-1}}{(t-1)!\log x} \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{p_{1} \cdots p_{t} \leq x} \delta_{2} \sim\binom{t}{2}\left(\frac{1}{\varphi(M)}\right)^{2}\left(\frac{\varphi(M)-1}{\varphi(M)}\right)^{t-2} \frac{x(\log \log x)^{t-1}}{(t-1)!\log x} \tag{4.5}
\end{equation*}
$$

where $\binom{t}{1}$ and $\binom{t}{2}$ are binomial coefficients.
The calculation of $\sum_{p_{1} \cdots p_{1} \leq x} \delta_{3}$ is slightly more complicated. We will obtain the factor

$$
\binom{t}{3}\left(\frac{1}{\varphi(M)}\right)^{3}\left(\frac{\varphi(M)-1}{\varphi(M)}\right)^{t-3}
$$

from the congruence conditions mod M. Next since

$$
\left(\frac{p_{i_{2}}}{p_{i_{1}}}\right)= \pm 1,\left(\frac{p_{i_{3}}}{p_{i_{1}}}\right)= \pm 1,\left(\frac{p_{i_{3}}}{p_{i_{2}}}\right)= \pm 1,
$$

there are eight possible combinations for the Legendre symbols. Four of these combinations satisfy the requirements of condition (b), and hence we expect an additional factor of $\frac{4}{8}=\frac{1}{2}$ in the calculation. Thus we expect

$$
\begin{equation*}
\sum_{p_{1} \cdots p_{t} \leq x} \delta_{3} \sim \frac{1}{2}\binom{t}{3}\left(\frac{1}{\varphi(M)}\right)^{3}\left(\frac{\varphi(M)-1}{\varphi(M)}\right)^{t-3} \frac{x(\log \log x)^{t-1}}{(t-1)!\log x} \tag{4.6}
\end{equation*}
$$

Concerning the proof of this type of result, we make the following observations. For simplicity, we consider the case $t=3$. We let χ_{p} be the quadratic character defined by

$$
\chi_{p}(a)=\left(\frac{a}{p}\right) \quad \text { for } \quad(a, p)=1
$$

Then suppose, for example, that we want to count the integers $n \leq x$ of the form $n=p_{1} p_{2} p_{3}$ with primes $p_{1}<p_{2}<p_{3}$, each $p_{i} \equiv 1(\bmod M)$, and with

$$
\left(\frac{p_{2}}{p_{1}}\right)=-1, \quad\left(\frac{p_{3}}{p_{1}}\right)=1, \quad\left(\frac{p_{3}}{p_{2}}\right)=-1 .
$$

Then we would compute the sum
$\sum_{\substack{p_{1} \leq x^{1 / 3} \\ p_{1}=1(\bmod M)}} \sum_{\substack{p_{1}<p_{2} \leq\left(x / p_{1}\right)^{1 / 2} \\ p_{2}=1(\bmod M)}} \sum_{p_{2}<p_{3} \leq x / p_{1} p_{2}} \frac{1}{2}\left(1-\chi_{p_{1}}\left(p_{2}\right)\right) \frac{1}{2}\left(1+\chi_{p_{1}}\left(p_{3}\right)\right) \frac{1}{2}\left(1-\chi_{p_{2}}\left(p_{3}\right)\right)$.
We have performed calculations similar to this in [3] and [4]. The coefficient in the main term in the asymptotic formula for (4.7) comes from the factor $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$ and the congruence conditions mod M. The remaining terms are character sums which are part of the error term. Thus we see that the sum (4.7) is asymptotic to

$$
\frac{1}{8}\left(\frac{1}{\varphi(M)}\right)^{3} \frac{x(\log \log x)^{2}}{2!\log x}
$$

Since there are four possible combinations of Legendre symbols that give $\delta_{3}=1$, we get

$$
\sum_{p_{1} p_{2} p_{3} \leq x} \delta_{3} \sim \frac{1}{2}\left(\frac{1}{\varphi(M)}\right)^{3} \frac{x(\log \log x)^{2}}{2!\log x} \text { when } t=3 .
$$

It is then easy to see that (4.6) is true for arbitrary $t \geq 3$. Now using (4.1)-(4.6), we see that $d\left(Y_{m, t, x}\right)=y_{m, t}$, where $y_{m, t}$ is specified in the statement of Theorem 2.

Next we consider $\left|Z_{m, t, x}\right|$. We note that

$$
\begin{equation*}
\left|Z_{m, t, x}\right|=\sum_{p_{1} \cdots p_{1} \leq x} \varepsilon_{0}+\sum_{p_{1} \cdots p_{1} \leq x} \varepsilon_{1}+\sum_{p_{1} \cdots p_{t} \leq x} \varepsilon_{2}+\sum_{p_{1} \cdots p_{1} \leq x} \varepsilon_{3} \tag{4.8}
\end{equation*}
$$

where for $0 \leq i \leq 1$,

$$
\begin{aligned}
& \varepsilon_{i}=\left\{\begin{array}{l}
1 \text { if exactly } i \text { of } p_{1}, \ldots, p_{t} \text { are congruent to } 1(\bmod m) \\
0 \text { otherwise }
\end{array}\right. \\
& \varepsilon_{2}=\left\{\begin{array}{l}
1 \text { if condition }\left(\mathrm{d}_{1}\right) \text { or }\left(\mathrm{d}_{2}\right) \text { of section } 2 \text { is satisfied } \\
0 \text { otherwise }
\end{array}\right. \\
& \varepsilon_{3}=\left\{\begin{array}{l}
1 \text { if condition }\left(\mathrm{e}_{1}\right) \text { or }\left(\mathrm{e}_{2}\right) \text { of section } 2 \text { is satisfied } \\
0 \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Now analogous to (4.3) and (4.4), we have

$$
\begin{equation*}
\sum_{p_{1} \cdots p_{1} \leq x} \varepsilon_{0} \sim\left(\frac{\varphi(m)-1)}{\varphi(m)}\right)^{t} \frac{x(\log \log x)^{t-1}}{(t-1)!\log x} \tag{4.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{p_{1} \cdots p_{t} \leq x} \varepsilon_{1} \sim\binom{t}{1} \frac{1}{\varphi(m)}\left(\frac{\varphi(m)-1}{\varphi(m)}\right)^{t-1} \frac{x(\log \log x)^{t-1}}{(t-1)!\log x} \tag{4.10}
\end{equation*}
$$

We now examine the effect of the conditions $\left(d_{1}\right),\left(d_{2}\right),\left(e_{1}\right),\left(e_{2}\right)$. In $\left(d_{1}\right)$, the congruence conditions $(\bmod 4)$ introduce a factor $\frac{1}{4}$. In $\left(d_{2}\right)$, the congruence
conditions $(\bmod 4)$ introduce a factor $\frac{2}{4}$, and the condition $\left(p_{i_{2}} / p_{i_{1}}\right)=-1$ introduces a factor $\frac{1}{2}$. Thus from $\left(d_{1}\right)$ and $\left(d_{2}\right)$ we get a factor $\frac{1}{4}+\frac{2}{4} \cdot \frac{1}{2}=\frac{1}{2}$ to multiply the coefficient

$$
\binom{t}{2}\left(\frac{1}{\varphi(m)}\right)^{2}\left(\frac{\varphi(m)-1}{\varphi(m)}\right)^{t-2} .
$$

So

$$
\begin{equation*}
\sum_{p_{1} \cdots p_{r} \leq x} \varepsilon_{2} \sim \frac{1}{2}\binom{t}{2}\left(\frac{1}{\varphi(m)}\right)^{2}\left(\frac{\varphi(m)-1}{\varphi(m)}\right)^{t-2} \frac{x(\log \log x)^{t-1}}{(t-1)!\log x} . \tag{4.11}
\end{equation*}
$$

In $\left(e_{1}\right)$, the congruence conditions $(\bmod 4)$ introduce a factor $\frac{1}{8}$, and the condition on Legendre symbols introduces a factor $\frac{4}{8}$. In $\left(e_{2}\right)$, the congruence conditions $(\bmod 4)$ introduce a factor $\frac{3}{8}$, and the condition on Legendre symbols introduces a factor $\frac{1}{8}$. So from $\left(\mathrm{e}_{1}\right)$ and $\left(\mathrm{e}_{2}\right)$ we get a factor $\frac{1}{8} \cdot \frac{4}{8}+\frac{3}{8} \cdot \frac{1}{8}=\frac{7}{64}$ to multiply the factor

$$
\binom{t}{3}\left(\frac{1}{\varphi(m)}\right)^{3}\left(\frac{\varphi(m)-1}{\varphi(m)}\right)^{t-3} .
$$

Thus

$$
\begin{equation*}
\sum_{p_{1} \cdots p_{t} \leq x} \varepsilon_{3} \sim \frac{7}{64}\binom{t}{3}\left(\frac{1}{\varphi(m)}\right)^{3}\left(\frac{\varphi(m)-1}{\varphi(m)}\right)^{t-3} \frac{x(\log \log x)^{t-1}}{(t-1)!\log x} . \tag{4.12}
\end{equation*}
$$

Then from (4.1), (4.8), (4.9), (4.10), (4.11), and (4.12), we get $d\left(Z_{m, t, x}\right)=$ $z_{m, t}$, where $z_{m, t}$ is specified in the statement of Theorem 2.

Statement (iii) in Theorem 2 can be obtained by using conditions (c), (d_{1}), $\left(\mathrm{d}_{2}\right)$ and by observing that

$$
1-\left(\frac{1}{\varphi(m)}\right)^{2}\left[(\varphi(m)-1)^{2}+2(\varphi(m)-1)+\frac{1}{2}\right]=\frac{1}{2(\varphi(m))^{2}} .
$$

Remark. For fixed m in Theorem 2, $\lim _{t \rightarrow \infty} y_{m, t}=0$ and $\lim _{t \rightarrow \infty} z_{m, t}=0$.
Acknowledgment. The author wishes to thank S. W. Graham for several helpful suggestions.

References

1. G. Cornell and M. Rosen, The l-rank of the real class group of cyclotomic fields, Abstracts Amer. Math. Soc., 3 (1982), 226.
2. G. Cornell and L. Washington, Class numbers of cyclotomic fields, to appear.
3. F. Gerth and S. Graham, Counting certain number fields with l-class number 1 or l, to appear.
4. F. Gerth, Counting certain number fields with prescribed l-class numbers, to appear in J. Reine Angew. Math.
5. H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, London, 1974.
[^0]
[^0]: Department of Mathematics
 The University of Texas
 Austin, Texas 78712
 U.S.A.

