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Abstract

This paper is concerned with a stochastic model for the spread of an epidemic with a
contact tracing scheme, in which diagnosed individuals may name some of their infectious
contacts, who are then removed if they have not been already. Traced individuals may or
may not also be asked to name their own contacts. The epidemic is studied by considering
an approximating, modified birth–death process with intersibling dependencies, for
which a threshold parameter and expressions from which extinction probabilities may
be calculated are derived. When all individuals can name their contacts, it is shown that
this threshold parameter depends on the infectious period distribution only through its
mean. Numerical studies show that the infectious period distribution choice can have a
material effect on the threshold behaviour of an epidemic, while the dependencies help
reduce spread.

Keywords: Stochastic epidemic; contact tracing; branching process; reproduction number

2010 Mathematics Subject Classification: Primary 92D30
Secondary 60J80

1. Introduction

This paper is concerned with a stochastic model for the spread of an infectious disease
amongst a homogeneously mixing population. The model features a contact tracing scheme
in which individuals can name their infectious contacts upon diagnosis, with traced contacts
being prevented from making further potentially infectious contacts. Unlike previous stochastic
models for contact tracing, such as Müller et al. (2000) and Klinkenberg et al. (2006), we do not
assume that all infected individuals will eventually be asked to name contacts, since we assume
that there is a fixed probability that a traced individual will be asked to name their contacts.
Other tracing models may involve tracing neighbours of diagnosed individuals in a network-
structured population (see, e.g. Shaban et al. (2008)) or housemates of diagnosed individuals
in a household-structured population (see, e.g. Ball et al. (2007) and Ball et al. (2008)); the
tracing in this paper differs from these in that traced individuals are necessarily infected. The
tracing differs from a traced vaccination model, such as that of Kaplan et al. (2002) (in which
traced individuals are vaccinated but may still make further contacts), in that we assume that
traced individuals cannot make further contacts. Furthermore, the model of Kaplan et al. is an
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example of a deterministic contact tracing model; by using a stochastic environment instead
we are able to determine (in some cases) how likely the tracing is to be effective in reducing
spread.

In this paper, the threshold behaviour of the epidemic process is studied via a related modified
birth–death process that is a novel example of a branching process in continuous-time with
dependencies, in that the lifetimes of siblings are codependent on their parent’s lifetime. Types
of dependencies explored previously in discrete-time branching processes include: population-
size-dependent branching processes (see, e.g. Klebaner (1989)), sibling-dependent branching
processes (see, e.g. Olofsson (1996)), and branching processes in varying environments (see,
e.g. Athreya and Karlin (1971)).

By and large the dependencies in epidemic models with contact tracing make the analysis
of related branching processes difficult. Previous studies of contact tracing in a stochastic
environment have used such analytical methods as truncation of naming chains (see, e.g.
Klinkenberg et al. (2006)), bounding approximations (see, e.g. Becker et al. (2005)), and
asymptotic threshold parameters (see, e.g. Müller et al. (2000)). In this paper we use an
analytical framework that not only allows us to obtain exact expressions for a threshold
parameter, but also, in some situations, expressions for calculating extinction probabilities.
Furthermore, we compare these results with some obtained for approximations which assume
that sibling units are independent, in order to examine the effect of the dependencies. Our
model does not allow for susceptible individuals to be traced, but some of the theory in this
paper can be extended to a model which incorporates a latent period and a delay in tracing, the
analysis of which is more complicated and will be presented in a separate paper.

The paper is structured as follows. The epidemic with contact tracing model is defined
in Section 2. A modified birth–death process is also defined and its use to determine the
threshold behaviour of the epidemic process is outlined. Threshold parameters and expressions
for extinction probabilities are derived for constant and exponentially distributed infectious
periods in Sections 3 and 4, respectively. In Section 5 it is shown that in the iterative tracing
case the threshold parameter depends only on the infectious period distribution through its
mean. Section 6 contains some numerical illustrations of the theory.

2. Model and threshold behaviour

2.1. Epidemic and contact tracing models

We consider an SIR (susceptible → infective → removed) epidemic spreading amongst a
homogeneously mixing closed population of size N , with a contract tracing scheme applied
to reduce spread. At any time, each individual in the population is in one of three states:
susceptible, infective, or removed. Initially, a small number of individuals are infective and
the rest are susceptible. Contacts between any two given individuals in the population occur
at times given by the points of a homogeneous Poisson process with rate λ/N . A susceptible
individual becomes an infective individual if he/she makes contact with an infective. An
infective individual remains infectious for a period of time distributed according to a random
variable TI , having an arbitrary but specified distribution, and then becomes removed. Once
removed, an individual no longer plays a part in the epidemic process. The epidemic ends when
there is no infective individual left in the population. All the Poisson processes and random
variables describing infectious periods are assumed to be mutually independent.

A contact tracing scheme is incorporated as follows. Upon removal, an individual (i.e. an
infector) names each of the individuals they infected (i.e. their infectees), if any, independently
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with probabilityp, and named infectees are removed immediately. An individual whose removal
is a result of contact tracing (and not the natural end of their infectious period) is said to be traced.
Note that a named individual is not traced if their infectious period ends during their infector’s
infectious period (at which time they will of course be asked to name their own infectees).
With probability π , a traced individual names their own infectees in the same manner (i.e.
independently with probabilityp) with named infectees being removed (this occurs immediately
when the traced individual is removed), otherwise they name none of their infectees. We
adopt the convention of describing an individual as named throughout their life, as long as
they will be named during the epidemic. The naming process is assumed independent of
the Poisson processes and random variables describing infectious periods. Special cases of
particular interest are when π = 0 (no traced individual is asked to name their contacts) and
when π = 1 (all individuals are asked to name their contacts), which we refer to as single-step
and iterative tracing, respectively.

2.2. Threshold behaviour and a modified birth–death process

If the population size N is large then, during the early stages of the epidemic, there is only
a small probability that an infective makes contact with an already infected individual. Thus,
we can approximate the early stages of the epidemic by a process in which all an infective’s
contacts are made with susceptible individuals. In this approximation, the process of infected
individuals follows a modified birth–death process. The approximation can be made fully
rigorous by considering a sequence of epidemics, indexed by N , and modifying the coupling
argument of Ball (1983) (see also Ball and Donnelly (1995)) to prove almost-sure convergence
of the epidemic model with tracing to the modified birth–death process as N → ∞.

This modified birth–death process, with births corresponding to new infections and deaths
corresponding to removals, is as follows. Individuals give birth at rate λ over their lifetime
which has a natural length distributed as TI . Furthermore, when an individual dies naturally (i.e.
without being traced), each of its offspring is named, independently and with probability p. An
individual who is still alive at the time they are named dies unnaturally. When an individual dies
unnaturally then, with probability π , they name their offspring in the same manner (again with
named offspring dying unnaturally if they are alive when named), otherwise all their offspring
will die naturally.

The threshold behaviour of this modified birth–death process can be obtained by considering
the embedded single-type discrete-time Galton–Watson process describing unnamed individu-
als, in which the offspring of a given individual are either (a) their immediate unnamed offspring,
or (b) unnamed descendants who are separated from the given individual, in the family tree,
only by named individuals. To distinguish between the processes and for conciseness, we refer
to the modified birth–death process as the MBDP and the Galton–Watson process as the GWP.

Let a named individual who is separated from its most recent unnamed ancestor in the family
tree of the MBDP by k − 1 named individuals be called a type-k individual. Hence, type-1
individuals are the named immediate offspring of unnamed individuals, type-2 individuals are
the named immediate offspring of the named immediate offspring of unnamed individuals, and
so on. Type-0 individuals are unnamed individuals.

To analyse the MBDP, we focus attention on the offspring random variable, R say, in the
GWP, by obtaining expressions for its mean, RU = E[R], which we call a type-reproduction
number, following Heesterbeek and Roberts (2007). For some example realizations of R, see
Figure 1 (the quantities Rk (for k = 1, 2, . . . ) and R(k) (for k = 0, 1, . . . ) are defined in
Section 4). Standard results from branching process theory tell us that the GWP dies out with
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Figure 1: Some example realizations of R. In (i) R = 4, R1 = 2, R2 = 1, R(0) = 1, R(1) = 3, and
R(2) = 4. In (ii) R = 5, R1 = 0, R2 = 1, R3 = 2, R(0) = 2, R(1) = 2, R(2) = 3, and R(3) = 5. In

(iii) R = 2, R1 = 2, R(0) = 0, and R(1) = 2.

probability 1 if and only if RU ≤ 1, and that if RU > 1 and there is a single ancestor, who
is unnamed, then the extinction probability of the GWP, pe say, is the smallest solution of
s = H(s) in (0, 1), where H(s) = E[sR]. Note that the MBDP goes extinct if and only if the
GWP goes extinct, and so the extinction probability of the MBDP equals that of the GWP.

3. Constant infectious period

In this section we assume that TI ≡ ι, and obtain expressions for RU andH(s) by analysing
the tree length of a two-type pure-birth process over [0, ι]. We use a method of looking back
along the tree which is similar to, but different from, that used in Lambert (2010).

Consider a typical unnamed individual,A say, in the MBDP who has a lifetime of length ι. It
follows from the definition of the MBDP that each individual gives birth to unnamed individuals
over their lifetime at the points of a Poisson process (independently of all other individuals) with
rate λ(1 −p) if they are asked to name their offspring or rate λ if they are not. LettingD be the
length of A’s family tree of named individuals in the MBDP (i.e. the sum of the lifetimes of A
and all named descendants of A who are separated from A only by named individuals), we can
writeD = D1 +D2, whereD1 andD2 are the total lifetimes of individuals who can and cannot
name offspring, respectively. The number of offspringA has in the GWP therefore has a Poisson
distribution with random mean λ(1−p)D1 +λD2, soRU = E[λ(1−p)D1 +λD2] andH(s) =
ψ(λ(1 − p)(1 − s), λ(1 − s)), 0 ≤ s ≤ 1, where ψ(θ1, θ2) = E[e−θ1D1−θ2D2 ], θ1, θ2 ≥ 0.
Furthermore, since all the individuals (other than A) who contribute to D live until the end
of A’s lifetime and then die unnaturally, D is equal in distribution to the tree length at time
ι of a two-type (potent and impotent individuals) pure-birth process with one potent initial
individual, in which potent individuals give birth to potent and impotent individuals at rates
λpπ and λp(1 −π), respectively, over [0, ι] and impotent individuals have no offspring. Also,
D1 is equal in distribution to the tree length at time ι of the embedded single-type pure-birth
process of potent individuals (which henceforth we refer to as the PBP).
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Consider the initial individual in the PBP, Â, say. We analyseD by conditioning back from
time ι to Â’s last birth. Let the time of this birth be ι− T̃ , with T̃ = ι if Â has no offspring.
Then T̃ has a probability mass of e−λpπι at ι, while, if T̃ < ι (which happens with probability
1 − e−λpπι), T̃ has an Exp(λπp) distribution restricted to [0, ι), where the notation Exp(µ)
denotes an exponential distribution with mean µ−1. If T̃ = ι (i.e. Â has no births) then clearly
D1 = ι. If T̃ = t (t < ι) then we know that over [ι − t, ι] (i.e. a part of the tree of length t),
Â has no births. The remainder of the tree length is determined by considering the first ι − t

time units of Â’s lifetime, and the t time units of the offspring’s lifetime (which begins at time
ι− t). These two time intervals are equivalent to the lifetime ι of a single individual. Thus, the
remaining tree length is independent of and identically distributed toD1, and it can be analysed
by conditioning back again from time ι.

Each time we condition back a length of time t to a birth, there may be associated impotent
births during this time in the two-type process. This number of births has a Poisson distribution
with mean λp(1 − π)t (which we denote by Po(λp(1 − π)t)), and given this number, the
lifetimes of the resulting offspring can be sampled from independent U(0, t) distributions. Let
the associated total length of impotent lifetimes when conditioning back a time t be Yt , and let
φt (θ) = E[e−θYt ], θ ≥ 0. Thus, E[Yt ] = λp(1 − π)t2/2 while, for θ ≥ 0,

φt (θ) =
∞∑
k=0

e−λp(1−π)t (λp(1 − π)t)k

k!
(∫ t

0

1

t
e−θu du

)k

= e−λp(1−π)t exp

{
λp(1 − π)

θ
(1 − e−θt )

}
.

For ω1, ω2 ≥ 0, let f (ω1, ω2) = E[ω1D1 + ω2D2]. Then, from the above,

E[ω1D1 + ω2D2 | T̃ = t] =

⎧⎪⎨
⎪⎩
ω1ι+ ω2

λp(1 − π)ι2

2
if t = ι,

f (ω1, ω2)+ ω1t + ω2
λp(1 − π)t2

2
if t < ι,

while, for (θ1, θ2) ∈ R
2+,

E[e−θ1D1−θ2D2 | T̃ = t] =
{

e−θ1ιφι(θ) if t = ι,

ψ(θ1, θ2)e−θ1t φt (θ) if t < ι.

Thus, letting f
T̃ | T̃ <ι be the probability density function of T̃ conditional upon T̃ < ι,

f (ω1, ω2) = P(T̃ = ι)E[ω1D1 + ω2D2 | T̃ = ι]
+ P(T̃ < ι)

∫ ι

0
f
T̃ | T̃ <ι(t)E[ω1D1 + ω2D2 | T̃ = t] dt

= ω1

λpπ
(1 − e−λpπι)+ (1 − e−λpπι)f (ω1, ω2)

+ ω2(1 − π)

π

(
1

λpπ
− 1

λpπ
e−λpπι − ιe−λpπι

)
,

which on rearranging gives

f (ω1, ω2) = ω1

λpπ
(eλpπι − 1)+ ω2(1 − π)

π

(
1

λpπ
eλpπι − 1

λpπ
− ι

)
.
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Setting ω1 = λ(1 − p) and ω2 = λ in the above yields

RU = 1 − p

pπ
(eλpπι − 1)+ 1 − π

π

(
1

pπ
eλpπι − 1

pπ
− λι

)
. (3.1)

Meanwhile, for θ1, θ2 > 0,

ψ(θ1, θ2) = P(T̃ = ι)E[e−θ1D1−θ2D2 | T̃ = ι]
+ P(T̃ < ι)

∫ ι

0
f
T̃ | T̃ <ι(t)E[e−θ1D1−θ2D2 | T̃ = t] dt

= e−λpπιe−θ1ιφι(θ2)+ (1 − e−λpπι)
∫ ι

0

λpπe−λpπt

1 − e−λpπι ψ(θ1, θ2)e
−θ1t φt (θ2) dt

= e−(λp+θ1)ι exp

{
λp(1 − π)

θ2
(1 − e−θ2ι)

}

+ ψ(θ1, θ2)λpπeλp(1−π)/θ2

∞∑
k=0

(−λp(1 − π)/θ2)
k

k! (λp + θ1 + kθ2)
(1 − e−(λp+θ1+kθ2)ι),

whence

ψ(θ1, θ2) = e−(λp+θ1)ι exp

{
λp(1 − π)

θ2
(1 − e−θ2ι)

}

×
(

1 − λpπeλp(1−π)/θ2

∞∑
k=0

(−λp(1 − π)/θ2)
k

k! (λp + θ1 + kθ2)
(1 − e−(λp+θ1+kθ2)ι)

)−1

and, for 0 ≤ s < 1,

H(s) = e−(λ(1−(1−p)s))ι exp

{
p(1 − π)

1 − s
(1 − e−λ(1−s)ι)

}

×
(

1 − λpπep(1−π)/(1−s)
∞∑
k=0

{
(−p(1 − π)/(1 − s))k

k! λ((k + 1)(1 − s)+ ps)

× (1 − e−λ((k+1)(1−s)+ps)ι)
})−1

.

4. Exponential infectious period

We obtain RU by considering a typical unnamed individual, A say, in the MBDP. Let Ri
be the total number of unnamed descendants of A in the MBDP who have exactly i named
individuals and no unnamed individual between themselves and A in the family tree, and let
RU,i = E[Ri]. Let R(k) be the total number of unnamed descendants of A in the MBDP who
have no unnamed individual and at most k named individuals between themselves and A in the
family tree. Then, for k = 1, 2, . . . ,

R(k) = R(0) +
k∑
i=1

Ri,
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noting that R(0) is the number of unnamed immediate offspring ofA. Examples of Ri and R(k)

are given in Figure 1. Let R(k)U = E[R(k)]. We have R(k) ↑ R as k → ∞, so, by the monotone
convergence theorem,

RU = lim
k→∞R

(k)
U . (4.1)

Let T denote the lifetime of our typical unnamed individual,A, in the MBDP (T ∼ Exp(γ ))
and, for k = 0, 1, . . . , let hk(t) = E[R(k) | T = t]. Now, R(0) is just the number of unnamed
immediate offspring of A, so (R(0) | T = t) ∼ Po(λ(1 − p)t), and h0(t) = λ(1 − p)t .

LetN1 denote the number of named immediate (i.e. type-1) offspring of our typical individual
and, for i = 1, 2, . . . , N1, let Z(k)i be the total number of descendants from the ith such
(arbitrarily ordered) individual that contribute to R(k). Thus,

k∑
i=1

Ri =
N1∑
i=1

Z
(k)
i .

In this paper all sums are 0 if vacuous. Now (N1 | T = t) ∼ Po(λpt) and, conditional upon
N1 = n and T = t , the birth times of these n individuals can be obtained by sampling n
independent U(0, t) random variables, so the Z(k)i are independent and identically distributed,
with common distribution Z(k), say. Thus,

E

[ k∑
i=1

Ri

∣∣∣∣ T = t

]
=

∞∑
n=0

P(N1 = n | T = t)nE[Z(k) | T = t] = λptgk(t),

where gk(t) = E[Z(k) | T = t], k = 1, 2, . . . , and g0(t) = 0. Hence, for k = 0, 1, . . . ,

hk(t) = λ(1 − p)t + λptgk(t), t > 0. (4.2)

For k = 1, 2, . . . , to compute E[Z(k) | T = t], let V denote the excess lifetime of individual
Awhen our typical named descendant ofA,B say, is born, and let TB denote the natural lifetime
of B. Then (V | T = t) ∼ U(0, t). Furthermore, if TB ≥ V then, with probability π , B can
name its immediate offspring, while, with probability 1 − π , all B’s immediate offspring are
unnamed. So,

(Z(k) | V = v, TB ≥ v)
d= (R(k−1) | T = v) (B can name),

E[Z(k) | V = v, TB ≥ v] = λv (B cannot name),

where ‘
d=’ means ‘equal in distribution to’. On the other hand, if TB < V then B dies beforeA,

so B’s death is natural and B names individuals in the same manner as an unnamed individual,
i.e.

(Z(k) | V = v, TB = tB)
d= (R(k−1) | T = tB), tB < v.

Putting this all together yields

gk(t) =
∫ t

v=0

1

t

{
P(TB > v)(πhk−1(v)+ λ(1 − π)v)+

∫ v

u=0
γ e−γ uhk−1(u) du

}
dv

=
∫ t

v=0

1

t

{
e−γ v(πhk−1(v)+ λ(1 − π)v)+

∫ v

u=0
γ e−γ uhk−1(u) du

}
dv,
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whence, using (4.2), h0(t) = λ(1 − p)t and, for k = 1, 2, . . . ,

hk(t) = λ(1 − p)t + λp(1 − π)

∫ t

0
λve−γ v dv + λpπ

∫ t

0
e−γ vhk−1(v) dv

+ λp

∫ t

v=0

∫ v

u=0
γ e−γ uhk−1(u) du dv

= λ(1 − p)t + λ2p(1 − π)

γ 2 {1 − e−γ t − γ te−γ t } + λpπ

∫ t

0
e−γ vhk−1(v) dv

+ λp

∫ t

v=0

∫ v

u=0
γ e−γ uhk−1(u) du dv.

(4.3)

For θ > 0, letLk(θ) = ∫ ∞
0 e−θthk(t) dt be the Laplace transform of hk(t). Hence,L0(θ) =

λ(1 − p)/θ2 and taking the Laplace transform of (4.3) yields, for k = 1, 2, . . . ,

Lk(θ) = λ(1 − p)

θ2 + λ2p(1 − π)

θ(θ + γ )2
+ λp(πθ + γ )

θ2 Lk−1(γ + θ). (4.4)

Now, R(k)U = ∫ ∞
0 γ e−γ thk(t) dt = γLk(γ ), and setting θ = jγ in (4.4) yields

Lk(jγ ) = λ(1 − p)

j2γ 2 + λ2p(1 − π)

j (j + 1)2γ 3 + λp(πj + 1)

j2γ
Lk−1((j + 1)γ ), j = 1, 2, . . . .

(4.5)

This gives

L1(jγ ) = λ(1 − p)

j2γ 2 + λ2p(1 − π)

j (j + 1)2γ 3 + λ2p(1 − p)(πj + 1)

j2(j + 1)2γ 3 .

For i, j = 1, 2, . . . , let âj,i = ∏i−1
w=1(π(j + w − 1)+ 1). (In this paper all products are 1 if

vacuous.)
Suppose that, for k = 1, 2, . . . , κ and j = 1, 2, . . . ,

Lk(jγ ) = λ(1 − p)

j2γ 2 + λp

γ 2

k∑
i=1

λipi−1((1 − pπ)(j + i − 1)+ 1 − p)âj,i

γ i[(i + j)!]2/[(j − 1)!]2 . (4.6)

Then, using (4.5),

Lκ+1(jγ ) = λ(1 − p)

j2γ 2 + λ2p(1 − π)

j (j + 1)2γ 3 + λp(πj + 1)

j2γ
Lκ((j + 1)γ )

= λ(1 − p)

j2γ 2 + λ2p(1 − π)

j (j + 1)2γ 3 + λ2p(1 − p)(πj + 1)

j2(j + 1)2γ 3

+ λp

j2γ 2

κ∑
i=1

λi+1pi((1 − pπ)(j + i)+ 1 − p)âj,i+1

γ i+1[(i + j + 1)!]2/[j !]2

= λ(1 − p)

j2γ 2 + λp

γ 2

κ+1∑
i=1

λipi−1((1 − pπ)(j + i − 1)+ 1 − p)âj,i

γ i[(i + j)!]2/[(j − 1)!]2 ,
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so, by induction, (4.6) holds for all k = 1, 2, . . . . Recall that R(k)U = γLk(γ ). Thus, letting
ai = â1,i = ∏i−1

w=1(πw + 1), i = 1, 2, . . ., and setting j = 1 in (4.6) yields

R
(k)
U = λ(1 − p)

γ
+ λp

γ

k∑
i=1

λipi−1((1 − pπ)i + 1 − p)ai

γ i[(i + 1)!]2 .

Letting k → ∞ in the above expression and using (4.1) gives

RU = λ(1 − p)

γ
+ λp

γ

∞∑
i=1

λipi−1((1 − pπ)i + 1 − p)ai

γ i[(i + 1)!]2 . (4.7)

Note that the expression for RU is convergent since

p

∞∑
i=1

λipi−1((1 − pπ)i + 1 − p)ai

γ i[(i + 1)!]2 <

∞∑
i=1

(λp)i(i + 1)i!
[(i + 1)!]2γ i

<

∞∑
i=1

(λp)i

i!γ i = λ

γ
(eλp/γ − 1).

Letting π = 0 in (4.7) yields

RU = 1 + δ

p
I−1(2δ)− I0(2δ),

where δ = √
λp/γ and Ik is the modified Bessel function of the first kind.

By conditioning on A’s lifetime and the number of immediate offspring, we can obtain an
integral equation involving E[sR | T = t], details of which may be found in Chapter 3 of
Knock (2011) for π = 0 (but can be readily extended to more general π ). However, it does not
appear possible to solve this equation in order to obtain H(s).

4.1. A simplifying approximation: independence of sibling units

The contact tracing considered here is such that individuals are named and traced at the end
of their parent’s lifetime, and, hence, sibling units codepend upon when their parent’s lifetime
ends, in other words upon the length of their parent’s lifetime. Note that when the lifetime is
constant, then the sibling units become independent, but what of the case where lifetimes are
exponential? These intersibling dependencies make the model harder to analyse, but how much
of an effect do they have?

Consider a typical type-1 individual in the MBDP. Their lifetime is the minimum of their
natural lifetime and the excess lifetime of their parent when they are born (which have indepen-
dent Exp(γ ) distributions), and so the marginal distribution of a type-1 individual’s lifetime is
Exp(2γ ). Hence, the marginal distribution of the excess lifetime of a type-1 individual when
they spawn a type-2 individual is Exp(2γ ), so the marginal distribution of a type-2 individual’s
lifetime is Exp(3γ ). Motivated by this marginal behaviour, we introduce an approximation
to the MDBP, with independence of sibling units, as follows. Suppose that instead of being
named at the end of their parent’s lifetime, a typical type-k individual (independently of their
siblings and their natural lifetime) is named after a period of time from their birth, which has an
Exp(kγ ) distribution. The lifetime, Tk say, of a type-k individual would then be the minimum
of this naming period and their natural lifetime (which is an Exp(γ ) random variable), so in
this approximation, Tk has an Exp((k + 1)γ ) distribution. Furthermore, type-k individuals
would be traced with probability k/(k + 1), otherwise they would be untraced. Thus, a named
individual would be asked to name their offspring, if any, with probability (πk + 1)/(k + 1)
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(in which case their offspring are each named independently with probability p), otherwise
all their offspring will be unnamed. Letting Mij be the mean number of type-j offspring of a
type-i individual in this approximation,

Mk,0 = λ(1 − p)

(k + 1)2γ
+ kλ(1 − π)

(k + 1)2γ
+ kλ(1 − p)π

(k + 1)2γ
, Mk,k+1 = λp

(k + 1)2γ
+ kλpπ

(k + 1)2γ
.

Analogous to Section 2.2, we embed in this approximating multitype birth–death process
a single (type-0) Galton–Watson branching process and let R̃ denote the offspring random
variable of this GWP. Then

E[R̃] = M00 +M01(M10 +M12(M20 +M23(M30 + · · · )))

= M00 +
∞∑
k=1

( k∏
j=1

Mj−1,j

)
Mk0

= λ(1 − p)

γ
+

∞∑
k=1

(λp)kak

[k!]2γ k

λ(1 − p + (1 − pπ)k)

(k + 1)2γ

= λ(1 − p)

γ
+ λp

γ

∞∑
k=1

λkpk−1(1 − p + (1 − pπ)k)ak

[(k + 1)!]2γ k
,

which is the same as RU .
Let qk, k = 0, 1, 2, . . . , be the probability of extinction for this multitype birth–death

process with one initial individual, who is of type k. Let φk(θ) = E[e−θTk ], θ ≥ 0, be the
moment generating function of Tk . Then, for k = 0, 1, . . . , conditioning on Tk and the numbers
of type-0 and type-(k+1) individuals spawned by a type-k individual having lifetime Tk yields

qk = πk + 1

k + 1
φk(λ(1 − p)(1 − q0)+ λp(1 − qk+1))+ (1 − π)k

k + 1
φk(λ(1 − q0)),

whence, for k = 0, 1, . . . ,

qk = (πk + 1)γ

(k + 1)γ + λ(1 − p)(1 − q0)+ λp(1 − qk+1)
+ (1 − π)kγ

(k + 1)γ + λ(1 − q0)
. (4.8)

We consider two approximations to q0. Let j be a fixed positive integer. The first approx-
imation assumes that type-(j + 1) individuals have no offspring, so q(j,U)k , k = 0, 1, . . . , j ,
is obtained by setting qj+1 = 1 in (4.8) and solving the resulting equations for q0, q1, . . . , qj .
The second approximation assumes that type-(j + 1) individuals behave identically to type-j
individuals, so q(j,L)k , k = 0, 1, . . . , j , is obtained by setting qj+1 = qj in (4.8) and solving the

resulting equations for q0, q1, . . . , qj . In Appendix A we show that q(j,L)0 ↑ q0 and q(j,U)0 ↓ q0
as j → ∞, thus providing a method for numerically evaluating q0.

5. Iterative tracing

Setting π = 1 in (3.1) and (4.7) yields

RU = 1 − p

p
(eλpE[TI ] − 1). (5.1)

In this section we show that this holds for an arbitrary infectious period distribution. We do
this by first assuming that TI has countable support and then assuming that it has an arbitrary
distribution.
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5.1. Infectious period with countable support

Suppose that TI has countable support {t1, t2, t3, . . . }, where 0 < t1 < t2 < t3 < · · · , such
that P(TI = ti ) = pi > 0, i = 1, 2, . . . ,

∑∞
i=1 pi = 1, and

∑∞
i=1 piti < ∞.

To examine the offspring random variable of the GWP, we return to our typical unnamed
individualA, having lifetime T (so T

d= TI ) in the MDBP. We need to findRU = ∑∞
i=1 pih(ti),

where h(t) = E[R | T = t], 0 ≤ t ≤ ∞. Although TI has countable support, we require h(t)
to have continuous support for the purpose of a renewal argument.

Recall that R = R(0) + ∑∞
i=1 Ri , where R(0) is the number of unnamed immediate descen-

dants and
∑∞
i=1 Ri is the remaining number of offspring in the GWP. Now, (R(0) | T = t) ∼

Po(λ(1 − p)t), so E[R(0) | T = t] = λ(1 − p)t .
Let N1 denote the number of named immediate (i.e. type-1) offspring of A and, for i =

1, 2, . . . N1, let Zi be the total number of descendants from the ith (arbitrarily ordered) such
individual that contribute to R. Thus,

∞∑
i=1

Ri =
N1∑
i=1

Zi.

Now (N1 | T = t) ∼ Po(λpt) and, conditional upon N1 = k and T = t , the birth times of
these k individuals can be obtained by sampling k independent U(0, t) random variables, so
the Zi are independent and identically distributed, with common distribution Z, say. Thus,

E

[ ∞∑
i=1

Ri

∣∣∣∣ T = t

]
=

∞∑
k=0

P(N1 = k | T = t)k E[Z | T = t] = λptg(t),

where g(t) = E[Z | T = t], and it follows that

h(t) = λ(1 − p)t + λptg(t).

To obtain g(t), we return to our typical immediate named offspring of A, B, who is born V
time units before A dies (i.e. V ∼ U(0, t)) and has natural lifetime TB . Let t0 = 0. Suppose
that ti−1 < t ≤ ti , V = v, and j = arg maxk{tk−1 : v ≥ tk−1}, i.e. j is such that v ∈ [tj−1, tj )

for j = 1, . . . , i − 1 or v ∈ [ti−1, t] for j = i. If TB ≥ v then B dies when A dies and B’s
actual lifetime is v, while if TB < v, B’s actual lifetime is TB . Hence,

(Z | TB = tk)
d=

{
(R | T = tk), k < j,

(R | T = v), k ≥ j,

so

g(t) =
i∑

j=1

∫ min(tj ,t)

v=tj−1

1

t

( ∞∑
k=j

pkh(v)+
j−1∑
k=1

pkh(tk)

)
dv.

Therefore, for ti−1 < t ≤ ti ,

h(t) = λ(1 − p)t + λp

i∑
j=1

∫ min(tj ,t)

v=tj−1

( ∞∑
k=j

pkh(v)+
j−1∑
k=1

pkh(tk)

)
dv,
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so

h′(t) = λ(1 − p)+ λp

∞∑
k=i

pkh(t)+ λp

i−1∑
k=1

pkh(tk),

which can be solved to give

h(t)

∞∑
k=i

pk = Ai

λp
exp

{
λpt

∞∑
k=i

pk

}
− (1 − p)

p
−

i−1∑
k=1

pkh(tk)

for some constant Ai .
Note that, for any t ∈ [0,∞), h(t + �t) − h(t) is bounded above by the mean number

of births in the untraced process (i.e. p = 0) during [t, t + �t], since (a) not all births count
towards h and (b) the tracing has the effect of reducing lifetimes, and, therefore, the number
of births. The mean number of births in the untraced process during [t, t + �t] tends to 0 as
�t ↓ 0, so h is continuous on [0,∞).

Since h(t) is continuous, the values of the constants Ai, i = 1, 2, . . . , can be determined
by matching boundary values, and also by noting that h(0) = 0. We thus obtain

Ai = λ(1 − p) exp

{
λp

i−1∑
j=1

tjpj

}
, i = 1, 2, . . . ,

so, for ti−1 < t ≤ ti ,

h(t)

∞∑
k=i

pk = (1 − p)

p

(
exp

{
λp

( i−1∑
j=1

tjpj + t

∞∑
k=i

pk

)}
− 1

)
−

i−1∑
k=0

pkh(tk),

whence

i∑
k=0

pkh(tk)+ h(ti)

∞∑
k=i+1

pk = (1 − p)

p

(
exp

{
λp

( i∑
j=1

tjpj + ti

∞∑
k=i+1

pk

)}
− 1

)
. (5.2)

Now let X be the random variable with mass function P(X = tk) = pk, k = 1, 2, . . . , and,
for i = 1, 2, . . . , let Xi = min(X, ti). Then, we can rewrite (5.2) as

E[h(Xi)] = 1 − p

p
(eλpE[Xi ] − 1). (5.3)

Note that Xi ↑ X and h(Xi) ↑ h(X) almost surely as i → ∞, and that RU = E[h(X)].
Thus, letting i → ∞ in (5.3) and invoking the monotone convergence theorem yields (5.1).

5.2. Arbitrarily distributed infectious period

Suppose that TI has an arbitrary but specified distribution, satisfying E[TI ] < ∞. For
h > 0, let T −

h = hTI /h� and T +
h = T −

h + h. (For x ∈ R, x� denotes the greatest integer not
exceeding x.) Then T −

h ≤ TI ≤ T +
h , so E[T −

h ] ≤ E[TI ] ≤ E[T +
h ] = E[T −

h ] + h and a simple
sandwiching argument shows that both E[T −

h ] and E[T +
h ] tend to E[TI ] as h ↓ 0.
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We let R−
h and R+

h be the type-reproduction numbers when the natural lifetime has distribu-
tion T −

h and T +
h , respectively. By sampling shorter or longer natural lifetimes for R−

h or R+
h ,

respectively, it is clear that less or, respectively, more unnamed offspring are produced. Hence,

R−
h ≤ RU ≤ R+

h .

However, T −
h and T +

h both have countable support, so

R−
h = 1 − p

p
(eλpE[T −

h ] − 1) and R+
h = 1 − p

p
(eλpE[T +

h ] − 1).

Letting h ↓ 0 and using the above limits for E[T −
h ] and E[T +

h ] yields (5.1).

6. Numerical illustrations

Throughout this section, we assume without loss of generality that E[TI ] = 1. The
dependence of λcrit (the contact rate parameter value for which RU = 1) with the naming
probability, p, is shown in Figure 2 for single-step tracing (π = 0), with exponential and
constant infectious periods, and iterative tracing (π = 1). (Recall that, when π = 1, RU
depends on the infectious period distribution only through its mean, and, hence, so does λcrit .)
When the infectious period distribution is exponential, λcrit is higher (as we would expect since
the median of an exponential distribution is below its mean, so infectious periods are generally
shorter than in the constant case), and the range of values of λ, for which the exponential case
is subcritical while the constant case is supercritical, increases with p. As p → 1, λcrit → ∞
in the iterative case, since everyone is being named and there are no unnamed offspring. We
can see that the effectiveness of iterative tracing over single-step tracing as measured by λcrit
may be minor for small p, but increases greatly as p does.

While we do not have an analytical expression from which to obtain the extinction probability
pe in supercritical exponentially distributed infectious period cases, we can estimate it by
simulating the offspring random variableR in the GWP. In Figure 3, we examine how pe varies
with λ, using the analytical values in the constant infectious period cases and estimated values

Single step, exponential
Single step, constant

Iterative, arbitrary
Single step, exponential
Single step, constant

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.1
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p

crit

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

p

crit

Figure 2: λcrit varying with p for single-step tracing (exponential and constant infectious periods) and
iterative tracing (arbitrary infectious period) when E[TI ] = 1. The plot on the left omits the iterative case

to highlight the difference between the single-step cases.
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Figure 3: pe varying with λ when E[TI ] = 1.
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Figure 4: Comparing λcrit and the extinction probabilities of the two-type and multitype approximations
with those of the full model, with TI ∼ Exp(1) and π = 0. Extinction probabilities are examined when

p = 1.

from simulations in the exponential infectious period cases (any ‘wiggles’exhibited in the curve
arise from randomness, we would expect the true curve to be smooth). These estimates are
obtained by simulating R 100 000 times to obtain an empirical distribution for it; our estimate
is then given as the solution of H̄ (s) = s, in (0, 1), where H̄ (s) is the empirical probability
generating function ofR. There is a clear difference between the iterative and single-step cases
when p = 1 (and pe = 1 in the iterative case), but, except for fairly small λ in the constant
infectious period case, this becomes very small when p = 0.5. However, both when p = 0.5
and when p = 1, the difference between the exponential and constant infectious period cases
is pronounced.

In Figure 4 we compare λcrit and the extinction probabilities of the true tracing model
with those of the multitype approximation discussed in Section 4.1 and a cruder, two-type
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approximation given by q(1,L)0 (wherein type-2 individuals behave identically to type-1 indi-
viduals) when TI ∼ Exp(1) and π = 0. For smaller subcritical values of λ, the multitype
approximation is close to giving the true extinction probability (again simulations have been
used); however, it is not significantly better than the two-type approximation for larger λ. This is
perhaps because, as λ gets larger, the offspring random variable in the GWP, R, will generally
be small or large, and the nature of this dichotomy will be dominated by the earlier levels in
a naming tree, so the reduction of lifetimes further down the naming tree will have less of an
impact. Generally, the approximations are fairly reasonable, though, for larger λ, the extinction
probability is underestimated by about 0.1. Another two-type approximation, given by q(1,U)0 ,
can be considered, though it is generally even cruder, particularly for smaller subcritical values
of λ.

With the two-type approximation, named individuals have the same lifetime distribution, no
matter how far removed they are from an unnamed ancestor, so this is the likely reason that it
overestimates the spread of the true model, in which lifetimes are reduced as you go down the
naming tree. We also see that the multitype approximation overestimates the spread of the true
model, so it seems that the intersibling dependencies have an effect of reducing spread. This
may be because if an individual has a short lifetime then their siblings are more likely to, and,
furthermore, all their named offspring are then more likely to have much shorter lifetimes, and
so on.

Appendix A

In the appendix we prove the properties of (q(j,L)0 ) and (q(j,U)0 ) stated at the end of Sec-
tion 4.1. Note that q0 is the smallest root in [0, 1] of f

R̃
(s) = s, where f

R̃
(s) = E[sR̃]. For

j = 1, 2, . . . , let R̃Uj be the offspring random variable of the corresponding embedded type-0
GWP when type-(j + 1) individuals have no offspring and let R̃Lj be the offspring random
variable of the corresponding embedded type-0 GWP when type-(j + 1) individuals behave
identically to type-j individuals. Then q(j,L)0 and q(j,U)0 are given by the smallest roots in [0, 1]
of f Lj (s) = s and f Uj (s) = s, respectively, where f Lj (s)= E[sR̃Lj ] and f Uj (s)= E[sR̃Uj ].

Note that RU = E[R̃], and recall that RU < ∞, so P(R̃ < ∞) = 1. It is straightforward to
define R̃, R̃U1 , R̃

U
2 , . . . and R̃L1 , R̃

L
2 , . . . on a common probability space so that, almost surely,

R̃Uj ↑ R̃ and R̃Lj → R̃ as j → ∞. Thus,

R̃Uj
d−→ R̃ and R̃Lj

d−→ R̃ as j → ∞,

where ‘
d−→’ denotes convergence in distribution, and it follows using Lemma 4.1 of Britton et

al. (2007) that q(j,U)0 → q0 and q(j,L)0 → q0 as j → ∞. The sequence (q(j,U)0 ) is clearly
decreasing, since (R̃Uj ) is stochastically increasing, so to complete the proof, it is sufficient to
show that, for j = 1, 2, . . . , f Lj (s) ≤ f Lj+1(s), 0 ≤ s ≤ 1.

Consider a realisation of the approximating multitype birth–death process with a single
ancestor, having type 0, viewed on a generation basis. For j = 1, 2, . . . , let Yj be the number
of type-j individuals in generation j (these individuals have no type-0 individual between them
and the ancestor in the family tree), and let Wj be the total number of type-0 individuals in
generations 1, 2, . . . , j who have no type-0 individual between them and the ancestor in the
family tree. Also, letXj be the total number of type-0 progeny in a two-type (0 and j ) process,
with one ancestor who is of type-j , in which only type-j individuals produce offspring, and a
typical type-j individual has lifetime Tj ∼ Exp((j+1)γ ) and has offspring at rateλ. Moreover,
with probability (1 − π)j/(j + 1), all her offspring have type 0, otherwise the type of each of
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her offspring is chosen independently, with P(type j) = p = 1 − P(type 0). Observe that, for
j = 1, 2, . . . ,

R̃Lj
d= Wj+1 +

Yj+1∑
i=1

X
(i)
j and R̃Lj+1

d= Wj+1 +
Yj+1∑
i=1

X
(i)
j+1, (A.1)

where, for example, X(1)j , X
(2)
j , . . . are independent and identically distributed copies of Xj .

The decompositions in (A.1) imply that, for 0 ≤ s ≤ 1, f Lj (s) ≤ f Lj+1(s) if and only if
fj (s) ≤ fj+1(s), where fj (s) = E[sXj ].

Suppose without loss of generality that γ = 1. Conditioning on Tj yields

fj (s) = (1 − π)j

j + 1 + λ(1 − s)
+ 1 + πj

j + 1 + λp(1 − fj (s))+ λ(1 − p)(1 − s)
,

so fj (s) satisfies the quadratic equation gj (x) = 0, where

gj (x) = λpx2 − bjx + cj ,

bj = j + 1 + λ(1 − s)+ λps + λpj (1 − π)

j + 1 + λ(1 − s)
,

and

cj = j + 1 + λpj (1 − π)s

j + 1 + λ(1 − s)
.

Now, gj (1) = −λ(1 − p)(1 − s)− λpj (1 − π)(1 − s)/(j + 1 + λ(1 − s)), so, for s ∈ [0, 1),
gj (1) < 0 unless p = π = 1. If p = π = 1, all individuals are named and the entire
embedding approach breaks down. Thus, for all cases of interest, fj (s) is the smallest solution
of gj (x) = 0. Fix j ≥ 2. Simple algebra yields

gj (x)− gj−1(x) ≥ 0 ⇐⇒ x ≤ x0 = 1 + sdj

1 + dj
,

where

dj = λp(1 − π)(1 + λ(1 − s))

(j + 1 + λ(1 − s))(j + λ(1 − s))
.

Thus, since gj (0) > gj−1(0) and fj (s) is the smallest solution of gj (x) = 0, a sufficient
condition for fj (s) ≥ fj+1(s) is gj (x0) ≤ 0.

Lengthy algebra, noting that 1 − x0 = (1 − s)dj /(1 + dj ), x0 − s = (1 − s)/(1 + dj ),
and λp(1 − π)/(j + 1 + λ(1 − s)) = ((j + λ(1 − s))/(1 + λ(1 − s)))dj , and setting rj (s) =
1 − λs − j (j − 1)/(1 + λ(1 − s)), yields

(1 + dj )
2gj (x0)

1 − s
= dj (1 + dj )rj (s)− λ(1 − p + dj (1 − ps)).

Hence, gj (x0) ≤ 0 if rj (s) ≤ 0, so we now suppose that rj (s) > 0. Let

hj (x) = x2rj (s)+ x(rj (s)− λ(1 − ps))− λ(1 − p).

https://doi.org/10.1239/aap/1324045698 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1324045698


1064 F. G. BALL ET AL.

Then gj (x0) ≤ 0 if and only if hj (dj ) ≤ 0. Suppose thatp < 1. Then, there exists x∗
j > 0 such

that hj (x) ≤ 0 for x ∈ [0, x∗
j ] and hj (x) > 0 for x ∈ (x∗

j ,∞). Note that x∗
j is independent

of π and that dj decreases with π . Thus, if gj (x0) ≤ 0 when π = 0 then gj (x0) ≤ 0 for all
π ∈ [0, 1]. The same conclusion holds when p = 1. Hence, it is sufficient to consider the case
π = 0.

Let π = 0 and write dj = pej . Then gj (x0) ≤ 0 if and only if Hj(p) ≤ 0, where

Hj(p) = p2(e2
j rj (s)+ λej s)+ p(ej (rj (s)− λ)+ λ)− λ. (A.2)

Recall that rj (s) > 0. Then Hj(1) ≤ 0 implies that Hj(p) ≤ 0 for all p ∈ [0, 1], so we need
consider only p = 1. Thus, setting p = 1 in (A.2), we need to show that e2

j rj (s)+ ej (rj (s)−
λ(1 − s)) ≤ 0, or, equivalently, since ej > 0, that ej ≤ yj , where yj = λ(1 − s)/rj (s) − 1.
Now, ej decreases with j and, provided that rj (s) > 0, yj increases with j , so it is sufficient
to consider j = 2. Thus, noting that ej = dj as p = 1, we need to show that

λ(1 + λ(1 − s))

(2 + λ(1 − s))(3 + λ(1 − s))
≤ λ(1 − s)

1 − λs − 2/(1 + λ(1 − s))
− 1. (A.3)

Let z = 1 + λ(1 − s), so z ∈ [1, 1 + λ] and z − λ − 2z−1 > 0. Elementary algebra then
shows that (A.3) is equivalent to

z3 ≤ (λ2 + 3λ− 1)z2 + 4(1 + λ)z+ 4,

which clearly holds as z3 ≤ (1 + λ)z2 and λ > 1, since otherwise the birth–death process is
necessarily not supercritical.
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