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Abstract. The basic astrometric observable of the Space Interferome­
try Mission (SIM) instrument is the pathlength delay. This measurement 
is made by a combination of internal metrology measurements that de­
termine the distance the starlight travels through the two arms of the 
interferometer and a measurement of the white light stellar fringe to find 
the point of equal pathlength. Because this operation requires a non-
negligible integration time, the interferometer baseline vector is not sta­
tionary over this time period, as its absolute length and orientation are 
time-varying. This paper addresses how the time-varying baseline can be 
"regularized" so that it may act as a single baseline vector for multiple 
stars, as required for the solution of the astrometric equations. 

1. Introduction 

SIM is a space-based 10-m baseline Michelson optical interferometer operating 
in the visible waveband that is designed to achieve astrometric accuracy in the 
single digits of the microarcsecond domain. Over a narrow field of view SIM is 
expected to achieve a mission accuracy of 1 /jas. In this mode SIM will search 
for planetary companions to nearby stars by detecting the astrometric "wobble" 
relative to a nearby (< 1°) reference star. In its wide-angle mode, SIM will 
provide 4 /xas precision absolute position measurements of stars, with parallaxes 
to comparable accuracy, at the end of its 5-year mission. The expected proper 
motion accuracy is around 3 /jas/yr, corresponding to a transverse velocity of 
10 m/s at a distance of 1 kpc. 

SIM surveys the sky in units called tiles. A tile is defined as a sequence of 
measured delays corresponding to multiple objects all made by a single baseline 
vector b and central pointing of the instrument — that is, all the measurements 
in a tile are from objects that are within a single astrometric field of regard of 
the instrument, which is 15° X 15°. The existence of a single baseline vector 
ensures that the system of equations developed from the observations to extract 
the astrometric parameters is not underdetermined. However, the collection of 
such a measurement set with a single interferometer is actually impossible, as 
the data collection on a sequence of objects takes finite time, over which both 
the baseline length and orientation do not remain constant. 

This paper describes the fundamental steps of how the on-board instru­
mentation of external metrology and auxiliary guide interferometers are used to 
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reconstruct the baseline vector sufficiently accurately so that it can effectively be 
modeled as a single vector over the period of a tile observation. This process has 
been previously referred to as the regularization of the baseline (Boden, 1997). 
The notion of the regularized baseline has been used extensively in a number of 
grid simulation studies that plan observation sequences, predict mission accu­
racy, and determine sensitivities to various instrument parameters (Loiseau and 
Malbet, 1996; Boden, 1997; Swartz, 2000). 

2. The logic of astrometry with SIM 

SIM will measure the pathlength.delay between the two arms of the interferome­
ter. The instantaneous delay is given formally by the interferometer astrometric 
equation: 

d(t)=(b(t).sj)+k, (1) 

where d is the optical pathlength delay that is measured by the interferometer 
using internal metrology and the white light fringe, Sj is the unit 3-vector to 

the observed ,7th star, b is the baseline 3-vector, and A; is a so-called constant 
(or calibration) term that represents possible optical path differences between 
the light collected from the target object and the internal metrology, and (a • b) 
denotes the dot vector product of vectors a and b. To differentiate between 
the various interferometer baselines we will use the notation bgA, A € (1,2), 
to denote the baselines of guide interferometers 1 and 2 with corresponding 
delay measurements dgl and dg2, and 6S will denote the baseline of the science 
interferometer. 

Because a finite integration time is required to make measurement (1), the 
actual instrument measurement is: 

(ds) = (sr(b)) + (ks), (2) 

where (d8) is the average external delay, (b) is the average baseline vector over 
the period of the observation, and (ks) the same for the calibration term. Note 
that all of the quantities on the right are unknown, and thus must be estimated. 

Because the three interferometer baselines are not colinear, to complete the 
characterization of the rigid body behavior of the instrument a third inertia! 
measurement is required. This measurement is termed the "roll" measurement. 
In the ideal case the collection of measurements made by the guide interferome­
ters, the roll measurement, the external metrology measurements together with 
the a priori data consisting of the positions of the guide stars, the initial guide 
and science baseline vectors in the local frame, uniquely determine the baseline 
vector of the science interferometer in inertia! space. 

We will now get into the details of how (6) is obtained from the measure­
ments and a priori data. For this purpose it suffices to treat SIM as a set of 
fiducials, X\, ...,XN, X% G R 3 . Our interests center around the evolution of the 
fiducials Xi(t) over a time period to < t < T, where t = <o denotes the beginning 
of an observation of a tile and t = T is the time of completion. The problem 
is solved using the on-board optical sensing systems that include the external 
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metrology system, the guide star interferometers, and the roll estimator. The 
signals from these systems are briefly described next. 

The observed variables associated with the external metrology system are 

^ • ( 0 = 1 ^ ( 0 - Xj{t)\ - \£i(t0) - Xj(to)\, 1 < » < 4 , j>i. (3) 

These measurements are relative distance measurements, and (3) is valid for any 
choice of coordinate frame (relativistic terms are not included at this point). In 
particular, bs is determined in the local frame from (3). The problem is to find bs 

in the inertial frame. This connection is made by using the guide interferometers. 
SIM uses a pair of guide interferometers to produce two independent delay 

measurements per observation. The observed variables associated with the guide 
interferometers are the delays dgA given by Eq. (1). 

The roll estimator produces a "measurement" similar to the guide interfer­
ometers. Let n denote the line-of-sight vector of one of the guide interferometer 
telescopes and let f denote the baseline of the role estimator (see Milman & 
Turyshev, 2000). The roll estimator equation is 

K = (n-f), (4) 

where K is constant for all values of n and f over the period of a tile. 
Now let U define the transformation between the local and inertial coordi­

nate frames. Since the science baseline vector 68 is known in local coordinates 
from external metrology measurements, the problem of determining 68 in inertial 
coordinates is solved once we obtain U, viz. bs = Ubl°c. 

The equations for obtaining U are provided by the guide interferometer 
measurements and the roll estimator. The guide measurements and the roll 
estimator may be written as 

<V = {gi-U b#c) + fcgA, K = (n-f) = {n- UT1OC), (5) 

with 6g£c and n, K and f100 all assumed known from external metrology data. 

We now have three equations needed to determine U. 

3. Ast rometr ic modeling for SIM 

Solving (5) requires a parameterization of U. The small size of the attitude 
changes due to attitude control error and thermal drifts suggest that is sufficient 
to represent U in a truncated series expansion. As a result we represent U in 
the series expansion for some skew-symmetric matrix 5, 

Utsi+S + S2/2 + 0(S3). (6) 

The approximation Eq. (6) can be shown to solve the system (5) with an error 
of 0(|6S|||5'| |4). Thus sub-picometer geometric accuracy for even arcmin level 
attitude errors, is attained. 
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With this in mind, to the second order in small attitude variations, u(t), 
we parameterize the instantaneous interferometer baseline, b(t), as 

b(t) = b(t0) ( l + €(*)) (n(*o) + [0(0 X n(t0)] + ^[oJ(0 x [<3(t) x n(t0)]}), (7) 

where b(to), ft(to) are the initial baseline length and orientations of the interfer­
ometer; e(t) — Ab(t)/b(to) are the time-varying readings of the external metrol­
ogy; uJ(t) is the vector of small attitude changes in the baseline orientation for 
the interferometer; and [a x b] denotes the cross vector product. 

The expression (7) allows us to write the delays for all three interferometers. 
Thus, to the second order in u one obtains the following expressions for the time-
varying delays of two guide interferometers: 

+ dgi(i) = fcgA(t) + &gA(*o) ( l + CgA(<)) (& • {"gift)) + [wgi(<) x ngi(to)] 

+ ^[^(t)x[^(t)xngk(t0))) + O(u;3)}). (8) 

Taking into account flexible body motions, and subtracting the initial con­
ditions from the time-varying delays tracked by the guide interferometers, we 
define the instantaneous change in the science interferometer baseline orienta­
tion. However, the obtained system of equations is underdetermined. This is 
why only two out of three components of the attitude vector C3B(t) may be deter­
mined this way. We call the undetermined component the roll component. For 
the determination of this component of the attitude vector SIM will be using 
the roll estimator of the form given by Eq. (5). 

A solution to the obtained set of non-linear equations may be obtained in 
an iterative way. In consideration of brevity we present here only the first order 
solution for the science interferometer instantaneous delay: 

<U(t) = A;o8 + Afc8(0 + 6o(l + f 8 ( 0 ) u « o - ^ ) -

- (ww <7t x
x ?ll - * M %°t * ?il)+o(«g)}. w 

where Pgk(t) characterizes the pathlength feed-forward signal (instrumental drifts) 
and has the form: 

ftiW = (1 - ' * ( 0 ) A ^ ( ^ M < ) - <*(*)(*>•&). (io) 

We also defined the following notations: de(t),dgii(t) are the instantaneous 
interferometric delays; es(t), CgA(0 are the fractional baseline lengths vari­
ations; kos is the calibration term of the science interferometer at the be­
ginning; Aks(t), Akg^t) are the contributions of temporal drifts in the cal­
ibration terms; uogk is the initial misalignment of the kth guide interferome­
ter baseline's orientation relative to that of the science interferometer, namely 
ngk{to) = nB(t0) + [£ogn(to) X ns(t0)] + 0{u>lgk); 0gk(t) is the change in the guide 
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interferometer's orientation relative to the science baseline in the local frame, 
^gA(0 = w8(f) + Ogx(t). For detailed derivation of terms ~ OfwgJ, see Milman 
k Turyshev (2000). 

4. Baseline regularization concept 

The process of reconstructing the baseline vector when implemented onboard 
in real-time is termed pathlength feedforward, and is a critical component to 
the operation of the interferometer. The pathlength feedforward signal is exact 
when the parameters that define the mapping are without error. However, a 
priori errors in the guide star positions, the relative positions of the fiducials in 
the metrology local frame, and the interferometer constant terms will produce 
a residual error between the science baseline vector in inertial space and its 
estimate as derived by the feedforward algorithm. 

To characterize the impact of this error on the astrometric equations, first 
recall that the science interferometer makes the measurement (ds), Eq. (2). Next 

let b(t) denote the estimate of b(t) using the aforementioned measurements and 
a priori data. Then we write the above as 

(dB) = (sj • (i)) + (sj. ((b) - (I))) + (ks). ( i i ) 

Ideally, in the absence of measurement and a priori data errors, the second 
term above is zero, which is not the case in general. The important result is 
that to first order, as long as the guide interferometers are locked, the difference 

((b) — (b)) is a constant vector. Hence, over the observation of a tile, there is a just 
a single vector correction to the time-varying baseline vector that can be used for 
all the science targets in the tile. This correction vector is the "regularization" 
of the baseline. The set of formulae described herein will serve as the kernel for 
the future mission analysis and simulations. A complete characterization and 
justification of these statements will appear elsewhere. 
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